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Abstract. The Migration Search Algorithm (MSA) is a novel meta-heuristic optimiza-
tion algorithm put forward in this paper. This algorithm is based on the way individuals
communicate with one another and the dynamic migration behavior of animal popula-
tions as they explore the world. Two behaviors of animal populations are simulated by
the algorithm during migration: migration movement and station maintenance. These
two behaviors can effectively ensure the survival of population as well as the survival of
individuals. In addition, we included this mechanism in our algorithm because informa-
tion dissemination is common among animal populations and plays an important role in
achieving effective migration and foraging. There are many groups in each population,
and each group has three types of individuals, namely leaders, followers, and adherents.
Twenty-six (twelve multimodal and fourteen unimodal) standard norm functions are com-
monly used in the optimization and twelve IEEE CEC2014 test functions are used for
the test norm for the MSA. Comparison analysis also verifies MSA with Gravitational
Search Algorithm (GSA), Particle Swarm Optimization (PSO), and Artificial Bee Colony
(ABC). Experimental results reveal that, in contrast to the above-mentioned selected algo-
rithm, Migration Search Algorithm owns good performance and competitiveness. Further,
the paper applies the algorithm to the optimization issue in text classification, the results
show that the algorithm exhibits better optimization performance than other existing op-
timization algorithms.
Keywords: optimization, unconstrained optimization, metaheuristic algorithm, migra-
tion search algorithm, MSA

1. Introduction. Natural world is filled with various biological behaviors existing to
achieve different purposes. When Sterna paradisaea fly from their Arctic breeding grounds
to Antarctica, when animals in East Africa move from Tanzania to Kenya, both biologists
and climatologists recognize that animal migration is taking place and it is a significant
part of the biological niche. Migratory animals are found in the main branches of the
animal kingdom, and the behavior of migration occurs in a variety of media where they
move by flying, walking, or swimming. The main goal of all these behaviors is to allow
animals to complete their reproduction and life.

Optimization problems widely exist in the fields of engineering [1, 2], and economics [3].
In recent years, more and more complicated optimization problems existing in the real
world have been proposed in these fields. To solve such complex optimization problems,
researchers try to use heuristic algorithms to solve the problem. The heuristic algorithm
is to solve complex computing tasks through iterative methods by imitating behavior
patterns and social phenomena observed in nature, and has achieved remarkable results,
overcoming many engineering optimization problems that were originally difficult to solve
[4, 5, 6, 7].

In the past several decades, scholars have studied dozens of natural-heuristic optimiza-
tion algorithms that simulate certain biological behaviors or physical phenomena. For
instance, the Particle Swarm Algorithm [8] is designed by imitating the social behavior of
birds, the Artificial Bee Swarm Algorithm [9] is designed by imitating the foraging process
of bees, the Simulated Annealing Algorithm [10] is inspired by metallurgical technology,
and the Gravitational Search Algorithm [11] based on the law of universal gravitation.
In addition, there is Genetic Algorithm [12], Differential Evolution Algorithm [13], and
the like. In addition, these algorithms are successfully applied to many domains, such as
program control [14, 15], biomedicine [16, 17], signal processing [18, 19], and image pro-
cessing [20]. Meta-heuristics are very simple and easy to understand, and most of their
inspirations come from very simple concepts. In addition, most meta-heuristics algorithms
have derivation-free mechanisms.
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According to the NFL theorem [21], some heuristic algorithms may show excellent
performance in specific problems, but they are mediocre on other problems. Although
different meta-heuristic algorithms have differences, the common point is that the search
process is divided into two stages: exploration and development. In the exploration pro-
cess, it is necessary to explore the promising regional space as comprehensively as possible,
so the algorithm needs a stochastic operator to search the space globally and stochastic.
The development stage refers to a local search within a certain range of the area obtained
in the exploration stage. Due to the stochastic nature of the heuristic algorithm, how to
find a break-event point in these two stages is a huge challenge. This research proposes
a new meta-heuristic algorithm for unconstrained majorization problems, the Migration
Search Algorithm, which simulates the dynamic migration behavior of animal popula-
tions and effective communication methods to figure out majorization problems in the
real world. We hope that through the mathematical modeling of biological population
migration behavior, we propose a new meta-heuristic algorithm inspired by biological mi-
gration, and hope to use this algorithm to deal with problems in real life, which is of great
significance for us to solve problems in real life, research, and engineering applications in
the field of scientific research.

The details of each chapter in this article are as follows: Section 2 introduces the
literature review of meta-heuristics majorization algorithms. Section 3 summarizes the
inspiration sources of the MSA algorithm. Section 4 expounds the principle of the MSA
algorithm detailly and gives algorithm flow. Section 5 conducted a detailed experiment
on the performance of the algorithm. Section 6 gives application of the algorithm in
the hyper-parameter optimization of the text classification algorithm based on transfer
learning and makes a brief discussion. In section 7, we summarize the work of this paper
and look forward to the future research work.

2. Literature Review. Meta-heuristics are generally divided into three categories: al-
gorithm that simulates the genetic evolution of organisms, algorithms derived from pop-
ulation intelligence simulation, and algorithms that simulates physical phenomena. For
that may be based on genetic evolution, the most representative of them must be Genetic
Algorithm, that was first put forward in 1992 [12] by Holland, which had a profound
impact at that time. It mainly comes from understanding of evolutionary principle. It
can be understood as a computational model that imitates genetic process and world
selection for Darwinian natural cycle theory. It was inspired by a simulation of evolu-
tion. The method begins from initial solutions which are stochastically generated, which
are population. The issues solution is Individual, which is chromosome. That create a
new generation of individuals through operations. Due to natural selection, the excellent
genetic factors of higher fitness individual are likely inherited to next generation, so the
new population is better than the previous generation. In this way, after several times,
it will approach the best set, that may represent first and second choice to solve an is-
sue. Another typical example is the Differential Evolution Algorithm [13], which is the
same as other evolutionary algorithms. It starts with a randomly initialized population,
then generates a new population through cross-mutation selection operation, and repeats
the process until the stop condition is satisfied. The advantage of Differential Evolution
Algorithm is that it adopts floating-point coding, so the algorithm performs better in
continuous optimization.

Second category algorithms are based on physical phenomena. This algorithm draws
inspiration from physical phenomena and solves optimization problems by simulating
physical rules, such as Simulated Annealing Algorithms [10]. The earliest idea of the
simulated annealing algorithm was proposed by Metropolis in 1983, and it was widely
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used in engineering later. At high temperature, interior prana for object atoms thermal
motion can be stronger. With increase of temperature, the interior prana diminishes
internal energy increases, and the internal structure will become chaotic. When the solid
is cooled, the internal particles tend to be ordered as the temperature decreases, it will
reach a steady state at the final room temperature, and energy inside becomes smallest.
Another typical algorithm is the Gravitational Search Algorithm [11]. In the Gravitational
Search Algorithm, each feasible solution represents a particle with mass. location’s fitness
can describe the quality. The particles attract each other under the action of gravity and
gather around the particles with higher mass. Because the Gravitational Search Algorithm
is an isolated system, this algorithm that explores the solution space through gravity can
effectively ensure that it converges to an optimal position.

The third category is from group intelligent, which form a series of new ways to work
out traditional complex issues by simulating biological groups. Typical examples are
Particle Swarm Algorithm [8], which simulates flocking flight behavior of birds and uses
information sharing between individuals to perform a collaborative search on problems.
The structure is simple, the speed is quick and it’s not simple to get stuck in partly
optimum, so what has been widely used since it was proposed. Another typical example
is the Artificial Bee Colony Algorithm (ABC) [9]. At this stage, many algorithms that
were on account of group intelligent have been proposed: Artificial Fish-swarm Algorithm
[22], Ant Colony Optimization [23], Firefly Algorithm [24], Bat Algorithm [25], Grey Wolf
Optimizer [26], Whale Optimization [27]. In addition to the above algorithms, Sine Cosine
Algorithm [28], Cache Optimization [29], and Butterfly-inspired Algorithm [30] also can
be applied in many fields.

Based on the above content, it can be found that these algorithms search for the optimal
solution position by simulating the intelligent behavior of biological organisms living in
truffles natural. Because it is similar with the way animals obtain resources in the living
space. To a large extent, this mechanism simulates the movement of animals to search for
the solution space, and uses the social behavior of the population to conduct intelligent
navigation.

3. Inspiration. Animal migration is usually a relatively long-distance movement of cer-
tain animals on a seasonal basis [31]. It is found in all major animal populations, including
birds, mammals, fish, reptiles, amphibians, insects, and crustaceans [32]. The reason why
animals migrate is probably because of the climate, food supply, seasonal change, or breed-
ing [33]. Animal migration behavior is an adaptive phenomenon, which can satisfy the
environmental conditions they need in a specific period of life, ensuring the individuals’
survival and the race’s prosperity.

In order to distinguish the general movement and migration movement of species in
their habitat, we divide the movement of species into two types. The first is the move-
ment within the population and in the habitat is called station retention [34]. The most
prominent manifestation of this kind of behavior is foraging. The population presents
tortuous and repetitive characteristics on a small-time scale and spatial scale. Individuals
frequently change their routes during foraging, but their range of activities is still in their
habitats. Another type of movement is when individuals permanently exceed the range
of activity in the current habitat. This movement contains an element of exploration,
and it comes to a halt when a suitable new home is discovered. It is worth mentioning
that animal migration behavior has an obvious tendency of convergence, one of the most
typical is the seasonal migration of birds [35]. Figure 1 shows the migration route of some
birds in East Asia and Australia.
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It is difficult to determine the cause of this phenomenon, but this convergence behavior
is certainly caused by the spread of information. Information dissemination means that
information on high-quality habitats or food sources flows from individuals with informa-
tion to individuals without information. Many natural behaviors can lead to the spread
of information, such as bees tell the location or number of honey sources by dancing [36].
The imprinting behavior of some newly hatched young birds and new born mammals [37]
(learning to recognize and follow the first moving object they see, which is usually their
mother). This kind of information transmission can effectively ensure the reproduction
of the whole population. Intriguingly, many animal populations [38] have hidden social
hierarchies, which will affect their foraging and migration behavior to a certain extent. In
general, the population has a leader who occupies the majority of the resources, such as
food, mating rights, and so on. In addition, the leader is also responsible for patrolling
territory, making decisions, leading, and ensuring the population’s survival and repro-
duction; the remaining individuals will be fallen into two categories: One is the strong
individuals in the population, who help the leader to capture or obtain food; the other is
the old and young individuals in the population, who choose to cling to the leader or the
dominant individual in the population to obtain survival opportunities.

The phenomenon that animals change the living environment of the population through
migration and other behaviors to seek a greater living quality is the main source of in-
spiration for the Migration Search Algorithm (MSA algorithm) proposed in this article.
At the beginning of the algorithm, all individuals are evenly distributed in space and
spontaneously forms different small groups. After the search process, individuals tend
to approach the leader of the group, who often occupies the vast majority of resources.
They also explore different areas of the living environment as they move. However, as
time goes on and the environment changes, food will become scarce, forcing the popula-
tion to temporarily restrain its ecological demands and start long-distances migration. In
the process of migration, the population often relies on the transmission of information
to determine the direction of migration.

4. Migration Search Algorithm. For the sake of mathematically model migration be-
havior of animal populations, we divide algorithm’s initial population into several groups,
each containing N individuals to imitate the habitat’s complex population composition.
The N individuals in the group are divided into three categories: leaders, assistants,
and dependents. Individuals in the population begins at a random initial position in D-
dimensional space, and their motion behavior is represented by a D-dimensional vector.

4.1. Random Initialization. Suppose the population is divided into m groups, each
containing 3 individuals. The following matrix can be used to represent the positions of
all individuals in each group:

Xm =

x
m
1,1 · · · xmn,1
...

. . .
...

xm1,d · · · xmn,d

 (1)

In d-th dimension, xmn,d represents the location of n individual in the m group in popu-
lation. Equation (2) is used to allocate individual’s initial position in the solution space:

xmn,d = LB + U(0, 1)× (UB − LB) (2)

Lower bound and upper bound of the dimensionality in the solution spatial are repre-
sented by UB and LB, and U(0, 1) represents stochastic number uniformly distributed
between zero and one.
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Figure 1. The route of Bird migration

4.2. Adaptation Evaluation. Suppose fitness function f(·), fitness value with indi-
viduals can be calculated by putting the solution vector into the adaptation function,
result is conserved in the array of Equation (3). The adaptation value for location of
individuals in group describes the environmental quality of some areas of the habitat. By
sorting the fitness values in the group, a numerical vector used to describe the quality of
life of the group can be obtained. With the continuous exploration and development of
the population, the group’s quality of life will approach the upper limit of the habitat’s
environmental carrying capacity:

Fm =


f1
([
xm1,1, x

m
1,2, ..., x

m
1,d

])
f2
([
xm2,1, x

m
2,1, . . . , x

m
2,d

])
. . .

fn
([
xmn,1, x

m
n,1, . . . , x

m
n,d

])
 (3)

Where fn
([
xmn,1, x

m
n,1, . . . , x

m
n,d

])
is fitness value for n unit in the m group’s position, and

Fm is a numerical vector describing the group’s quality of life. It’s worth noting that
after each fitness value update, the numerical vector must be reordered to ensure that
fn < · · · < f2 < f1 The reason for this is to ensure that each group’s leader always has
an absolute dominance position.
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Figure 2. Position updating in MSA

When the numerical vector of the quality of life is obtained, the high-quality ecological
locations in the entire ecological environment can be screened out according to the vector:

XBest Loc =

x
1
1,1 · · · x11,d
...

. . .
...

xm1,1 · · · xm1,d

 (4)

Where
[
xm1,1, x

m
1,2, · · · , xm1,d

]
represents the highest quality ecological position in the m

group, that is, the position of the leader in the m group.

4.3. Updating Positions. As mentioned above, we divide the migration behavior of
animals into two types, namely station keeping and migration movement. In each case,
individuals are more inclined to find a more favorable ecological environment and follow
the strong leader in the population. Individuals in the population can efficiently explore
their surroundings by updating their positions through autonomous movement, thereby
obtaining more survival resources. As a result, we can model this behavior mathematically.

Case 1: The animal population’s behavior tends to explore randomly in the habitat
and follow the population leader at times during the station keeping stage. It is worth
saying that the leader in the population will patrol their territory and lead the popula-
tion to obtain food, while the vulnerable groups in the population often choose to rely
on the leader in exchange for survival opportunities. Therefore, the individual location
information in this case will be updated as follow:

Xm,t+1
k =


xm,t
k + U (0, 1)×

((
xm,t
k − xm,t

2

)
+
(
xm,t
k − xm,t

2

))
, k = 1

xm,t
k + xm,t

k ×N (0, 1) , k = 2
xm,t
1 +

(
xm,t
k − xm,t

1

)
, k = 3

xmk = LB + U (0, 1)× (UB − LB) , otherwise

(5)

The xm,t
k denotes the location of the k individual in m group at t iteration. N(0, 1)

represents the standard deviation of one and an average value of stochastic figure of zero,
which obeys a normal distribution, and N(0, 1) represents a stochastic figure evenly dis-
persal between zero and one. LB and UB can be utilized to indicate the upper and lower
surpass of the dimension in the solution space, respectively. In the formula above, to
scavenge for better food sources, the judgment and exploration of the leader are made
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based on the existing living conditions, while the followers will adopt a relatively conser-
vative strategy, searching the surroundings under the existing living conditions. As for
the dependents, they are more inclined to explore around the leader to get food.

Figure 2 shows how the group searches for and updates the position in the seek space
of two-dimension. Group’s leader will judge their own direction based on the position
of followers and dependents. The dependents in the group will randomly update their
positions around the leader-centered area. The group’s followers will randomly explore
around themselves according to probability.

Case 2: When the ecological environment in the habitat is no longer suitable, when
means that the optimal location in the group’s habitat has a continuous for ”Liminte”
generation. Under this, the population will spontaneously explore other survival areas
under the pressure of survival and moving towards a high-quality ecological niche, and
stop this movement after acquiring a more suitable ecological niche. The direction of
migration for the population can be calculated as Equation (6):

V m,t
1 =

{
α× U (0, 1)×

(
T − xm,t

k

)
+ β × U (0, 1)×

(
M − xm,t

1

)
α× U (0, 1)×

(
T − xm,t

1

) (6)

T represents nowadays population’s location for head group. The head group is composed
of the top 5 percent of the current population fitness value, and a random selection
method is adopted when selecting T . M represents the population’s historical optimal
position, which is spread to other populations by the first discoverer according to the
message transfer model, and the population that obtains the information can formulate
its migration strategy based on the information.

Case 3: Furthermore, on account of the strong mobility and autonomy of animals during
migration, some will actively explore unknown areas, which may bring in a certain degree
of unpredictability. In such a case, we randomly explore the position in the solution space
through Equation (7), and judge whether to stay here according to Equation (8):

XNm,t
n = (Best Loca−Worst Loca)×N(0, 1) +Worst Loca (7)

Xm,t
n =

{
XNm,t

n , f
(
XNm,t

n

)
> f (Xm,t

n )
Xm,t

n , f
(
XNm,t

n

)
< f (Xm,t

n )
(8)

Best− Location and Worst− Location in Equation (7) represent the locations with the
best and worst fitness values, respectively, and N(0, 1) the standard deviation of one and
an average value of stochastic figure of zero that follows a normal distribution.

4.4. Information Dissemination. In addition to the motion simulation mentioned
above, we also need to consider the impact of information transmission between pop-
ulations on migration activities. We assume that in a closed environment with a certain
total population, the optimal location information is transmitted from the known indi-
viduals to the unknown individuals.

Due to the more individuals know this information, the more individuals get the optimal
position every day; the more the number of individuals who don’t know the optimal
position, the more individuals will get the optimal position every day. Consequently,
we can make the following assumptions: the number of individuals who newly obtain
the optimal position information every day is proportional to the product of the number
of individuals who have obtained the optimal position information and the number of
individuals who have not obtained the optimal position information.

pt+1 − pt = cpt × (MN − pt) (9)
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Figure 3. The infection of parameter c on message dissemination

In t-th iteration, pt is the number of individuals who have known the optimal location
information, and c is the propagation coefficient. The meaning of Equation (9) is the
relative increase in the number of individuals who have new information every day for
individual who has not obtained information. We can get the recursive form of the first-
order difference equation by sorting out the above formula:

pt+1 = (1 + cMN)× pt ×
(

1− c

1 + cMN
pt

)
(10)

From the Equation (10), we suppose the initial state is p0 = 1, MN = 1000, and c
takes two different values of 0.0001 and 0.0002, and that the result of calculating pt using
the recursive formula is shown in Figure 3.

People’s number who have learned information after 80 iterations is close to the total
number MN when c = 0.0001, but only 40 iterations are required when c = 0.0002, and
the propagation speed is significantly accelerated.

It can be seen from Equation (10) that an explicit expression of Pk cannot be obtained,
so in Equation (11) and Equation (12) we set:

b = 1 + cMN (11)

xk =
c

1 + cMN
(1− xk) (12)

Thus, Equation (12) is simplified to Equation (13):

xk+1 = bxk (1− xk) (13)

The non-zero equilibrium point of Equation (10) can be obtained in Equation (14):

x∗ = 1− 1/b (14)

According to the stability condition of |f ′ (x∗)| < 1 we know that 1 < b < 3, that is:

c < 2/MN (15)

From Equation (10), it can be concluded that c < 1/MN satisfies the equation balance
condition of Equation (15).
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4.5. Stopping Criterion. Algorithm’s termination condition determines iterations. Tol-
erance is a common convergence criterion, which defines an allowable but small threshold
between the last several consecutive results. Another common convergence criterion is
the maximum execution time as the termination condition. In this study, we use the
maximum iterations as stopping standard. Algorithm1 is the pseudocode of MSA.

Algorithm 1: Migration Search Algorithm

Define input
Generate stochastic positions by Equation (1)
Assess fitness of agent’s position
Rank agents in same group on their fitness value
Proceed according to the stopping standard

For each group do
Update the position of agents in this group by Equation (5)
Rank agents again

End for
Update the best position
Disseminate information of the best position
For each group do

If the best location do not update for continuous Liminte generations then
the group begin to migrate by Equation (6)

End if
End for
For each migratory group do

If the group found a location better than before during migration then
the group stop migration

End if
End for
Explore unknowed area randomly

End while the best location of colony found is the final optimum solution

5. Experiment and Analysis. In this section, the MSA algorithm will be tested by
comparing it with 26 test functions and analyzing its performance against these bench-
marks, including continuous function and discrete function, linear function and nonlinear
function, single mode function and multi-modal function, separable function, and insep-
arable function. When a function has a mode, it refers to the number of fuzzy peaks on
its surface. A function with only one fuzzy peak is called a single-modal function, and a
function with multiple fuzzy peaks is called a multi-modal function. Multi-modal function
with multiple fuzzy peaks contains multiple local optimums. This process of algorithm
optimization can easily lead to falling into local optimum situations and getting far from
the optimal solution area. Moreover, we can simply assume that inseparable functions are
harder to solve than separable functions for the separability of functions because insep-
arable functions have complex functional relationships between the various dimensional
variables. Therefore, we are more concerned about the performance of the new algorithm
in the above two types of test functions. In this section, the twenty-six test functions
are classified into Tables 3, 5, 7 and 9, and then these four groups of test functions allow
an analysis of the performance of the MSA algorithm. The test results are recorded in
Tables 4, 6, 8 and 10.
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Table 1. Inspired optimization algorithms for Testing

Algorithm Inspiration

Gravitational search algorithm
(GSA)

Law of gravity and mass interactions

Particle swarm optimization
(PSO)

Intelligent social behavior of bird flock

Artificial bee colony (ABC) Honey Bee
Migratory search algorithm
(MSA)

Animal migration behavior

Table 2. Inspired optimization algorithms for Testing

Name of parameter GSA PSO ABC MSA

Alpha 2
Beta 2
GO 0.5
c1 2
c2 2
w 0.5
Liminte 50
Liminte 20

A numerical optimization problem proposed by the IEEE CEC 2014 special meeting
[39] is another test platform we use in this research. These benchmark functions are
variants of complex mathematical optimization problems involving translation, rotation,
expansion, and combination. The details of these functions are information reference
Table 11. Considering that the difficulty of the problem will increase with the growth of
the problem size as the search space increases. Therefore, when testing on the CEC2014
function test platform, we chose two problem scales: dim10 and dim30. The test results
are recorded in Tables 12 and 13.

This study compares the MSA algorithm with the GSA algorithm, PSO algorithm, and
ABC algorithm to make sure to the validity of the experiment, and the details of these
algorithms are listed in Table 1. This experiment had a population size of 120 and a
maximum iteration count of 1000, respectively. The number of individuals in each group
is 3, including one leader, one follower, and one dependent. There is a list of parameters
for all algorithms under Table 2. Statistical results are presented in the table for each
algorithm after 50 iterations in each experiment.

5.1. Experiment 1. The MSA algorithm’s performance in the single-modal separable
test function is evaluated in this experiment. Table 3 contains the detailed information
about these functions. Table 4 records the statistical data of 50 independent runs of
the MSA algorithm and other comparison algorithms, including the optimal, worst, av-
erage, and standard deviation values. The results show that only the MSA algorithm
was successful in determining the optimal values of TF1 and TF2. TF3 and TF4 cannot
be optimized by any algorithm. The result of the MSA algorithm is similar to other
algorithms.

In addition, we also analyzed the convergence of the algorithm. We can see that the
MSA algorithm got faster convergence in TF1 and TF2, while the performance is slightly
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Table 3. Inspired optimization algorithms for Testing

FunctionName Expression Dim Range Fmin

TF1 Step TF 1(x) =
d∑

j=1

(xj + 0.5)2 30 [−5.12, 5.12] 0

TF2 Sphere TF 2(x) =
d∑

j=1

x2j 30 [−100, 100] 0

TF3 Sum Squares TF 3(x) =
d∑

j=1

jx2j 30 [−10, 10] 0

TF4 Quartic TF 4(x) =
d∑

j=1

jx4j + rand 30 [−1.25, 1.25] 0

Table 4. Statistical results obtained by GSA, PSO, ABC and MSA
through 30 independent runs on classical unimodal and separable bench-
mark functions

Function MSA GSA PSO ABC

Average Std Average Std Average Std Average Std

TF1 0.00E+000.00E+000.00E+00 0.00E+00 3.95E+00 2.54E+00 1.00E-01 3.08E-01
TF2 2.24E-

50
6.76E-

50
3.06E+04 3.34E+03 1.15E+02 4.53E+01 4.89E+02 1.45E+02

TF3 6.21E+03 4.77E+03 6.72E+012.04E+016.26E+03 4.84E+03 1.72E+02 2.88E+02
TF4 9.28E+00 3.89E-

01
1.03E+01 6.29E-01 8.36E+004.05E-01 1.18E+01 1.09E+00

Figure 4. Convergence rate comparison for benchmark functions

worse in TF3 and TF4. The reason for this is that when the MSA algorithm is at
the bottleneck of local search, the algorithm will selectively migrate to other regions.
Although this strategy reduces the MSA algorithm’s single-modal function convergence
rate, the degree of reduction is still acceptable, and it will improve global exploration
performance. In addition, this experiment also analyzes the convergence of the algorithm
and draws the convergence curve, as shown in Figure 4.

5.2. Experiment 2. The purpose of this experiment is to evolute the performance of
MSA in single-model independent testing (see Table 5). The complexity of this experiment
is higher than the previous one because the function has inseparable characteristics. Table
6 records the statistics of the MSA algorithm and other comparison algorithms in eight
benchmark functions. These results indicate that the MSA algorithm successfully found
the global minimum or close to the global minimum of functions other than TF8 and
TF12. There is no algorithm for TF8 to get its optimal value, but the outcome of the
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Table 5. The description of classical unimodal and separable benchmark
functions

FunctionName Expression Dim Range Fmin

TF5 Beale TF 5(x) = (1.5− x1 + x1x2)
2 +

(2.25− x1 + x1x
2
2)

2
+

(2.625− x1 + x1x
3
2)

2

2 [−4.5, 4.5] 0

TF6 Easom TF 6(x) = − cos (x1) cos (x2)
exp

(
− (x1 − π)2 − (x2 − π)2

) 2 [−100, 100] 0

TF7 Matyas TF7(x) = 0.26 (x21 + x22)− 0.48x1x2 2 [−10, 10] 0

TF8 Colville TF 8(x) = 100 (x21 − x2)
2

+ (x1 − 1)2 +

(x3 − 1)2 + 90 (x23 − x4)
2

+10.1 (x2 − 1)2 + (x4 − 1)2

+19.8 (x2 − 1) (x4 − 1)

4 [−10, 10] 0

TF9 Zakharov TF 9(x) =

d∑
j=1

x2j +

(
d∑

j=1

0.5jxj

)2

+

(
d∑

j=1

0.5jxj

)4
10 [−5, 10] 0

TF10 Schwefel
2.22

TF 10(x) =
d∑

j=1

|xj|+
d∏

j=1

|xj| 30 [−10, 10] 0

TF11 Schwefel
1.2

TF 11(x) =
d∑

j=1

(
j∑

k=1

xk

)2

30 [−100, 100] 0

TF12 Dixon-
Price

TF 12(x) =

(x1 − 1)2 +
d∑

j=2

j
(
2x2j − xj − 1

)2 30 [−10, 10] 0

MSA algorithm is optimal. For the TF12 algorithm, only the GSA algorithm found the
global minimum.

Among the eight benchmark functions, the MSA algorithm only performed weaker than
the ABC and GSA algorithms in TF6 and TF12, respectively. Clearly, MSA outperformed
all the other algorithms in this collection of control experiments. The MSA algorithm’s
convergence is comparable to that of other algorithms.

Based on the above two experiments, we can draw consistent conclusions that for uni-
modal functions, the MSA algorithm performs admirably; the MSA algorithm performs
better when the complexity of the function increases. In the test of convergence speed,
the results are shown in Figure 5, and the convergence speed of MSA algorithm is at the
same level as other algorithms.

5.3. Experiment 3. This experiment analyzes the performance of the MSA algorithm
in the multi-modal separable function. The detailed information of these functions is
depicted in Table 7. In contrast to the previous two experiments, the multi-modal func-
tion contains multiple minimum points, the algorithm is at risk of falling into minimum
area and failing to reach the global optimal value. Therefore, the algorithm’s exploration
capabilities for multi-modal functions must be enhanced. Taking into account the exper-
imental statistical data shown in Table 8, the MSA algorithm has discovered the global
optimal value of all functions and outperforms other algorithms in terms of accuracy.
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Table 6. Statistical results obtained by GSA, PSO, ABC and MSA
through 30 independent runs on classical unimodal and non-separable
benchmark functions

Function MSA GSA PSO ABC

Average Std Average Std Average Std Average Std

TF5 1.36E-04 4.54E-05 9.42E-05 6.52E-08 9.41E-05 7.20E-20 9.41E-05 7.77E-20
TF6 1.59E-03 2.34E-03 8.50E-02 2.60E-01 2.07E-02 9.24E-02 0.00E+00 0.00E+00
TF7 9.37E-

156
3.48E-

155
2.21E-10 1.71E-10 3.95E-71 1.71E-70 3.27E-101 8.51E-101

TF8 -
1.29E+02

1.14E+01 -
5.06E+01

3.72E+01 -
1.01E+02

5.66E+01 -
1.27E+02

2.85E+01

TF9 3.09E-94 1.01E-93 2.10E-06 7.30E-07 8.44E-03 1.32E-02 2.29E+01 2.90E+01
TF10 4.28E-37 4.67E-37 2.86E-01 3.79E-01 7.84E+00 2.06E+00 8.80E+00 1.93E+00
TF12 7.39E-06 3.29E-05 4.84E+04 1.28E+04 2.34E+03 9.29E+02 9.03E+02 3.40E+02
TF11 2.68E+02 2.15E+01 4.14E+01 2.02E+01 5.49E+01 3.23E+01 1.72E+02 4.12E+01

Figure 5. Convergence rate comparison for benchmark functions

Based on the results of the convergence speed test, MSA is the fastest algorithm by far.
Especially in TF18, other algorithms’ convergence curves have been flattened many times,
which is the performance of falling into the local minimum, whereas the MSA algorithm’s
convergence curve is smooth, indicating that the MSA algorithm has strong exploration
capabilities. In the convergence speed test, according to the results in Figure 6, we can
see that the convergence speed of MSA algorithm is the fastest among all algorithms.
In TF18, the convergence curves of other algorithms appear flat for many times, which
is the manifestation of falling into local minimum, while the convergence curves of MSA
algorithm are smooth, which indicates that MSA algorithm has strong exploration ability.

5.4. Experiment 4. This group of test functions is the most difficult in comparison to
the previous experiment which are all multimodal inseparable functions, and the details
of these eight test functions are recorded in Table 9. Table 10 shows that, MSA is better
than other algorithms in this group of experiments based on seven test functions, and
only weaker than the ABC algorithm in TF20, but the optimal value is also found.

In addition, this experiment also tests the convergence speed of the MSA algorithm
with these eight test functions. As can be seen from Figure 7, thanks to its effective
strategy for jumping out of the local optimum, the MSA algorithm’s convergence speed
and final accuracy are superior to other algorithms.
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Table 7. The description of classical unimodal and separable benchmark
functions

FunctionName Expression Dim Range Fmin

TF13 Bohachevsky1 TF 13(x) =
x21+2x22−0.3 cos (3πx1)−0.4 cos (4πx2)+0.7

2 [−100, 100] 0

TF14 Booth TF 14(x) = (x1 + 2x2 − 7)2+(2x1 + x2 − 5)2 2 [−10, 10] 0

TF15 Michalewciz2 TF 15(x) = −
d∑

j=1

sin (xj)
(
sin
(
jx2j/π

))20
2 [−5.12, 5.12] 0

TF16 Michalewciz5 TF 16(x) = −
d∑

j=1

sin (xj)
(
sin
(
jx2j/π

))20
30 [−9, 9] 0

TF17 Michalewaicz10TF17(x) = −
d∑

j=1

sin (xj)
(
sin
(
jx2j/π

))20
30 [−1, 1] 0

TF18 Rastrigin TF 18(x) =
d∑

j=1

(
x2j − 10 cos (2πxj) + 10

)
30 [−5.12, 5.12] 0

Table 8. Statistical results obtained by GSA, PSO, ABC and MSA
through 30 independent runs on classical multimodal and separable bench-
mark functions

Function MSA GSA PSO ABC

Average Std Average Std Average Std Average Std

TF13 0.00E+00 0.00E+00 2.50E-02 4.67E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
TF14 0.00E+00 0.00E+00 9.49E-09 8.48E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00
TF15 0.00E+00 0.00E+00 1.45E-02 2.45E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
TF16 1.50E-

32
5.62E-

48
4.05E-02 5.44E-02 1.62E+00 6.24E-01 1.47E+00 4.96E-01

TF17 2.90E-
146

1.30E-
145

2.44E-08 6.44E-08 9.54E-06 1.62E-05 4.03E-08 8.72E-08

TF18 0.00E+00 0.00E+00 3.49E-01 5.84E-01 5.91E+01 1.43E+01 1.02E+02 1.32E+01

Figure 6. Convergence rate comparison for benchmark functions
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Table 9. The description of classical unimodal and non-separable bench-
mark functions

FunctionName Expression Dim Range Fmin

TF19 Schaffer TF 19(x) = 0.5 +
sin2

(√
x2
1+x2

2

)
−0.5

(1+0.001(x2
1+x2

2))
2 2 [−100, 100] 0

TF20 Six Hump
Cannel Back

TF 20(x) = 4x21−2.1x41+
1
3
x61+x1x2−4x22+4x42 2 [−5, 5] 0

TF21 Boachevsky2 TF 21(x) =
x21 + 2x22 − 0.3 cos (3πx1) cos (4πx2) + 0.3

2 [−100, 100] 0

TF22 Boachevsky3 TF 22(x) =
x21 + 2x22 − 0.3 cos (3πx1 + 4πx2) + 0.3

2 [−100, 100] 0

TF23 Shubert TF 23(x) =(
5∑

j=1

j cos(j + 1)x1 + j

)(
5∑

j=1

j cos ((j + 1)x2 + j)

)2 [−2, 2] 0

TF24 Rosenbrock TF 24(x) =
d−1∑
j=1

100
(
xj+1 − x2j

)2
+ (xj − 1)2 30 [−30, 30] 0

TF25 Griewank TF 25(x) = 1
4000

(
d∑

j=1

(xj − 100)2
)
−(

d∏
j=1

cos
(

xj−100√
j

))
+ 1

30 [10, 10] 0

TF26 Ackley TF 26(x) = −20 exp
(
−0.2

√
1
d

∑d
j=1 x

2
j

)
−

exp
(

1
d

∑d
j=1 cos (2πxj)

)
+ 20 + e

30 [−32, 32] 0

Figure 7. Convergence rate comparison for benchmark functions

From the above, it is possible to draw the following conclusions: the MSA algorithm
outperforms other algorithms on the single-modal function and is quite competitive, with
performance decreasing less as the problem complexity increases. Furthermore, the MSA
algorithm performs well in multi-modal functions due to its effective migration strategy,
and can effectively jump away from the local optimal solution and find the global optimal
solution faster.

5.5. Complex Function Performance. We used the benchmark functions recommended
by IEEE CEC2014 in this experiment to determine MSA’s robustness and effectiveness.
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Table 10. Statistical results obtained by GSA, PSO, ABC and MSA
through 30 independent runs on classical multimodal and non-separable
benchmark functions

Function MSA GSA PSO ABC

Average Std Average Std Average Std Average Std

TF19 0.00E+000.00E+00 9.54E-04 1.86E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00
TF20 7.35E-06 1.44E-05 3.06E-02 3.97E-02 3.33E+02 5.47E+02 9.59E-

84
4.24E-

83
TF21 0.00E+000.00E+00 1.62E-02 2.75E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
TF22 0.00E+000.00E+00 3.61E-03 4.22E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00
TF23 1.32E-

04
3.13E-

04
4.93E-02 2.01E-02 9.48E-03 6.09E-03 3.49E-03 3.08E-03

TF24 0.00E+000.00E+001.43E+05 1.01E+05 1.86E+03 2.00E+03 2.36E+04 1.31E+04
TF25 1.11E-

16
1.19E-

16
1.07E-07 3.23E-08 2.44E-03 2.35E-03 4.96E-03 5.07E-03

TF26 1.42E-
15

1.30E-
15

1.03E+01 8.03E-01 4.06E+00 5.68E-01 6.18E+00 4.80E-01

Table 11. The brief description of CEC benchmark functions

Num Name Range Fmin

TF1 Rotated High Conditioned Elliptic Function (CEC1) [−100, 100]0
TF2 Rotated Bent Cigar Function (CEC2) [−100, 100]0
TF4 Shifted and Rotated Rosenbrock’s Function (CEC4) [−100, 100]0
TF7 Shifted and Rotated Griewank’s Function (CEC7) [−100, 100]0
TF13 Shifted and Rotated HappyCat Function (CEC13) [−100, 100]0
TF14 Shifted and Rotated HGBat Function (CEC14) [−100, 100]0
TF15 Shifted and Rotated Expandad Griewank’s plus Rosenbrock’s

Function (CEC15)
[−100, 100]0

TF19 Hybrid Function 3 (CEC19) [−100, 100]0
TF23 Composition Function 1 (CEC23) [−100, 100]0
TF24 Composition Function 2 (CEC24) [−100, 100]0
TF25 Composition Function 3 (CEC25) [−100, 100]0
TF26 Composition Function 4 (CEC26) [−100, 100]0

CEC2014 is a special conference and competition focused on optimizing single-objective
real parameter values. Through rotation, translation, compounding, and other opera-
tions, these test functions are composed of some basic test functions. Finding the best is
difficult. Please consult the literature [39] for additional information on CEC2014. In this
experiment, which considers 12 CEC2014 test functions, the results of each algorithm are
recorded after 30 independent runs.

Table 12 shows that the MSA algorithm only maintains its lead in TF4, 7, 13, 14, 23,
but Table 13 shows that the MSA algorithm is superior in each test function. This shows
the MSA algorithm’s superiority in dealing with high-dimensional complex problems.

5.6. Parameter Analysis. To analyze how the parameters affect the performance of
the algorithm, this experiment adjusted the parameters and recorded the experimental
results. According to the results in Table 14, as the parameter Liminte increases, the
algorithm’s result becomes more accurate. This is since parameter Liminte determines
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Table 12. Statistical results obtained by GSA, PSO, ABC and MSA
through 30 independent runs on CEC 2014 benchmark functions with 10
Dim

Function MSA GSA PSO ABC

Average Std Average Std Average Std Average Std

TF1 8.54E+06 3.08E+069.01E+07 6.26E+07 1.20E+07 1.06E+07 5.93E+065.46E+06
TF2 6.61E+08 1.96E+08 4.34E+09 1.25E+09 7.82E+071.02E+086.83E+08 5.03E+08
TF4 5.64E+011.32E+011.02E+03 4.71E+02 1.22E+02 4.23E+01 1.17E+02 6.56E+01
TF7 1.23E+014.34E+001.24E+02 3.08E+01 2.67E+01 1.44E+01 3.14E+01 1.61E+01
TF13 6.43E-01 1.17E-

01
3.62E+00 4.30E-01 5.32E-

01
4.70E-01 1.09E+00 8.27E-01

TF14 1.41E+00 5.06E-
01

2.81E+01 6.27E+00 3.74E+00 3.73E+00 7.64E+00 4.65E+00

TF15 1.03E+01 1.57E+001.30E+03 1.16E+03 6.04E+006.34E+00 6.98E+00 6.53E+00
TF19 5.76E+00 9.25E-01 3.23E+01 1.28E+01 4.62E+00 2.17E+00 2.59E+00 7.86E-

01
TF23 2.00E+020.00E+004.32E+02 3.89E+01 3.34E+02 3.29E+00 3.39E+02 5.25E+00
TF24 1.55E+02 7.32E+002.05E+02 9.87E+00 1.32E+029.22E+00 1.38E+02 7.66E+00
TF25 1.93E+02 1.03E+01 2.03E+02 7.41E+001.86E+022.16E+01 1.86E+02 1.84E+01
TF26 1.01E+02 1.64E-01 1.03E+021.25E+001.01E+02 5.00E-01 1.00E+02 1.09E-01

Table 13. Statistical results obtained by GSA, PSO, ABC and MSA
through 30 independent runs on CEC 2014 benchmark functions with 30
Dim

Function MSA GSA PSO ABC

Average Std Average Std Average Std Average Std

TF1 4.09E+088.39E+071.87E+09 5.29E+08 5.03E+08 1.86E+08 4.86E+08 1.36E+08
TF2 2.45E+103.62E+099.18E+10 1.01E+10 3.62E+10 5.71E+09 4.23E+10 5.87E+09
TF4 1.65E+033.41E+021.87E+04 3.83E+03 4.14E+03 1.18E+03 5.62E+03 1.74E+03
TF7 2.18E+023.74E+01 8.05E+02 9.65E+01 3.50E+02 4.96E+014.15E+02 9.54E+01
TF13 3.72E+00 3.69E-

01
8.56E+00 7.02E-01 5.64E+00 4.83E-01 6.05E+00 6.72E-01

TF14 6.99E+011.09E+012.97E+02 3.64E+01 1.36E+02 1.67E+01 1.65E+02 3.06E+01
TF15 2.40E+041.14E+042.45E+06 1.19E+06 1.22E+04 1.25E+04 2.90E+04 2.03E+04
TF19 1.27E+021.32E+016.59E+02 1.80E+02 1.89E+02 6.87E+01 1.65E+02 6.01E+01
TF23 2.00E+02 1.87E-13 1.26E+03 2.31E+02 4.73E+02 7.13E+015.69E+02 1.13E+02
TF24 2.00E+02 8.91E-

03
4.21E+02 1.98E+01 2.36E+02 4.92E+00 2.42E+02 7.15E+00

TF25 2.00E+020.00E+003.26E+02 3.18E+01 2.22E+02 5.15E+00 2.11E+02 2.06E+00
TF26 1.04E+02 4.05E-

01
2.30E+02 7.50E+01 1.68E+02 4.36E+01 1.05E+02 9.28E-01

the duration of the population’s local development a larger Liminte improves the perfor-
mance of algorithm in the local development, but it will inevitably weaken the algorithm’s
exploration ability, increasing the probability of falling into the local optimum.

6. Application. The main problem studied in this part is the hyper-parameters opti-
mization design of text classification algorithm. In fact, the text classification algorithm
has had great success and made a breakthrough in many problems, but the algorithm’s
performance is over-reliant on the selection of hyper-parameters [40], and the fine-tuning
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Table 14. The effect of variation of Liminte on the performance of MSA

Function Liminte=5 Liminte=10 Liminte=15 Liminte=20 Liminte=25 Liminte=30 Liminte=35

TF2 2.09E-06 1.47E-48 1.18E-51 1.31E-51 1.32E-49 1.12E-50 2.66E-51
TF4 5.16E+01 2.45E+01 1.29E+01 9.97E+00 1.00E+01 9.51E+00 9.55E+00
TF7 1.88E-35 2.87E-89 2.95E-152 2.21E-156 7.16E-159 8.04E-157 7.52E-156
TF11 8.56E+03 2.33E+03 2.74E+02 3.80E+01 3.23E+00 5.02E-02 5.21E-03
TF17 1.46E-04 3.97E-08 2.63E-135 6.23E-134 1.64E-144 1.49E-151 3.71E-141
TF24 7.29E+03 3.09E-31 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
TF25 1.96E-01 2.73E-03 2.53E-07 1.83E-14 5.61E-16 4.05E-16 2.61E-16

hyper-parameters is time-consuming and laborious, especially requiring the experience of
the algorithm designer.

In this section, the MSA algorithm is used to optimize the hyper-parameter design
of the text classifier to reduce the performance loss caused by model migration. Other
optimization algorithms are compared to the results of this algorithm. A text classification
algorithm based on support vector machines (SVM) is used to verify the performance of
the MSA algorithm in hyper-parameter selection.

6.1. Text classification algorithm based on SVM. Text classification is an effective
means to acquire knowledge from massive amounts of information. In natural language
processing and content information filtering [41], there are many applications for text
classification. As a standard way of representing words and sentences in the text as vectors
in the feature space, the Vector Space Model (VSM) [42] is commonly used to process
the text. We classify the text using a support vector machine-based text classification
method after obtaining the vector representation of the text.

The support vector machine (SVM) is a two-class classification method proposed by
Vapnik [43] and Chervonenkis, and further improved by B.E.Boser [44] in 1992, and makes
the SVM suitable for many non-linear classification problems. With the popularity of
SVM, researchers have expanded them to include multi-classification problems [45].

In text classification, suppose x1, x2, . . . , xn are partial samples belonging to class X.
X is a subset of the text representation space Rn, so the binary text classification model
based on support vector machine can be expressed as:

minw,b
1
2
||w‖2 + C

∑n
i=1 ξi

s.t. yi
(
wTφ (Xi) + b

)
≥ 1− ξi, ξi ≥ 0

(16)

The parameter C in Equation (16) is a hyper-parameter. When C is larger, the gen-
eralization ability of the model is stronger, and the probability of model misclassification
increases. KernelScale is another algorithm hyper-parameters that is used to standardize
the predictor variables by changing the parameter setting scaling ratio. The above situa-
tion is regarded as a hyper-parameter’s combination optimization problem in this study,
and the optimal solution can be obtained heuristically. The algorithm model with the
smallest migration loss can be obtained by applying the MSA algorithm to the selection
of hyper-parameters.

In addition, this research also adopted other existing heuristic optimization algorithms
to solve the problem. As can be seen in Table 15, the statistical results of 30 independent
operations are displayed. In order to ensure the validity of the results, the algorithms use
a range of uniform parameters. In the table, it is shown that the MSA algorithm performs
better than all other algorithms. The results show that the hyper-parameters chosen by
the MSA algorithm can effectively reduce the migration loss of the text classification
model.
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Table 15. Statistical analysis of algorithms for application of text classi-
fication

MSA GSA PSO ABC

Loss

Best 1.6248E-04 8.3503E-03 3.7123E-04 2.1349E-04
Worst 1.9611E-02 9.9445E-01 4.0280E-03 2.1723E-01
Mean 4.4871E-04 4.6871E-01 1.9323E-03 4.2301E-02
SD 4.2199E-02 2.9541E-01 7.5146E-04 4.2793E-02

7. Conclusion. The work presented a novel metaheuristic algorithm based on the mi-
gratory behavior of animals in nature, which can avoid local optima while fully exploring
by simulating the behavior of animal migratory movements. The algorithm was tested in
twenty-six test functions, and the its results showed that MSA can could achieve competi-
tive results in comparison to other well-known metaheuristics such as PSO, GA, GSA, and
ABC. First, the MSA’s optimization ability was confirmed by the results of the unimodal
function tests. Second, the MSA algorithm’s superior exploration ability was shown by
the test results on multimodal functions. Finally, the MSA showed that the corresponding
competitiveness and recommended local optimums avoidance in the CEC2014 benchmark
test functions.

In addition, the MSA algorithm performed admirably in the process of hyper-parameter
optimization of the text classification algorithm. When compared with the current meth-
ods, MSA showed a significant improvement when dealing with practical issues, indicating
the application value of the algorithm. In the future work, the main research direction
is to use the algorithm to solve more practical problems, such as hyperparameter opti-
mization problem, multi-objective optimization problem, knapsack problem and optimal
parameter selection problem in natural language processing.

Funding Statement: This work was supported by Jilin Science and Technology Inno-
vation Development Program Projects (No. 20190302202).
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