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Abstract. The Selfish Herd Optimizer (SHO) is a novel swarm intelligence algorithm
with excellent performance. However, it’s accuracy is low and convergence speed is slow.
In order to deal with the problems, this paper puts forward an improved Selfish Herd
Optimization algorithm (NWSHO). First, aiming at the problem of uneven distribution
and overlapping position of the population, a good point set is utilized to initialize pop-
ulation. This strategy improves the algorithm’s stability; Second, the nonlinear inertia
weight is adopted to update the position of SHO algorithm. The strategy not only bal-
ances the global search and local development of the algorithm, but also accelerates the
convergence speed and improves the solution accuracy. Finally, the performance of the
proposed algorithm is compared with the standard SHO and other well-known swarm in-
telligence algorithms on two suites of benchmark functions. The results of experiment
show the algorithm proposed in this paper is superior to other algorithms in precision and
convergence speed.
Keywords: Selfish herd optimizer, Nonlinear inertia weight, Solution accuracy, Con-
vergence rate

1. Introduction. The intelligent collective behavior of many species of animals have at-
tracted the attention of researches for many years. Many animal species such as birds,
ants, and fishes exhibit aggregative conducts widely known as swarm behavior. Such col-
lective phenomenon has been studied to model the behavior of many biological swarms.
Computer science researchers have studied and adapted these models to solve complex
real-world problems. As a result, many swarm intelligence optimization algorithms sim-
ulate the collective behavior of animals or insects in nature, such as Genetic Algorithm
(GA) [1], Particle Swarm Optimization (PSO) [2, 3, 4], Ant Colony Optimization (ACO)
[5, 6, 7, 8], Simulated Annealing Algorithm (SA) [9] and Grey Wolf Optimization (GWO)
[10], etc. Swarm intelligence algorithms is widely utilized to tackle various problems of
optimization such as the backpack problem [11], task scheduling [12, 13], and image seg-
mentation [14], etc. The Selfish Herd Optimizer (SHO) is a meta-heuristic algorithm
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proposed by Fausto in 2017 [15]. The selfish herd theory which is proposed by Hamilton
[16] is the basic idea for SHO. The theory imitates the hunting relationship of predators
and prey. Most algorithms have only a single entity with almost the same behavior. For
the SHO, it has two search factors with different behavior, which makes the population
diverse.

However, in SHO, the leader of herd has an important task. It should choose a route
and other herds follow the leader. While the leader gets trapped into locally optimal value,
other herds also get trapped into the local optimum value. It influences the algorithm’s
precision and convergence. Therefore, the paper puts forward a selfish herd optimization
algorithm with nonlinear inertia weight. The strategy not only balances the global search
and local development of the algorithm, but also accelerates the convergence speed and
improves the solution accuracy

In this paper, the main contributions are summarized as follows:
(1) The good point set is applied to make an initial population, which solves the uneven

distribution of population and improves algorithm’s ergodicity;
(2) A nonlinear inertia weight is proposed to adjust the step size of position update

and accelerates the convergence algorithm’s speed;
(3) The proposed method is applied on two suites of benchmark functions to verify its

effectiveness;
(4) The algorithm is compared with the standard SHO and some other swarm intel-

ligence algorithms. Mean, standard deviation and best fitness are utilized as evaluation
measures.

Other parts of the article are arranged as follows: the related work in detail is described
in section 2; A description of the standard SHO is introduced in section 3; Section 4
proposes an improved selfish herd optimization algorithm (NWSHO); For section 5, the
benchmark functions are applied to test the effectiveness and convergence of this proposed
algorithm. And the results of experiment are analyzed. Finally, in section 6, the paper
makes conclusions and states the future work.

2. Related Works. Recently, with the rapid development of various swarm intelligence
algorithms, they have been utilized widely in various fields. However, the shortcomings
have also aroused many scholars’ attention. For example, the algorithm is prone to slow
convergence and stagnation when dealing with complex optimization problems. Thus, it
gets trapped into local optima easily. Currently, there are many strategies of improve-
ment for the algorithm to make a balance between the global search and local development
ability. The location update method of discoverers and participants in the Bird Swarm
Algorithm (BSA) is applied in the Sparrow Search Algorithm (SSA) by Lv et al. [17].
Mao and Zhang [18] applied adaptive weight, chaotic mapping, reverse learning strategy
and Cauchy mutation to Sparrow Search Algorithm (SSA). It improves the algorithm’s
convergence accuracy and globally optimal capability. In order to enhance the capacity
of global exploration, a method of random walk with Levy distribution was adopted by
Amirsadri et al. [19] on Gray Wolf Optimization (GWO). Then it is applied to optimize
Back propagation neural network. Arora and Anand [20] puts forward a new Grasshopper
Optimization Algorithm (GOA) which applies the chaotic theory on accelerating global
convergence speed. Chaotic mapping is utilized to keep a balance between the explo-
ration and development ability of algorithm. The reverse learning strategy was utilized
to improve the algorithm’s convergence by Verma et al. [21]. And the method based on
dimension was used to update the position, so as to look for a better globally optimal
value. The adaptive elite mutation strategy was introduced to Particle Swarm Optimiza-
tion (PSO) by Kang et al. [22]. The strategy can make the algorithm jump out of the
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local optimum. It is applied to select optimal hyper-parameters of gaussian process re-
gression (GPR). Similar to other algorithms, SHO has the problems of slow convergence
rate and entrapment in local optima. The scholars have improved the SHO from different
aspects. Anand and Arora [23] introduced chaotic search to searching process of SHO.
The method enhances global convergence speed. Levy-flight distribution strategy was
applied to improve global search ability and precision by Zhao [24].

For the optimization algorithm, the inertia weight is one of the foremost parameters.
The larger inertia weight is helpful to enhance the algorithm’s ability of global exploration;
On the contrary, the smaller inertia weight is more conducive to enhance local development
ability. To a certain degree, the change of inertia weight affects the optimization problem
[25]. Normally, the strategy of linear decreasing weight is used to keep the best balance
between local exploitation and global search [26, 27, 28]. On the basis of existing linear
decreasing weight, nonlinear decreasing weight based on the open parabola was proposed
[29]. It enhances the algorithm’s performance. For standard Particle Swarm Optimiza-
tion (PSO), the value of inertia weight affects the algorithm’s search ability. Therefore,
researchers have improved the algorithm’s inertia weight [30, 31, 32, 33, 34, 35, 36, 37].
Some scholars have applied the strategy of linear decreasing inertia weight to particle
swarm optimization (PSO) [38]. Subsequently, the concept of weight is introduced into
other swarm intelligence algorithms to enhance the performance. For instance, on the
basis of weighted distance, Malik et al. [39] proposes an improved Gray Wolf Optimiza-
tion algorithm. For the algorithm, the weighted sum of the best positions rather than a
simple average value is utilized to improve position update strategy. It can obtain a better
optimal solution. Hu et al. [40] introduced the inertia weight into Whale Optimization
Algorithm (WOA). The improved algorithm’s performance is superior to the standard
algorithm. Rani et al. [41] used linear weight coefficient on Cuckoo Search (CS) to keep
from getting trapped into locally optimal value.

The above literature has improved the algorithm for different problems. These strategies
have improved the algorithm’s performance. For the original SHO, the main problems are
that convergence rate is slow and solution accuracy is low. To deal with these problems,
a Selfish Herd Optimization algorithm based on nonlinear inertia weight is proposed in
this paper.

3. Selfish Herd Optimizer.

3.1. Inspiration Analysis of SHO. The selfish herd theory proposed by Hamilton [16]
inspires the SHO. The theory is used to imitate the hunting relationship of prey (selfish
herd) and predator. The population consists of predators and prey. During a predator
attack, the prey in the group produces aggregation behavior. Then, in order to have a
greater chance of survival, each prey will move to the direction (the center of the group).
The marginal individuals of the group are more vulnerable to be attacked. Therefore, the
marginal individuals will flee from the group to have the chance of survival.

3.2. Mathematical Model of SHO. (1) The population is defined as S and it consists
of two groups: H and P (S = H ∪ P ). H() is a group of the herd. P () is a group of
predators. The formula is as follows:

Nh = floor (N · rand (0.7, 0.9)) (1)

NP = N −Nh (2)

In the formula, Nh means the number of herds, Np is the number of predators, rand
represent a random number between 0.7 and 0.9, floor () is a function that converts a real
number to an integer.
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(2) Each individual (si) in the population (S) is assigned a value of survival SVsi. It is
calculated as follows:

SVsi =
f (si)− fbest
fbest − fworst

(3)

Here, fbest and fworst represent that the objective function finds the best fitness values
and worst fitness values. f() denotes objective function.

(3) The herd with greatest value of survival is defined as the herd’s leader hL. The
formula of leader hL is as follows:

hL =

(
SVhi

= max
i∈{1,2,...,Nh}

SVhi
)

)
(4)

hL =

{
hL + 2 · α · ϕhL,PM

· (PM − hL), SVhL
= 1

hL + 2 · α · ϕhL,xbest
· (xbest − hL), SVhL

< 1
(5)

Where ϕ is the attractive force between individuals.α is a random number within the
interval [0,1]. xbest denotes the best position of current iteration population. PM is the
position in which the herd is easy to be caught. ϕ and PM are defined as:

ϕhi,hj
= SVhj

· e−||hi−hj ||2 (6)

PM =

∑NP

i=1 SVpi · pi∑NP

j=1 SVpj
(7)

In the formula, ||hi − hj|| denotes Euclidean distance.
(4) The herds consist of the following herd (HF ) and deserting herd (HD). The definition

formula is as follows:

HF = {hi 6= hL | SVhi
≥ rand (0, 1)} (8)

HD = {hi 6= hL | SVhi
< rand (0, 1)} (9)

The formula of position update for the following herd is as follows:

hi =

{
hi + 2 · (β · ϕhi,hL

· (hL − hi) + γ · ϕhi,hci
· (hci − hi)), hi ∈ Hd

hi + 2 · δ · ϕhi,hM
· (hM − hi), hi ∈ HS

}
(10)

Where ϕ is the attractive force between individuals. And the specific definition is shown
in Formula (6).β , γ and δ are any numbers within the interval [0,1]. hci donates locally
optimal individual, hM donates relative safe location of herd. The definition formula is
as follows:

hci =

((
hj ∈ H, hj 6= [hi, hL] | SVhj

> SVhi

)
ri,j = min

j∈{1,2,...,Nh}
hi − hj

)
(11)

hM =

∑Nh

i=1 SVhi
· hi∑Nh

j=1 SVhj

(12)

Here, ri,j donates Euclidean distance.
The formula of position update for deserting herd is as follows:

hi = hi + 2 · (β · ϕhi,xbest
· (xbest − hi) + γ · (1− SVhi

) · ε) (13)

Where ε is a random direction of the space of search. xbest denotes global optima. β
and γ are random numbers within the interval [0,1].

(5) The movement of predators is calculated as:

pi = pi + 2 · ρ · (hr − pi) (14)
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Where ρ is any numbers within the interval [0,1]. hr denotes a random selection between
herd, and it bases on the probability of predation θpi,hj

. θpi,hj
is defined as:

θpi,hj
=

ωpi,hj∑Nh

m=1 ωpi,hm

(15)

ωpi,hj
=
(
1− SVhj

)
· e−||pi−hj ||2 (16)

Where ωpi,hj
indicates the attraction of predator pi and herd hj. ||pi − hj|| denotes

Euclidean distance between predator pi and herd hj.
(6) The predation phase: every prey has a dangerous area. It is usually a circle whose

radius R is defined as:

R =

∑n
j=1

∣∣∣xlowj − xhighj

∣∣∣
2 · n

(17)

Here xlowj and xhighj are the initial the lower boundaries and upper boundaries.
The set of herds in danger is defined as follows:

Tpi =
{
hj ∈ H|SVhj

< SVpi , ||pi − hj|| ≤ R
}

(18)

Where SVhj
and SVpi denote the survival value of hj and pi. ||pi−hj|| denotes Euclidean

distance.
In dangerous areas, herd has the probability to be hunted. The probability µpi,hj

is as
follows:

µpi,hj
=

ωpi,hj∑
hm∈M ωpi,hm

(19)

Where ωpi,hj
indicates the attraction of predatorpi and herd hj. The specific definition

is shown in Formula (16).
(7) The restoration phase: In SHO, mating operation is used to produce new herd.

Then the new herd will replace the herd which is hunted by predators. Mating operation
based on mating probability is to select prey to mate. It is specifically defined as:

ϑhj
=

SVhj∑
hm∈M SVhm

, hj ∈M (20)

hnew = mix ([hr1,1, hr2,2, . . . , hrn,n]) (21)

In the formula, M is a set of survival herds. mix() is used to select dimensional com-
ponents of different individuals (s = r1, r2, ..., rn).

4. The Improved Algorithm (NWSHO). Hamilton illustrated his theory by model-
ing circular pond. The pond has a population of frogs (prey) and a water snakes (preda-
tor). When the water snakes appear, the frogs will scatter to the rim of pond. The water
snake will certainly attack the nearest one to it. Hamilton suggests that the predation
risk of each frog is related not only to how close they are from the attacking predator,
but also with the relative position of other frogs in the pond. Therefore, frogs attempt to
reduce their predation risk by jumping to smaller gasps between other neighboring frogs
which are used as shield. Hamilton suggests that the theory of marginal predation is basic
to reduce an individual’s domain of danger. The theory states that predators attack the
closest prey at the aggregation. Therefore, Hamilton suggests there should be a strong
movement of individuals to the center of aggregation in the face of predation. Based on
the above theory, the population consists of predators and herds in SHO. Among them,
the herd is divided into the leader of herd and others. When the herd is attacked by
predators, they choose to follow the leader or escape. Therefore, the location update of
herd’s leader affects the location updates of other prey followers and predators. When
the leader of herd gets trapped into local optimization, the algorithm is prone to slow
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(a) initialization with random method (b) initialization with good point set strategy

Figure 1. Initialized population distribution diagram

convergence and low accuracy. Thus, an improved Selfish Herd Optimization algorithm
is proposed.

4.1. Population Initialization Based on a Good Point Set. The distribution of
population’s initial position in swarm intelligence algorithm will affect the capacity of
global search and global optimal solution. The population with uniform distribution and
diversity is helpful for improving the algorithm’s optimization performance.

However, the standard SHO uses a random strategy for population initialization. The
strategy does not guarantee the population with the diversity of the initial position. And
it causes initial position of the individuals to gather near the local optimum, which affects
the population to find the global optimum. Hence, this paper puts forward a good point
set to initialize population. With the method, the population distributed in the whole
solution space evenly. The strategy is conducive to finding the global optimum.

The good point set was proposed by Chinese mathematician Luogeng Hua et al. [42].
It is defined as: Gs is unit cube in the S-dimensional European space, if r ∈ GS,then

Pn(k) =
{

(
{
r
(n)
1 ∗ k

}
,
{
r
(n)
2 ∗ k

}
, . . . ,

{
r
(n)
s ∗ k

}
), 1 ≤ k ≤ n

}
. The deviation ϕ(n) is

defined as: ϕ(n) = C(r, ε) ∗ n−1+ε . C(r, ε) is a constant related to r, ε; ε is an arbitrary

constant in the computer.
{
r
(n)
s ∗ k

}
represents decimal part. Then Pn(k) is the set of

good points, r is the best point. The value of r is {2 ∗ cos(2πk/p), 1 ≤ k ≤ s} . Among
them, p satisfies (p− 3)/2 ≥ s . It is mapped to the space of search as:

xi(j) = (ubj − lbj) ·
{
r
(i)
j ∗ k

}
+ lbj (22)

In this paper, random initialization and good point set are utilized to make an initial
population in a two-dimension space with the size of 200, as shown in Figure 1. Figure
1 (a) and (b) shows the good point set is more evenly distributed than the random
method in the same population size. Therefore, this paper used the good point set to
initialize the population. It generates a uniformly distributed, rich and diverse population
in the solution space, which is conducive to avoiding getting trap into the locally optimal
value. The method enhances the population’s ergodicity and stability. The algorithm’s
performance is improved.

4.2. The Position Update Strategy of Herd’s Leader Based on Nonlinear In-
ertia Weight. In SHO, the leader of herd has the highest survival value. When the



386 X. Zhou and X. Yi

100 200 300 400 500 600 700 800 900 1000

iteration times

0.3

0.4

0.5

0.6

0.7

0.8

In
e
rt

ia
l 
w

e
ig

h
t 
s
iz

e
Traditional linear weight distribution diagram

(a) Traditional linear inertia weight
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(b) Nonlinear inertia weight

Figure 2. Comparison chart of different weights

position is updated, the leader has a certain leadership. However, as can be seen from
Formula (5) the method of update has certain randomness. The method will make the
herd’s leader get trapped into local optimization in the search process. The inertia weight
is one of the foremost parameters. When inertia weight is larger, it is helpful to improve
the ability of global search; On the contrary, it is more conducive to enhancing the algo-
rithm’s ability of the local search, which can avoid missing the optimal value. Therefore,
the inertia weight was used into the SHO for the update position of herd’s leader. The
strategy improves search capability of herd’s leader and avoids getting trapped into local
optimum. Thereby the ability of search and convergence speed are improved.

Generally, the inertia weight is linear, as shown in Figure 2 (a). It will decline regularly
with the iteration process, so it cannot adapt to the actual situation of the iteration
process better. And the nonlinear weight can reflect the actual situation in the iterative
process. Consequently, this paper introduces a nonlinear inertia weight to improve method
of position update for the herd’s leader. The herd’s leader can learn from himself. In this
strategy, the randomness of position update is reduced. Therefore, the search ability and
convergence speed are improved. The specific definition of nonlinear inertia weight is as
follows:

ω = ωmin ∗ (ωmax/ωmin)(1/(1+20∗i/it)) (23)

Here, the minimum inertia weight ωmin is assigned as 0.2, the maximum inertia weight
ωmax is assigned as 0.9. it indicates the maximum number of iterations; i is the number
of current iteration. The output diagram of nonlinear inertia weight is shown in Figure 2
(b). At the early stage of iteration, the nonlinear weight’s value is larger. It is not only
helpful for the herd’s leader to search globally but also avoids getting trapped into the
local optimization; At the algorithm’s later stage, the nonlinear weight’s value decreases
gradually. It is beneficial for herd’s leader to search locally. The nonlinear weight which
improves the algorithm’s ability of search is introduced to make a balance between local
search and global exploration.

For herd’s leader, the formula of position update is corrected as:

hL =

{
ω ∗ hL + 2αϕhL,PM

(PM − hL) , SVhL
= 1

ω ∗ hL + 2αϕhL,xbest
(xbest − hL) , SVhL

< 1

}
(24)

Here, ω denotes the nonlinear inertia weight.

4.3. The Process of NWSHO.
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4.3.1. Population Initialization. The population is initialized according to the good point
set proposed in Section 4.1; Then the group is divided into herd and predator. In the
nature, the amount of herds is usually more than that of predators. The method of
division is shown in Formula (1) and (2);

4.3.2. Survival value assignment. The individuals of population are set to a survival value.
The value indicates successfully kill the herd or the opportunity to live in the attack.
Survival value is calculated as Formula (3);

4.3.3. Herd movement. Herd is divided into the leader of herd and others. When there is
danger, other herd will choose to follow their leader or escape.

(1) Herd’s leader movement
In SHO, as shown in Formula (4), the leader of the herd has the highest survival value.

Therefore, the location of herd leader is safest. The position update method adopts the
nonlinear inertia weight strategy proposed in this paper as Formula (24);

(2) The movements of following Herd and desertion Herd
For the population of herd, the position of leader is safest. And the positions of others

are divided into two situations: relatively safe and more dangerous. When the danger is
coming, the herd in a relatively safe position will move to the leader, that is, the following
movement of the herd. The method of the following movement is shown in Formula (10).
The herd in a more dangerous position will escape from the group, that is, the desertion
movement. The strategy of the desertion movement is shown in Formula (13).

4.3.4. Predator movement. For predator, the update of location correlates with the sur-
vival value and herd’s location. It is defined as Formula (14).

4.3.5. Recalculation of survival values. In the whole population, individual’s survival
value may change after the movement of herd and predator. Therefore, the value of
survival is recalculated as Formula (3).

4.3.6. Predation phase. Each herd has a dangerous area. The area is defined as Formula
(18). If the herd belongs to this field, it is likely to be killed by predators. The probability
of being killed is calculated as Formula (19);

4.3.7. Restoration phase. The number of herd population changes dynamically with time
in the nature. But in a balanced biological system, this change is often periodic. In
SHO, all killed individuals are replaced with new ones, as shown in Formula (21). Mating
operation may produce new herd. Herd selects mating herd by mating probability, which
is defined as Formula (20).

In the process of searching, each individual is evaluated by fitness function. Then the
position is updated. If the iteration times of the algorithm reach the upper limit or the
candidate solution satisfying the termination conditions has been obtained, the algorithm
ends. The flowsheet of NWSHO is shown in Figure 3. Table 1 shows the pseudo code.

5. Experiment and Analysis of Result. The NWSHO is compared with other intel-
ligent algorithms and the standard SHO to verify the performance. The experiment is
implemented using MATLAB R2020b under Microsoft Windows 10 operating system. All
simulations are carried out on Intel(R) Core (TM) i7-10510U CPU @ 1.80GHz 2.30 GHz
and 8.00GB memory computer.
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Table 1. The pseudo code

Algorithm: Improved SHO Algorithm Based on Nonlinear Inertial Weight
Begin

Step 1. Initializing parameters of population S
Step 2. Utilize the good point set strategy to initialize the population by

Formula (22)
Step 3. Divide the population S into predators and herds by Formula (1) and

Formula (2)
Step 4. For population S do

Calculate the survival values by Formula (3)
End for

Step 5. while (t < T )
For each selfish herd

IF leader of the herd
Update position of herd’s leader by Formula (24)

Else
The herd’s following and escape movement by Formula (10) and

Formula (13)
End IF

End for
For each predator

Update position of the predators by Formula (14)
End for

Recalculate the survival values of each member by Formula (3)
Perform predation phase by Formula (18) and Formula (19)
Perform restoration phase by Formula (20) and Formula (21)
t = t+ 1

End while
End

5.1. Benchmark Functions. In this paper, two sets of benchmark functions are used
to evaluate the algorithm’s performance. The first set of functions have 15 benchmark
functions, which are utilized in literature [15] to investigate the standard SHO’s per-
formance. The functions in detail are given in Table 2. The functions consist of two
categories. F1 − F8 are the first category. They are unimodal functions used to test the
algorithm’s convergence and solution accuracy. After the iteration, if the result is closer
to the theoretical optimum value, the accuracy is higher. In the second category, F9−F15

are multimodal functions used to verify the performance of global search and ability to
avoid premature.

The second set of functions have 15 benchmark functions derived from CEC2017 [43, 44].
The information of functions is shown in Table 3. Among them, F16 − F23 are unimodal
functions. And F24 − F30 are multimodal functions.

5.2. Performance Metrics. The performance evaluation indexes of the algorithm are
mean value, standard deviation and best fitness. In addition, the test called Wilcoxon’s
rank sum test is utilized to test whether NWSHO is different from other algorithms. In
order to reduce the algorithm error, each algorithm runs for 30 times independently, and
the mean value is obtained as the experimental data.
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Figure 3. Flowchart of NWSHO

(1) Mean value (Mean): It is the average of operation results as given in the following
equation:

Mean =
1

N

N∑
I=1

fi (25)

Where N is the running times, which is assigned to 30. fi is the result obtained after
the i− th run of the test algorithm.

(2) Standard deviation (Std): It is arithmetic square root of variance in N times of op-
eration results. It is mainly used to reflect the dispersion degree of operation results. The
larger value represents that the dispersion degree of results is greater. On the contrary,
the dispersion degree is smaller. The standard deviation is defined as:

Std =

√√√√ 1

N − 1

N∑
i−1

(fi −Mean)2 (26)
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Table 2. Traditional benchmark function

Function Range fmin

F1 (x) =
∑n

i=1 x
2
i [−100, 100] 0

F2 (x) =
∑n

i=1 ix
2
i [−10, 10] 0

F3 (x) =
∑n/4

i=1
[(x4i−3 + 10x4i−2)

2 + 5(x4i−1 + 10x4i)
2

+ (x4i−2 + 10x4i−1)
4 + 10(x4i−1 + 10x4i)

4]
[−4, 5] 0

F4 (x) =
∑n−1

i=1

[
100(xi+1 − xi2)2 + (xi − 1)2

]
[−5, 10] 0

F5 (x) =
∑n

i=1

(∑i
j=1 xj

)2
[−100, 100] 0

F6 (x) = (x1 − 1)2 +
∑n

i=2 i(2xi
2 − xi−1)2 [−10, 10] 0

F7 (x) =
∑n

i=1

∑i
j=1 x

2
j [−65.5, 65.5]0

F8 (x) =
∑n

i=1 (ixi)
4 + rand [01] [−1.28, 1.28]0

F9 (x) = −20 exp

(
−0.2

√
1/n

∑n

i=1
x2i

)
− exp

(
1/n

∑n

i=1
cos (2πxi)

)
+ 20 + e

[−32.8, 32.8]0

F10 (x) = sin2(πω1) +
∑n−1

i=1
(ωi − 1)2[1 + 10sin2(πωi + 1)]

+ (ωn − 1)2[1 + sin2(2πωn)]

ωi = 1 + (xi + 1)/4

[−10, 10] 0

F11 (x) = 418.983n−
∑n

i=1 xi sin(
√
|xi|) [−500, 500] 0

F12(x) =
∑n

i=1 (xi − 1)
2 −

∑n
i=2 xixi−1 [−n2, n2] -

4930

F13(x) =
∑n

i=1 (xi
2 − i)2 [−500, 500] 0

F14 (x) = 1− cos(2π
√∑n

i=1 x
2
i ) + 0.1

√∑n
i=1 x

2
i [−100, 100] 0

F15(x) =
∑n

i=1 x
2
i + (

∑n
i=1 0.5ixi)

2
+ (
∑n

i=1 0.5ixi)
4

[−5, 10] 0

(3) Best fitness (Best): It is the minimum value obtained by the objective function in
the iteration process. The formula is as:

Best = minfi (27)

(4) Wilcoxon’s rank sum test [45]: The test is nonparametric. It mainly tests whether
two algorithms have difference. When h-value is equal to 1 or p-value is less than 5%, it
indicates there are obvious differences between the two algorithms.

5.3. Parameter Setting. To test the algorithm’s effectiveness, this paper compares the
NWSHO with other excellent algorithms, such as standard SHO [15], OPIO [46], PSO
[47], GA [48] and BBO [49]. For all algorithms, the relevant parameters are set in Table
4.

5.4. Comparison Experiment on the First Suites of Benchmark Functions.
Firstly, the NWSHO and SHO algorithms are tested on 15 benchmark functions from
the literature [15]. Table 2 describes these functions in detail. In the algorithms, parame-
ter settings are the same as that in literature [15]. The iteration’s maximum number is set
as 1000. The size of population is set to 50. The mean value is got when each algorithm
runs 30 times independently. The best fitness values, standard deviation and mean are
recorded. Table 5 shows the results of experiment.
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Table 3. CEC2017 benchmark functions

Function Range fmin

F16 (x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| [−10, 10] 0
F17 (x) = max {|xi| , 1 ≤ i ≤ n} [−100, 100] 0

F18 (x) =
∑n

i=1 ([xi + 0.5])2 [−100, 100] 0

F19 (x) =
∑n

i=1 |xi|
(i+1) [−1, 1] 0

F20 (x) =
∑n

i=1 ix
4
i [−1.28, 1.28] 0

F21 (x) = x21 + 106
∑n

i=2 x
6
i [−100, 100] 0

F22 (x) = 106x21 +
∑n

i=2 x
2
i [−100, 100] 0

F23 (x) =
∑n

i=1 (106)
i−1
n−1x2i [−100, 100] 0

F24 (x) =
∑n

i=1−xi sin
(√
|xi|
)

[−500, 500] -
418.98*dim

F25 (x) =
∑n

i=1 [x2i − 10 cos(2πxi) + 10] [−5.12, 5.12] 0

F26(x) = 1/4000
∑n

i=1 x
2
i −

∏n
i=1 cos

(
xi/
√
i
)

+ 1 [−600, 600] 0

F27 (x) = 0.1(sin2 (3πx1) +
∑n

i=1
(xi − 1)2

[
1 + sin2 (3πxi + 1)

]
+ (xn − 1)2 [1+ sin2 (2πxn)

] [−50, 50] 0

F28 =
∑n

i=1 |xi sin(xi) + 0.1xi| [−10, 10] 0
F29 =

∑n
i=1 xi

6 (2 + sin(1/xi )) [−1, 1] 0

F30(x) = |
∑n

i=1 x
2
i − n|

1/4
+ (0.5

∑n
i=1 x

2
i +

∑n
i=1 xi)/n+ 0.5 [−10, 10] 0

Table 4. The parameter settings

Algorithm Related parameters
NWSHO N = 50,M = 1000, Nh = 0.7N − 0.9N,wmin =

0.2, wmax = 0.9;
SHO [15] N = 50,M = 1000, Nh = 0.7N − 0.9N ;
OPIO [46] N = 50, V max = 0.5;R = 0.2;
PSO [47] N = 50, w = [0.2, 0.9]
GA [48] N = 50,M = 0.1
BBO [49] N = 50, I = 1;

As shown in Table 5, for F1, F2, F3, F5, F15, the mean value, standard deviation and best
fitness values of NWSHO algorithm proposed in the paper are all 0. The corresponding
function’s theoretical optimum value is found. However, for the original SHO, the better
results are obtained only on two functions; For most functions, the mean value, standard
deviation and best fitness values of NWSHO algorithm are closer to the theoretical opti-
mum value. The optimization accuracy of NESHO is higher than that of SHO algorithm.
It indicates NWSHO algorithm is superior to SHO algorithm in optimization accuracy
and stability. It is proved that the strategy with good point set and nonlinear inertia
weight introduced in this paper is effective.

The convergence diagrams of partial functions are shown in Figure 4. For unimodal
function F1, multimodal functions F9 and F14, the convergence diagrams show that
NWSHO algorithm’s convergence speed is significantly faster than standard SHO al-
gorithm’s convergence speed. For the unimodal function F1, NWSHO algorithm finds
the optimal value when the algorithm iterates to 300. However, for the standard SHO
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Table 5. The experimental results of F1 − F15 under 30 dimensions

Function NWSHO SHO fmin

F1

Mean 0 1.9288e-05
0

Std 0 3.0923e-06
Best 0 1.3364e-05

F2

Mean 0 0.0279
0

Std 0 0.0053
Best 0 0.0201

F3

Mean 0 5.3517
0

Std 0 1.1277
Best 0 2.8160

F4

Mean 28.5046 73.3426
0

Std 0.4468 49.3539
Best 27.4262 1.4460

F5

Mean 0 1.2067
0

Std 0 2.7720
Best 0 0.0136

F6

Mean 8.8421e-07 6.2400e-07
0

Std 1.1607e-06 7.3686e-07
Best 2.0377e-08 4.9069e-10

F7

Mean -3.0455e+04 -3.0499e+04
0

Std 11.3488 47.8153
Best -3.0457e+04 -3.0457e+04

F8

Mean 1.2550e+11 1.2550e+11
0

Std 0.0191 0.0136
Best 1.2550e+11 1.2550e+11

F9

Mean 8.8818e-16 2.9589
0

Std 0 1.3180
Best 8.8818e-16 0.0134

F10

Mean 0.3953 1.4648
0

Std 0.9530 1.9226
Best 7.3272e-04 7.5576e-04

F11

Mean 5.4305e+03 3.2449e+03
0

Std 651.1905 1.3779e+03
Best 4.0474e+03 1.1741e+03

F12

Mean -1.8017e+07 -1.6848e+07
0

Std 1.8879e+06 1.9192e+06
Best -2.1285e+07 -2.0250e+07

F13

Mean 1.1053e-12 4.4659e-13
0

Std 1.4255e-12 5.7896e-13
Best 3.3399e-16 2.8434e-17

F14

Mean 0.0999 1.3612
0

Std 2.7565e-13 0.8781
Best 0.0999 0.2999

F15

Mean 0 0.0074
0

Std 0 0.0011
Best 0 0.0054
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algorithm, most of the individuals have gathered at the local optimum value. These in-
dividuals eventually cannot flee from the local optimum value. For multimodal functions
F9 and F14, NWSHO algorithm has fast speed of convergence and strong ability of global
search. When the population iterates to 100, the optimal value has been found. But the
standard SHO algorithm falls into local optimization for many times on function F14. For
unimodal function F6, when the population iterations to 100, the accuracy of NWSHO
algorithm is slightly higher. Nevertheless, the standard SHO algorithm flee from the local
optimum value for many times after the 900th iteration. For function F12, the convergence
of NWSHO algorithm is fast. Then it finds the theoretical optimal value.

5.5. Comparison Experiment on the Second Suite of Benchmark Functions. To
further test the performance of NWSHO, 15 CEC2017 benchmark functions are selected to
simulate experiments. This experiment compares NWSHO algorithm with SHO, OPIO,
PSO, GA and BBO algorithms. For the experiment, the maximum iteration is 1000.
The dimensions are set as 30, 50 and 100 respectively. Each experiment is run 30 times
independently to get mean value. The functions F16 − F30 are used to evaluate the
algorithm. The best function value, standard deviation and mean are recorded in Table
6.

The mean value, standard deviation and optimal fitness values of NWSHO on the
most unimodal benchmark functions (except for function F18) are all 0 in Table 6. And
the theoretical optimal values of the corresponding functions have been found. In the
multimodal function, the optimal fitness value of F26, F28, F29 is 0. The mean and standard
deviation of F29 are 0. It shows that NWSHO is superior to standard SHO and other
standard algorithms on stability and accuracy of optimization.

The convergence diagram of partial functions on 30 dimensions is shown in Figure 5.
We can see from Figure 5 the convergence for NWSHO is fairly higher than that of SHO
and other optimization algorithms. From the convergence diagram of the unimodal func-
tion F20, we can see the NWSHO converges quickly and finds the optimal value when
iterating to 100. However, for other algorithms, they get trapped into locally optimal
value. For unimodal function F18, NWSHO algorithm has slightly higher accuracy when
the population iteration reaches 100 times. Then it converges to the optima when the
population iteration reaches 300 times. However, for the standard SHO, the convergence
speed decreases when iterating to 200. Then the optimal value is found after the 300th
iteration. For multimodal function F30, the convergence speed of NWSHO is quick. When
the population iterations reach 200 times, the algorithm gradually finds the optimal value
and does not fall into local optimization. For the other algorithm, except for the OPIO,
other algorithms cannot flee from locally optimum value when the population iterates
to 100. To sum up, the nonlinear inertia weight strategy introduced in this paper en-
hances algorithm’s accuracy of solution and convergence speed. Otherwise, it can keep
the algorithm from getting trapped into locally optimal value to some extent.

To validate the algorithm’s performance under different dimensions, the dimensions
are set to 30, 50 and 100. Table 7 shows the results of experiment. For the benchmark
function F16, F17, F19, F20, F21, F22, F23, and F29, even if the dimension increases, the mean
value, standard deviation and optimal fitness values of NWSHO algorithm are still zero.
It indicates NWSHO has the better stability and ability of global search, although the
dimension is increasing. For other algorithms, average value, standard deviation and
optimal fitness value of multiple benchmark functions will change while the dimension
increases. For example, for the unimodal function F18, the mean value, standard deviation
and optimal fitness value of the standard SHO change by about 10 orders of magnitude;
For the function F1, the average value and standard deviation of GA algorithm and BBO
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Figure 4. The convergence diagram of partial functions

algorithm change by about 30 orders of magnitude. In general, the stability and accuracy
of NWSHO are higher than other algorithms.
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Table 6. Experimental results of each algorithm in 30 dimensions

Function NWSHO SHO OPIO PSO GA BBO

F16

Mean 0 0.1770 0.0164 51.7667 1.1285e+11 7.8504e+03
Std 0 0.0113 0.0104 30.9590 2.5690e+11 4.2371e+04
Best 0 0.1554 0.0040 1.0000 2.1726e+05 80.0836

F17

Mean 0 0.1770 0.6739 52.8000 84.0896 85.0549
Std 0 0.0113 0.5678 28.6734 4.6251 2.8996
Best 0 0.0035 0.0050 2 69.1760 79.1849

F18

Mean 1.8782e-05 1.7058e-05 7.2990 49.6333 6.1470e+04 5.9781e+04
Std 2.3957e-06 2.3244e-06 0.3099 29.7443 6.1964e+03 5.3470e+03
Best 1.1785e-05 1.2971e-05 6.0804 7.0000 5.0344e+04 5.1630e+04

F19

Mean 0 1.1224e-05 7.2659e-12 57.0333 0.5073 0.3914
Std 0 7.3383e-06 2.4264e-11 29.3169 0.1953 0.1579
Best 0 3.0383e-06 1.2878e-15 5.0000 0.2141 0.1166

F20

Mean 0 0.0108 6.8376e-12 60.6333 97.1215 94.2383
Std 0 0.0028 1.4791e-11 27.1363 20.5806 25.1356
Best 0 0.0060 1.2971e-14 4.0000 52.6845 39.0759

F21

Mean 0 27.5925 4.6713e-06 42.6667 1.9873e+18 1.1983e+18
Std 0 61.6582 1.1657e-05 30.1540 5.0770e+17 3.3603e+17
Best 0 3.5450e-10 1.0525e-08 3.0000 1.1773e+18 5.4977e+17

F22

Mean 0 5.7814e-04 2.9040 49.6333 2.1574e+12 1.2908e+12
Std 0 3.3579e-04 9.4463 31.0722 7.2380e+11 3.3873e+11
Best 0 5.6843e-05 3.0756e-05 4.000 4.6220e+11 7.1534e+11

F23

Mean 0 7.3502 6.8361 44.9000 1.8884e+09 1.9152e+09
Std 0 3.0310 13.4727 33.3481 5.5248e+08 5.3878e+08
Best 0 2.6241 0.0477 1.0000 7.1553e+08 7.4270e+08

F24

Mean -7.3048e+03 -9.5117e+03 -1.3819e+04 50.2333 -2.4977e+03 -2.966e+03
Std 688.9777 1.4295e+03 4.6141e+03 34.1242 398.7892 338.4343
Best -9.0345e+03 -1.2569e+04 -2.4669e+04 1.0000 -3.3533e+03 -3.5924e+03

F25

Mean 53.1053 55.4092 0.0198 45.3000 429.6691 401.7535
Std 16.2463 12.2011 0.0279 28.3806 23.1441 23.5300
Best 24.1663 31.2853 0.0012 4.0000 380.2632 359.9953

F26

Mean 2.4654e-04 0.0095 0.0030 49.7333 552.9029 547.4418
Std 0.0014 0.0170 0.0034 27.2155 57.7185 40.0277
Best 0 1.7385e-08 1.0808e-04 11.0000 390.0026 475.3812

F27

Mean 9.9812e-06 8.4675e-06 3.0136 47.9333 9.0508e+08 9.3250e+08
Std 1.3680e-06 1.2177e-06 0.0215 32.7087 2.2534e+08 1.6751e+08
Best 6.5496e-06 5.8024e-06 2.9978 1.0000 2.8751e+08 5.4472e+08

F28

Mean 0.2173 0.8713 0.0035 55.6000 58.4314 57.8071
Std 0.2679 0.8423 0.0018 31.9899 4.9286 6.0275
Best 0 0.1833 5.0436e-04 2.0000 43.6637 44.9686

F29

Mean 0 8.0227e-05 2.3338e-19 49.8000 2.7706 2.2901
Std 0 3.0004e-05 3.7993e-19 30.6520 0.6838 0.7110
Best 0 1.7243e-05 9.0140e-23 1.0000 1.2097 0.7454

F30

Mean 9.3177e-04 4.9577e-04 0.7448 49.4667 154.8529 150.9546
Std 3.3831e-04 1.2680e-04 0.1629 29.6773 13.0742 12.4249
Best 3.3240e-04 2.3021e-04 0.3824 1.0000 131.5327 127.7931
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Figure 5. The convergence diagram of partial functions on 30 dimensions
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Table 7. The results of different algorithms under different dimensions

fun
NWSHO SHO OPIO PSO GA BBO

dim 30 50 100 30 50 100 30 50 100 30 50 100 30 50 100 30 50 100

F16

Mean 0 0 0 0.1770 3.90e+05 8.71e+36 0.0164 0.0308 0.0740 51.7667 45.4667 46.7000 1.1e+11 4.01e+21 831e+47 7.85e+03 1.7e+06 1.33e+41
Std 0 0 0 0.0113 1.80e+06 2.84e+37 0.0104 0.0212 0.0268 30.9590 28.4505 27.8520 2.6e+11 1.1e+22 2.83e+48 4.24e+04 9.1e+06 7.29e+41
Best 0 0 0 0.1554 0.3180 1.06e+26 0.0040 0.0079 0.0297 1.0000 4.0000 2.0986 2.2e+05 2.60e+18 1.96e+37 80.0836 174.6749 398.5095

F17

Mean 0 0 0 0.1770 11.4771 94.6699 0.6739 0.0190 0.0231 52.8000 46.7000 53.0667 84.0896 90.3707 95.2196 85.0549 89.7975 94.5207
Std 0 0 0 0.0113 6.1829 1.4706 0.5678 0.0111 0.0137 28.6734 31.1138 30.7727 4.6251 1.6824 0.9593 2.8996 3.0318 1.5050
Best 0 0 0 0.0035 2.9907 89.2248 0.0050 0.0028 0.0098 2.0000 2.0000 10.5834 69.1760 85.8184 92.7163 79.1849 79.7703 90.2217

F18

Mean 1.88e-05 3.72e-05 1.24e-04 1.71e-05 3.58e-05 2.44e+05 7.2990 12.3905 24.9426 49.6333 49.3333 47.4667 6.1e+04 1.17e+05 2.63e+05 5.98e+04 1.11e+05 2.58e+05
Std 2.40e-06 3.64e-06 1.54e-05 2.32e-06 3.56e-06 1.95e+04 0.3099 0.2619 0.1443 29.7443 28.3930 26.2491 6.2e+03 7.04e+03 1.35e+04 5.35e+03 8.18e+03 1.34e+04
Best 1.18e-05 3.06e-05 9.74e-05 1.30e-05 2.85e-05 1.64e+05 6.0804 11.6251 24.6365 7.0000 2.0000 7.2634 5.0e+04 1.01e+05 2.34e+05 5.16e+04 9.26e+04 2.22e+05

F19

Mean 0 0 0 1.12e-05 1.83e-05 0.6584 7.27e-12 2.44e-11 2.43e-10 57.0333 47.0000 57.9667 0.5073 0.7866 1.2144 0.3914 0.5916 0.7833
Std 0 0 0 7.34e-06 2.18e-05 0.1773 2.43e-11 7.07e-11 1.06e-09 29.3169 26.1745 29.1352 0.1953 0.2105 0.2970 0.1579 0.2120 0.2892
Best 0 0 0 3.04e-06 2.74e-06 0.3121 1.29e-15 1.05e-17 9.24e-16 5.0000 6.0000 4.1489 0.2141 0.3618 0.5109 0.1166 0.2035 0.3337

F20

Mean 0 0 0 0.0108 0.0501 1.45e+03 6.84e-12 3.08e-11 1.37e-10 60.6333 47.6000 42.7000 97.1215 351.0299 1.76e+03 94.2383 352.5841 1.73e+03
Std 0 0 0 0.0028 0.0098 82.6457 1.48e-11 8.24e-11 1.67e-10 27.1363 28.6833 26.8330 20.5806 40.0370 128.0223 25.1356 42.1604 145.6030
Best 0 0 0 0.0060 0.0353 1.26e+03 1.30e-14 2.72e-13 8.54e-13 4.0000 2.0000 2.6478 52.6845 242.5807 1.49e+03 39.0759 265.6255 1.37e+03

F21

Mean 0 0 0 27.593 30.1678 1.04e+19 4.67e-06 9.52e-05 1.41e-04 42.6667 55.9000 51.9667 2.0e+18 4.20e+18 1.15e+19 1.20e+18 3.13e+18 8.77e+18
Std 0 0 0 61.658 30.9669 1.02e+18 1.17e-05 2.58e-04 4.51e-04 30.1540 27.2831 27.2719 5.1e+17 7.56e+17 1.19e+18 3.36e+17 5.17e+17 8.74e+17
Best 0 0 0 3.55e-10 2.60e-04 8.35e+18 1.05e-08 1.87e-09 4.27e-10 3.0000 1.0000 3.0000 1.2e+18 2.72e+18 9.10e+18 5.50e+17 1.90e+18 6.16e+18

F22

Mean 0 0 0 5.78e-04 0.0523 1.04e+13 2.9040 2.1789 1.5202 49.6333 46.8000 56.6667 2.2e+12 4.78e+12 1.06e+13 1.29e+12 3.13e+12 8.09e+12
Std 0 0 0 3.36e-04 0.1177 1.28e+12 9.4463 4.6905 3.8670 31.0722 25.0593 27.0763 7.2e+11 8.29e+11 1.32e+12 3.39e+11 6.06e+11 1.16e+12
Best 0 0 0 5.68e-05 0.0019 8.49e+12 3.08e-05 0.0065 0.0045 4.000 4.0000 4.0000 4.6e+11 3.29e+12 8.45e+12 7.15e+11 1.73e+12 6.32e+12

F23

Mean 0 0 0 7.3502 34.9409 6.35e+05 6.8361 20.6234 106.6078 44.9000 49.9667 55.0333 1.9e+09 4.35e+09 1.24e+10 1.92e+09 4.67e+09 1.20e+10
Std 0 0 0 3.0310 18.2611 1.15e+09 13.4727 32.3738 283.6485 33.3481 27.1020 24.1711 5.5e+08 9.05e+08 1.72e+09 5.39e+08 8.48e+08 1.38e+09
Best 0 0 0 2.6241 8.5878 4.15e+09 0.0477 0.1686 0.7108 1.0000 1.0004 8.0000 7.2e+08 2.88e+09 8.21e+09 7.43e+08 3.01e+09 8.44e+09

F24

Mean -7.3e+3 -1.2e+04 -7.5e+3 -9.5e+3 -1.2e+04 -7.7e+3 -1.4e+4 -1.8e+04 -2.4e+04 50.2333 51.4333 51.2333 -2.5e+3 -3.4e+3 -4.8e+3 -3.0e+3 -3.7e+3 -5.2e+3
Std 688.978 864.1874 3.28e+03 1.4e+03 1.04e+03 663.3805 4.6e+03 6.96e+03 9.52e+03 34.1242 27.8271 27.6564 398.789 519.1752 784.2262 338.4343 660.1227 747.5053
Best -9.0e+3 -1.3e+04 -2.0e+04 -1.3e+4 -1.4e+04 -9.5e+3 -2.5e+4 -3.9e+04 -4.7e+04 1.0000 2.0000 4.0000 -3.4e+3 -4.8e+3 -6.5e+3 -3.6e+3 -5.0e+3 -7.2e+3

F25

Mean 53.1053 42.8653 5.5849 55.4092 145.7277 1.47e+03 0.0198 0.0144 0.0347 45.3000 51.6333 46.1000 429.669 760.5189 1.61e+03 401.7535 724.2319 1.57e+03
Std 16.2463 27.3546 30.5899 12.2011 32.1354 34.9524 0.0279 0.0168 0.0706 28.3806 29.4027 30.8817 23.1441 23.9390 32.2804 23.5300 32.8638 41.8353
Best 24.166 0 0 31.2853 96.4649 1.38e+03 0.0012 0.0011 9.58e-04 4.0000 5.0006 1.0000 380.263 698.4247 1.53e+03 359.9953 637.3594 1.47e+03

F26

Mean 2.47e-04 0 0 0.0095 0.0040 2.19e+03 0.0030 0.0070 0.0118 49.7333 49.2000 47.3333 552.903 1.04e+03 2.37e+03 547.4418 1.03e+03 2.28e+03
Std 0.0014 0 0 0.0170 0.0085 107.1183 0.0034 0.0083 0.0129 27.2155 30.2511 31.5041 57.7185 76.7655 116.4482 40.0277 74.3003 137.5406
Best 0 0 0 1.74e-08 2.54e-08 1.96e+03 1.08e-04 1.65e-04 3.22e-04 11.0000 1.0023 1.0000 390.003 910.0219 1.99e+03 475.3812 852.9620 1.94e+03

F27

Mean 9.98e-06 0.1663 8.4507 8.47e-06 3.1158 4.80e+09 3.0136 5.0142 10.0389 47.9333 49.8000 50.3000 9.1e+08 1.96e+09 4.83e+09 9.33e+08 1.88e+09 4.72e+09
Std 1.37e-06 0.9025 0.5179 1.22e-06 10.5150 5.80e+08 0.0215 0.0146 0.0502 32.7087 26.7626 31.4535 2.3e+08 2.73e+08 3.78e+08 1.68e+08 2.50e+08 4.10e+08
Best 6.55e-06 1.61e-05 7.3399 5.80e-06 1.81e-05 2.61e+09 2.9978 4.9960 10.0025 1.0000 9.0156 2.0000 2.9e+08 1.40e+09 3.85e+09 5.45e+08 1.41e+09 3.80e+09

F28

Mean 0.2173 0 0 0.8713 6.2341 217.4529 0.0035 0.0065 0.0111 55.6000 49.9000 49.7667 58.4314 109.7408 244.9257 57.8071 107.0340 239.0229
Std 0.2679 0 0 0.8423 3.8194 11.6871 0.0018 0.0039 0.0068 31.9899 30.4284 30.9557 4.9286 5.3860 10.3221 6.0275 4.3744 9.3928
Best 0 0 0 0.1833 0.9170 187.0470 5.04e-04 0.0018 0.0042 2.0000 1.0236 5.0000 43.6637 95.6545 221.5706 44.9686 97.6478 216.9315

F29

Mean 0 0 0 8.02e-05 3.20e-04 13.7524 2.33e-19 2.16e-17 8.96e-18 49.8000 48.4667 46.3000 2.7706 6.5041 16.5689 2.2901 5.9499 16.1513
Std 0 0 0 3.00e-05 1.24e-04 1.1678 3.80e-19 9.43e-17 2.60e-17 30.6520 31.3212 23.0474 0.6838 0.9021 1.4769 0.7110 0.9304 1.8898
Best 0 0 0 1.72e-05 1.37e-04 11.3272 9.01e-23 6.22e-22 1.74e-21 1.0000 2.0689 1.0000 1.2097 4.8185 12.5471 0.7454 3.9522 12.0985

F30

Mean 9.32e-04 0.0085 0.6002 4.96e-04 0.0101 595.7277 0.7448 0.9248 1.0179 49.4667 62.8000 47.3667 154.853 290.2766 640.0197 150.9546 282.3473 627.7390
Std 3.38e-04 0.0027 0.0786 1.27e-04 0.0040 38.8617 0.1629 0.1066 0.1422 29.6773 27.8028 31.5611 13.0742 19.1373 35.4937 12.4249 21.4470 30.5029
Best 3.32e-04 0.0044 0.4235 2.30e-04 0.0038 427.1223 0.3824 0.7790 0.7212 1.0000 14.2569 1.0029 131.533 247.2713 568.5226 127.7931 233.7856 551.1242
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In order to evaluate the improvement in the algorithm’s performance more compre-
hensively, Wilcoxon rank sum test is utilized to verify whether NWSHO has significant
difference with other algorithms under the significant level of p = 5%. Table 8 describes
the results of experiment. When h-value is equal to 1 or the p-value is less than 5%, it
indicates it is significantly different between NWSHO and the comparison algorithm. On
the contrary, it is not different between the two algorithms.

In Table 8, NWSHO is significantly different from SHO and PSO on the most benchmark
functions (except for F25); Except for F28, NWSHO and OPIO have obvious differences
in the remaining functions; In general, NWSHO is very different from SHO, OPIO and
PSO in most functions. And NWSHO is different from GA.

Table 8. The results of Wilcoxon rank sum test under 30 dimensions

fun SHO OPIO PSO GA BBO

F16
p 1.2118e-12 1.2118e-12 1.2108e-12 1.2118e-12 1.2118e-12
h 1 1 1 1 1

F17
p 1.2118e-12 1.2118e-12 1.2068e-12 1.2118e-12 1.2118e-12
h 1 1 1 1 1

F18
p 0.0051 3.0199e-11 3.0085e-11 3.0199e-11 3.0199e-11
h 1 1 1 1 1

F19
p 1.2118e-12 1.2118e-12 1.2098e-12 1.2118e-12 1.2118e-12
h 1 1 1 1 1

F20
p 1.2118e-12 1.2118e-12 1.2039e-12 1.2118e-12 1.2118e-12
h 1 1 1 1 1

F21
p 1.2118e-12 1.2118e-12 1.2078e-12 1.2118e-12 1.2118e-12
h 1 1 1 1 1

F22
p 1.2118e-12 1.2118e-12 1.2078e-12 1.2118e-12 1.2118e-12
h 1 1 1 1 1

F23
p 1.2118e-12 1.2118e-12 1.2098e-12 1.2118e-12 1.2118e-12
h 1 1 1 1 1

F24
p 2.6695e-09 2.3897e-08 3.0123e-11 3.0199e-11 3.0199e-11
h 1 1 1 1 1

F25
p 0.4290 3.0199e-11 0.2458 3.0199e-11 3.0199e-11
h 0 1 0 1 1

F26
p 1.4065e-11 3.3192e-11 1.7134e-12 1.7203e-12 1.7203e-12
h 1 1 1 1 1

F27
p 4.3531e-05 3.0199e-11 3.0066e-11 3.0199e-11 3.0199e-11
h 1 1 1 1 1

F28
p 1.5739e-06 0.6607 2.2507e-11 2.2623e-11 2.2623e-11
h 1 0 1 1 1

F29
p 1.2118e-12 1.2118e-12 1.2088e-12 1.2118e-12 1.2118e-12
h 1 1 1 1 1

F30
p 1.0277e-06 3.0199e-11 3.0142e-11 3.0199e-11 3.0199e-11
h 1 1 1 1 1

6. Conclusion. For the standard SHO, the accuracy is low and the convergence is slow.
To overcome the problems, a selfish herd optimization algorithm based on nonlinear in-
ertia weight is proposed in this paper. First, the good point set was used instead of the
randomization to initialize the population. Therefore, the problem of uneven distribution
is solved; Second, the nonlinear inertia weight is applied into the formula of updating
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position. While making a balance between global search and algorithm’s ability of local
development, the accuracy of solution and convergence are improved. This paper ap-
plies two sets of benchmark functions to carry out simulation experiments. The NWSHO
is compared with other standard algorithms and the standard SHO. The results of ex-
periment indicate the NWSHO is better than others in terms of solution accuracy and
convergence.

In the future, the algorithm is mainly utilized to deal with practical issues, such as
optimal parameter selection problem, multi-objective optimization problem, knapsack
problem and image threshold segmentation problem.
Funding Statement: This work was supported by Jilin Science and Technology Inno-
vation Development Program Projects (No. 20190302202).
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