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Abstract. Graph neural network (GNN), as a powerful method for graph representa-
tion, has attracted extensive research interest. Recently, Graph Convolutional Network
(GCN) and Graph Attention Network (GAT) have shown superior performance on graph
node classification and are considered as the most promising frameworks. Both GAT and
GCN use a weighting mechanism in the information aggregation process. However, GCN
is weighted by topological structure, while the node content is still unemployed. GAT is
weighted by node content, while the topological structure remains being ignored. These
weighting mechanism, which does not make full use of topology and node content, is not
conducive to graph representation. In this paper, we propose a “Collaborative Weighting
For Graph Convolutional Network” (CWGCN) that combines the advantages of GCN
and GAT. Specifically, its weighting mechanism not only considers the topology of the
graph, but also the node content. With this weighting method for representation learn-
ing, CWGCN achieves encouraging performance on a number of citation datasets in node
classification.
Keywords: Neural Network, Graph Analysis, Convolutional Network, Attention Net-
work

1. Introduction. Many real-world datasets are usually represented with the graph struc-
ture, such as citation network [1, 2], social network [3, 4], and chemical molecular net-
work [5, 6]. In social internet of vehicles, the interaction between vehicle, infrastructure
and pediatrics can be represented by a graph structure [7]. In the graph structure, com-
plex information, such as topological structure and node content, is particularly important
for the learning tasks [8, 9]. Graph neural network (GNN) [10, 11], as a powerful graph
representation learning tool, has excellent performance in processing graph structured
data and is becoming more and more popular. GNN provides an efficient framework for
processing non-Euclidean data [12], which uses information propagation iteratively to up-
date the state of each node. Therefore, GNN can be regarded as an information transfer
framework, and it can efficiently handle different types of tasks on graphs, including node
embedding [13, 14] or classification [15, 16], graph classification [17, 18], etc.

The convolutional neural networks (CNN’s) architecture was originally used for image
data [19, 20], so it can only handle Euclidean data and can not be adapt to graph-
structured data, that is, non-Euclidean data. Wang et al. [21] used a fast Recurrent
Concurrent Neural Networks to extract image features and then recognize the image.
Graph Convolutional Networks are proposed by generalizing the convolution operation
to graphs [22]. Graph Convolutional Networks can be categorized into two categories,
namely spectral approaches and Non-spectral approaches [23, 24]. On one hand, the
spectral approaches are based on the spectral representation of graphs. Through the
eigendecomposition of the graph Laplacian operator [25], the convolution operation de-
fined in the Fourier domain requires intensive matrix calculation and non-local space
filtering calculation. On the other hand, non-spectral approaches perform convolution
directly on the graph rather than on the graph’s spectrum. Non-spectral approaches that
operate on groups of spatially close neighbors can learn embeddings by aggregating fea-
tures from a node’s local neighborhood. One of the challenges of this approach is how to
define the operation to determine the sampling field size and learn the relative weights of
pairs of nodes to ensure a parameter sharing mechanism.

Recently, many excellent models in GNN have been proposed for graph convolution. For
example, GCN [26] applies convolution operations to graphs. GCN efficiently handles the
first-order neighborhood and weights them by topological structure for node embedding.
GAT [27] introduces an attention mechanism mainly based on node content into GNN.
GAT can assign different weights to the first-order neighbors of nodes so as to focus on
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important parts of the data. The weighting process of GCN and GAT is shown in Figure 1.
Although GCN and GAT have become one of the most effective models for graph learning,
there is still room for improvement. Specifically, the weighting process of GCN ignores
the importance of node content, and that of GAT ignores the importance of topological
information. These weighting mechanisms that do not make full use of the node content
and topology information in the graph are bound to have limitations. We conjecture that
combining node and topological information should provide more valuable guidance for
weighting. The reason is that topological structure represents the degree of connection
between nodes, and the content of nodes can also calculate the relationship between them
from the perspective of word vectors. For example, in the graph structure data shown
in Figure 2, node A is connected to node B and node C, but nodes A and C belong to
the same community, and node B belongs to other community. It is worth noting that
there are two important indicators for judging the importance of adjacent nodes to node
A. On one hand, from the perspective of topology, node C is more closely connected to
node A than node B. On the other hand, from the perspective of node content, node
A is more similar to node C than node B in terms of word vectors.Therefore, important
adjacent nodes are often closely connected in topology and/or similar in node content.
To achieve this, the weighting mechanism of the model needs to be improved to make it
more appropriate.

���

(a)GCN, where A is the adjacency matrix and sij is the weight based on topological information

���

(b)GAT, where H is the node feature matrix and fij is the weight based on node content

Figure 1. The weighting process of GCN and GAT

In this paper, we propose a novel Collaborative Weighting For Graph Convolutional
Network (CWGCN), which considers both topological structure and node content infor-
mation. This means that CWGCN combines the advantages of GCN and GAT, and makes
up for their shortcomings. The key idea is that the proximity between two nodes should
be determined by their content and structure. Based on a local graph network, each node
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Figure 2. The graph structure data

in the neighborhood will be assigned a non-negative weight. In particular, a learnable
cooperative trade-off mechanism is applied in the weighting process, enabling CWGCN to
discover important neighbors for information aggregating. Then, the receptive field will
automatically adapt to the learning task of the local graph. So, our model enables the
learned node embeddings to better capture the complex topological structure and node
content in graphs. Furthermore, the overall model can be optimized via backpropagation
in an end-to-end manner.

The contributions of our work are summarized as follows:

• We propose a novel GNN that not only focuses on topological structure but also node
content. Therefore, our work makes message delivery determined by a combination
of structure and content.
• The model employs a learnable collaborative weighting mechanism, which can be

adaptively optimized by learning. Benefitting from such cooperative weighting mech-
anism, the proposed CWGCN can better discover meaningful connections and ex-
clude noisy connections, which will improve model performance.
• We conduct experiments on multiple citation networks to evaluate the performance

of the proposed model. Compared with other state-of-the-art models, the results
show that the model has superior performance. And, it has a good interpretability,
which will be proved by experimental analysis.

2. Related Works.

2.1. Graph neural networks. Graph Neural Networks (GNNs) were first proposed
by [28], which aims to use deep neural networks to process real-world graph-structured
data. In GNNs, each node has a feature vector indicating its content, which can be
updated by means of multiple information aggregation operations between neighbors.
Wang et al. [29] introduced neural network into the 6G-Enabled IoT, and classify the
network by using the features. DropGNN [30] proposed a new propagation model that
combines gated graph neural networks with input transformations, which allows nodes
and edges to have their own hidden representations. It avoided the parameter explosion
problem existing in previous work. DGCN [31] separates the weight matrix from the
feature propagation through a decoupling structure to improve the expressiveness and
generalization performance of the model, thereby constructing a deep GNN.

2.2. Network embedding. The focus of GNNs is network embedding, also known as
network representation learning (NRL), which aims to learn low-dimensional latent rep-
resentations of nodes in the network and preserve the network structure and properties.
The learned feature representations can be used for various graph-based tasks such as
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classification, clustering, connection prediction, and visualization. The network embed-
ding process can be divided into two types, one only relies on graph structure, and the
other relies on graph structure and node features.

Network embedding methods depend on graph structure: Deepwalk [32] adopts a ran-
dom walk method for embedding. Node2vec [33] controls the propensity of random walks.
Deepwalk and Node2vec focus on the tightness of node connections, and Struc2vec [34]
focuses on the similarity of regional structure. SDNE [35] uses multiple nonlinear layers
for embedding.

Network embedding methods based on graph structure and node features: Graph-
SAGE [36] aggregates information from a fixed number of neighbor nodes to generate
new features. GCNII [37] effectively alleviates the problem of over-smoothing by using
Residual and Mapping, and proposes a deep neural network. AP-GCN [38] optimizes the
information dissemination mechanism by independently adjusting the number of commu-
nication steps for each node. Other models include GCN and GAT.

2.3. Weighted graph convolutional networks. Graph Convolutional Networks (GCNs)
are a powerful deep learning method for sharing information among adjacent nodes. In
recent years, many different GCNs optimize information sharing by assigning different
weights to different neighbors. GCN assigns different weights to nodes based on topology.
GAT assigns different weights to neighbor nodes by comparing node contents with self-
attention. HWGCN [39] assigns weights to high-order neighbors through node content,
thereby reducing the feature loss during information aggregation. By encoding edges,
SuperGAT [40] can detect noise in the graph and assign larger weights to important ad-
jacent nodes. NeuralSparse [41] is a sparsification model that improves generalization by
removing possibly task-irrelevant edges from the input graph. To sum up, the weighting
process of all these algorithms above does not consider topological structure and node
content information together in graph representation learning.

3. The Proposed Algorithm. In this section, we introduce our novel semi-supervised
graph convolutional network for node classification. Our proposed model incorporates
the advantages of the weighting mechanisms of GCN and GAT, while making up for the
shortcomings of them. First, we obtain the weights based on the topological structure
and on the node information, respectively. Then, CWGCN applies a learnable cooperative
weighting mechanism to tune and obtain the optimal weight combination for the node
embedding of a specific task. Figure 3 shows the entire weighting process of CWGCN.
Finally, node information aggregation is performed and they are used for node prediction.
To better understand the whole framework of CWGCN, we also give a brief visualization
process in Figure 4. Algorithm 1 describes the pseudocode of the CWGCN algorithm.

3.1. Notations and preliminary. Throughout this paper, we assume a graph, denoted
as G = (V,E), containing N nodes, |E| edges , and C classes to which the nodes belong.
It consists of a set of nodes V = {v1, v2, ..., vN} and a set of edges E = {eij}. E = {eij}
can be represented as an adjacency matrix A = {aij} ∈ {0, 1}N×N , where aij = 1 if
eij ∈ E, otherwise aij = 0. Nij denotes the union of node i and its one-hop neighbors.
H = [h1, h2, ..., hN ]T ∈ RN×D represent node feature matrix, where {hli}i=1,2,...,N ∈ RD are
the features of node vi at l-th layer of graph convolutional network. For a given graph G,
our goal is to learn new embeddings of nodes through a graph convolutional network, and
then perform node classification. We expect nodes of same category to have the similar
embeddings.
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Figure 3. The entire weighting process of CWGCN
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Figure 4. The architecture of CWGCN

3.2. Collaborative weighting. We should note that the neighbors of each node have
different importance for its embedding. Therefore, before aggregating node information,
we need to judge the importance of each neighbor node. Here, we introduce collaborative
weighting, which learns the importance of different neighbors and weights them. As shown
in Figure 3, the collaborative weighting mechanism of the new model consists of two parts:
weighting based on topological structure and weighting based on node content.

Topology-based weighting exploits the structural information provided by the adjacency
matrix, and the weighting mechanism is derived from GCN. The weighting sij between
nodes i and j can be expressed as:

sij = d
− 1

2
i · aij · d

− 1
2

j , (1)

where aij indicates whether node i and node j are neighbors to each other. di represents
the degree of node i. It is worth noting that we take into account the respective degrees
of adjacent nodes in the calculation.



Collaborative Weighting for Graph Convolutional Networks 437

Algorithm 1 The overall process of CWGCN.

Input: The heterogeneous graph G = (V,E), node feature {hi,∀i ∈ V }, number of
attention head K.
Output: Final embedding H, structural weight coefficient sij, content weight

coefficient fij, weight parameters gs and gf .

1: for k = 1...K do
2: for i ∈ V do
3: for j ∈ Ni do
4: Learn the structural weight coefficient sij using Eq.2.
5: Learn the structural weight coefficient fij using Eq.4.
6: Learn the structural weight coefficient gs and gf using Eq.5 and Eq.6.
7: Calculate the weight coefficient aij using Eq.7.
8: end
9: end

10: Concatenate the learned embeddings hi from all attention head using Eq.9.
11: end
12: for i ∈ V do
13: for j ∈ Ni do
14: Learn the structural weight coefficient sij using Eq.2.
15: Learn the structural weight coefficient fij using Eq.4.
16: Learn the structural weight coefficient gs and gf using Eq.5 and Eq.6.
17: Calculate the weight coefficient aij using Eq.7.
18: end
19: Learn node embedding H using Eq.8.
20: Calculate Cross-Entropy Loss using Eq.10.
21: Back propagation and update parameters in CWGCN.
22: return H, sij, fij, gs, gf .

Since the nodes in the same community have greater similarity in node features, weight-
ing based on node content exploits this property. The weighting fij between node i and
node j follows the attention mechanism introduced in the original GAT, and its process
can be shown as follows:

fij =
exp(σ(αT · [Whi||Whj]))∑

k∈Ni
exp(σ(αT · [Whi||Whk]))

, (2)

where {hi}i=1...N is the feature vector of the node, and hi ∈ RD. α ∈ R2D is the mapping
vector, || is the connection function, W is the node feature map parameter, σ(·) denotes the
activation function LeakyReLU. And Ni represents the set of neighbor nodes (including
itself) of node i. Note that the computational process can be learned. In addition, the
formula uses the softmax function for normalization. fij evaluates the importance of node
j to node i in terms of node information. Please note that, fij is asymmetric, i.e., the
weight coefficient of node i to node j and the weight coefficient of node j to node i can
be quite difference.

For the obtained sij and fij, we introduce two learnable parameters, gs and gf , to
determine the relative importance of sij and fij. We normalize them via softmax function:

rs =
exp(gs)

exp(gs) + exp(gf )
, (3)
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rf =
exp(gf )

exp(gs) + exp(gf )
. (4)

Note that rs and rf can explain the contribution of different weights. Then with the
obtained rs and rf we calculate the final weights by the following method:

aij =
exp(rs · sij + rf · fij)∑

k∈Ni
exp(rs · sik + rf · fik)

, (5)

where rs and rf are used to act as a trade-off parameter between sij and fij. Obviously,
the higher the parameter, the more important the corresponding weight. aij means the
final weight of node j to node i. We only compute the aij of j ∈ Ni. And we still use
the softmax function for normalization. Also note that the weights aij are asymmetric,
which means that the connected nodes have different importance to each other. This is
not only because they have different neighbors from each other, but also because they
have different topological networks.

3.3. Node information aggregation. After obtaining the corresponding weight coef-
ficients of the neighbors of node i, we perform the information aggregation operation on
neighbors to form an edge-based embedding for it. The corresponding calculation process
is as follows:

hl+1
i = σ(

∑
j∈Ni

aijWhli), (6)

among them, Ni represents the node’s neighbor node set (including node i itself). W
is the feature map matrix, which is learnable during task training. σ(·) is a non-linear
activation function. hli is the input feature of the node in lth layer neural network. hl+1

i

is the updating result, that is, the embedding obtained by node i through learning.
The above aggregation process is a single-layer convolution operation. In order to enable

the network to find more useful information, we use multi-head convolution operations,
that is, we use multiple graph convolutions in a single layer of neural network. Then
splicing the learned embedding, and use the obtained result as the input of the next layer:

hl+1
i =

K
||

k = 1
σ(
∑

j∈Ni

aijWhli), (7)

where || is the concatenation operation, which is used to combine different convolution
outputs, K is the number of multi-head convolution.

First, in the first layer, we use Eq.(7) and set K = 8. After that, in the second
layer, we used a single graph convolution to learn the final node embedding i.e., Eq.(6).
After completing the above operations, the final node embedding will perform softmax
operations.

3.4. Optimization. For semi-supervised nodes classification tasks, we build the Cross-
Entropy as a loss function. We hope that the gap between the ground-truth label and
the prediction value is minimized, the specific formula is as follows:

L = −
∑
i∈T

∑
e∈C

yie log ỹie, (8)
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where T represents the collection of training nodes, C is the set of labels, yie is the
true label, and ỹie is its prediction. Guided by the ground-truth labels, we optimize our
proposed model by backpropagation and learn the embedding of nodes.

4. Experiments. In this section, we compare and evaluate the proposed model with
state-of-the-art methods, confirming that our model has the best performance over multi-
ple datasets. The following content will include experimental setup, experimental results,
and model analysis.

4.1. Datasets. We use three widely used citation network datasets in our experiments,
i.e., Cora , Cite and Pubmed. They are standard citation network benchmark datasets [42].
In those datasets, each node represents a document. When there is a reference relation-
ship between the two documents, an edge is established between them. Each document
has its own feature vector and associated with a label. We divide the dataset into 3 parts:
training set, validation set, and test set. The semi-supervised node classification test is
performed. The information of those datasets are shown in Table 1.

Table 1. Summary of the datasets used in our experiments

Datasets Nodes Edges Features Classes Training V alidation Testing
Cora 2708 5429 1433 7 140 500 1000
Cite 3327 4732 3703 6 120 500 1000

Pubmed 3356 4278 500 3 60 500 1000

4.2. Baselines. In the experiments, we choose multiple state-of-the-art baselines to com-
pare with our model to prove the effectiveness of CWGCN.

MLP is a two-layer artificial neural network. We set the number of hidden units to 64.
TADW [43] 1 combines the text features of nodes into network representation learning,

based on matrix decomposition (MF).
DGI [44] 2 is a graph isomorphism network. In order to obtain node representations,

it trains an encoder model to maximize the mutual information for capturing the global
information content of the entire graph.

SGC [45] 3 is a simplified graph convolutional networks, which removes the nonlin-
ear transition function between each layer and therefore constructs a linear model with
repeated feature propagation.

GCN [26] 4 is a semi-supervised graph convolutional network. It encodes a local-
ized approximation model for spectral graph convolutions by terms of layer-wise feature
propagation, linear transformation, and pointwise nonlinear activation.

GAT [27] 5 is a semi-supervised neural network which considers the attention mecha-
nism. To compute the hidden representations of a center node, it employs a self-attention
mechanism for assigning weights to the neighbors.

1https://github.com/dedekinds/Graph-Embedding
2https://github.com/PetarV-/DGI
3https://github.com/Tiiiger/SGC
4https://github.com/tkipf/pygcn
5https://github.com/Diego999/pyGAT
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4.3. Parameter settings. CWGCN includes a two-layer graph convolution. The first
layer is a multi-head convolution, which consists of eight graph convolutions. Before
entering the second layer, we concatenate the output of the first layer. The second layer
consists of a single graph convolution, followed by a Softmax activation. Its outputs are
used for classification, and the label corresponding to the maximum is the prediction. To
prevent overfitting, regularization is used. During training, we use λ = 0.0005 for Cora
and Cite datasets, and λ = 0.001 for Pubmed. Also, dropout [46] p = 0.6 is applied to
the input of each layer. All the above measures can effectively prevent overfitting and
improve the generalization performance of the model.

The training objective is to minimize the cross-entropy on the training set, and the
learning rate is 0.005 for all datasets except Pubmed which is 0.01. During the training
process, we use an early stop strategy for the cross-entropy loss of the validation nodes,
with a patience of 100 epochs. That is, if the validation loss does not decrease within 100
epochs, we stop training.

4.4. Results. Our test method is semi-supervised node classification, and the node clas-
sification results are evaluated by multiple F1-score metrics. F1-score metrics include
Micro-F1, Macro-F1 and Weighted-F1. Precision P and recall R will be used in the
calculation process, and the calculation formula is as follows:

P =
TP

TP + FP
, (9)

R =
TP

TP + FN
, (10)

among them, TP is True Positive, that is, the target sample is predicted correctly. FP is
False Positive, i.e. the prediction is positive, but it is wrong. FN is False Negative, that
is, the target sample that is wrongly predicted as to be negative.

Micro-F1 directly uses the precision P and recall R of the overall sample to calculate
the F1-score, which means that it does not need to distinguish between categories. The
calculation method:

Micro− F1 =
2PR

P +R
=

TP

TP + 1
2
(FP + FN)

. (11)

Macro-f1 calculates the arithmetic mean of F1-score for each class, this method treats
all classes equally, regardless of the importance of different classes. Its calculation method:

Macro− F1 =

∑
e∈C

2PeRe

Pe+Re

C
. (12)

Weighted-F1 considers the importance of different categories, that is, the ratio of the
number of samples in each category to the total number of samples is used as the weight
to calculate the weighted F1. The calculation method:

Weighted− F1 =
∑
e∈C

ae
2PeRe

Pe +Re

. (13)

The experimental results on the baseline datasets are summarized in Table 2, where the
boldface values indicate the best performance. For each set of testing data, all approaches
are run ten times to obtain the statistically steady performance. We can see that our
approach outperforms all baselines in evaluating indicators.

Based on Table 2, we can see that GAT outperforms GCN on three datasets, but GCN
has better performance on Cite Micro-F1. This shows that the weighting mechanism based
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Table 2. Classification F1-score for different methods on the benchmark
data sets

Cora
Method Micro− F1 Macro− F1 Weighted− F1
MLP 56.0±0.1 50.5±0.1 55.8±0.1

TADW 46.2±0.7 56.1±0.8 50.1±0.7
DGI 75.3±0.4 69.8±0.7 74.2±0.5
SGC 80.0±0.1 78.1±0.1 80.2±0.1
GCN 82.1±0.6 79.5±0.7 82.1±0.6
GAT 83.8±0.2 82.4±0.2 83.8±0.1

CWGCN 84.6±0.1 83.1±0.1 84.7±0.1
Cite

Method Micro− F1 Macro− F1 Weighted− F1
MLP 62.8±0.1 56.4±0.1 61.0±0.1

TADW 50.1±0.9 58.3±0.8 55.1±0.6
DGI 71.7±0.4 61.6±0.5 68.8±0.5
SGC 69.7±0.1 61.9±0.1 67.9±0.1
GCN 71.8±0.5 63.2±0.4 69.6±0.6
GAT 71.5±0.2 64.4±0.2 70.0±0.2

CWGCN 72.7±0.1 65.9±0.3 71.3±0.2
Pubmed

Method Micro− F1 Macro− F1 Weighted− F1
MLP 66.5±0.1 64.0±0.1 65.5±0.1

TADW 66.1±0.7 68.7±0.7 65.8±0.5
DGI 71.1±0.2 67.7±0.3 69.7±0.2
SGC 73.9±0.1 71.3±0.1 73.3±0.1
GCN 74.2±0.7 71.6±0.8 73.4±0.8
GAT 74.8±0.1 73.6±0.1 74.5±0.1

CWGCN 76.8±0.1 75.9±0.4 76.6±0.1

on node content is not necessarily more effective than the weighting mechanism based
on topology structure. In summary, using both node content-based and topology-based
weighting mechanisms in graph convolutional networks is the key to improve performance.
The weighting mechanism of CWGCN is based on the node content and topology, which
makes full use of the information provided by the graph, and then can allocate weights
more reasonably. This means that in the process of node information aggregation, more
meaningful information can be aggregated and noise information can be eliminated. As
can be seen, CWGCN consistently improves performance on all benchmark datasets.

4.5. Parameter sensitivity. In this section, we analyze the parameter sensitivity through
the Cite data set and report the performance of CWGCN with different number of con-
volution heads. The results are shown in Figure 5. Note that when the number of
convolution heads is set to 1, the multi-head convolution will be removed. It can be seen
that with the increase of the number of convolution heads, the overall performance of
CWGCN shows a trend of improvement. Therefore, to obtain the best performance on a
certain dataset, we recommend searching for this parameter value first.

4.6. Analysis of collaborative weighting mechanism. Our model introduces two
convolutional weights, one based on topology sij and one based on node content fij.
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Figure 5. Parameter analysis of different number of convolutional head K

To explore the importance of the two weights in the model, we visualized the trade-off
coefficients of the three datasets with rf and rf . As shown in Figure 6, among the three
we can find that both weights in the dataset play a role in CWGCN. Summarizing the
results, collaborative weighting is effective.

(�) ���� ���� ��� (�) ���� ���� ��� (�) ������ ���� ���
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(c)Pubmed

Figure 6. Balancing parameters of the collaborative weighting mechanism

4.7. Ablation analysis. In order to further analyze the proposed method, we design a
single-layer GCN, GAT, and CWGCN, while removing the influence of the multi-head
convolution mechanism of GAT and CWGCN, and the randomness of dropout. In this
way, other influencing factors, such as the multi-head convolution mechanism and the
influence of parameter settings on results are excluded. We set the input feature dimension
as the word vector dimension of the dataset samples, and the output dimension is the
total number of class labels. The model is then analyzed for ablation.

4.7.1. Results. As shown in Figure 7, GCN, GAT, and CWGCN are all 1-layer neural
networks, which not only unify parameter settings, but also remove the influence of multi-
head convolution mechanism and dropout on model performance. The F1-score of all
models decreased, especially on the Cora dataset. The results show that the 2-layer model
is more beneficial to the representation learning for graph convolution. GCN is the worst
model in the three datasets, indicating that GAT’s convolution mechanism based on node
information is better than GCN’s topology-based convolution mechanism. The CWGCN
using the collaborative attention mechanism achieves the best performance. The results
show that it is beneficial to pay attention to topology information and node information
when conducting convolution.
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Figure 7. Results of ablation experiments

4.7.2. Analysis Of Collaborative Weighting Mechanism. Some important neighbors that
are useful for specific tasks often have greater attention value. So, the focus of improving
the performance of graph convolutional networks on specific tasks is how to discover
important neighbor nodes and assign appropriate weights to nodes. As mentioned earlier,
take node P93320 in the Cora dataset as an example. We enumerate the neighbors of
node P93320 and their weights under GCN, GAT, CWGCN. As shown in Figure 8(a),
P93320 and P6214 belong to the same label “Reinforcement Learning”, P23507 belongs
to the label “Neural Networks”, and P10796 belongs to the label “Case Based”.

As shown in Figure 8, GCN assigns a larger weight to P23507 and P10796 than P6214
based on topology, while GAT based on node content assigns the largest weight to P10796,
which is obviously unreasonable. GCN and GAT predict P93320 nodes as “Neural Net-
works” due to unreasonable weight distribution. It is worth noting that CWGCN gives
the most reasonable weight combination after neutralizing the topology and node content.
CWGCN assigns higher weights to two meaningful neighbor nodes, P93320 and P6214,
and finally makes correct predictions. Based on the above analysis, we can see that
CWGCN has an excellent performance in discriminating the differences between neighbor
nodes.
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Figure 8. Neighbor nodes and weights of node P93320

5. Conclusion. In this paper, we propose a GNN that combines the advantages of the
weighting mechanism of GCN and GAT. The advantage of GCN is that its weighting
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process considers topology information but ignores node content. GAT is weighted based
on node content, but does not utilize topology information. It can be seen that GCN and
GAT can form complementary advantages. Different from traditional models, CWGCN
weighting mechanism considers not only topology structure but also node content. This
means that it can measure the importance of neighbor nodes to the center node from mul-
tiple perspectives, so as to carry out more reasonable weight distribution. This weighting
mechanism can greatly improve the effectiveness of node information aggregation, thereby
enhancing the graph representation learning ability of CWGCN. It can be seen from the
experimental results that this improvement can effectively improve the representation
learning ability of graph neural networks. In future work, we will further improve the
model to achieve more advanced performance.
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[27] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention
networks,” in International Conference on Learning Representations. ICLR, 2018, pp. 1-12

[28] A. Sperduti, A. Starita, “Supervised neural networks for the classification of structures,” IEEE
Transactions on Neural Networks, vol. 8, no. 3, pp. 714-735, 1997.

[29] K. Wang, P. Xu, C.-M. Chen, S. Kumari, M. Shojafar, and M. Alazab, “Neural architecture search
for robust networks in 6G-enabled massive IoT domain,” IEEE Internet of Things Journal, vol. 8,
no. 7, pp. 5332-5339, 2020.

[30] D. Beck, G. Haffari, T. Cohn, “Graph-to-sequence learning using gated graph neural networks,”
Association for Computational Linguistics, vol. 1, pp. 273-283, 2018.

[31] W. Cong, M. Ramezani, M. Mahdavi, “On provable benefits of depth in training graph convolutional
networks,” Advances in Neural Information Processing Systems, vol. 34, pp. 9936-9949, 2021.

[32] B. Perozzi, R. Al-Rfou, S. Skiena, “Deepwalk: Online learning of social representations,” in Proceed-
ings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 2014, pp. 701-710.

[33] A. Grover, J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
2016, pp. 855-864.

[34] L.-F.-R. Ribeiro, P.-H.-H. Saverese, D.-R. Figueiredo, “struc2vec: Learning node representations
from structural identity,” in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2017, pp. 385-394.

[35] D. Wang, P. Cui, W. Zhu, “Structural deep network embedding,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016, pp. 1225-
1234.



446 Y. Chen, X.-Z. Xie, W. Weng, S.-D. Zhang, T. Li

[36] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka, “Representation Learning
on Graphs with Jumping Knowledge Networks,” in International Conference on Machine Learning.
PMLR, 2018, pp. 5453-5462.

[37] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph convolutional networks,”
in International Conference on Machine Learning. PMLR, 2020, pp. 1725-1735.

[38] I. Spinelli, S. Scardapane, A. Uncini, “Adaptive propagation graph convolutional network,” Trans-
actions on Neural Networks and Learning Systems, vol. 32, no. 10, pp. 4755-4760, 2020.

[39] S Liu, L. Chen, H. Dong, Z. Wang, D. Wu, and Z. Huang, “Higher-order weighted graph convolutional
networks,” in International Conference on Machine Learning. ICML, 2019, pp. 1-15.

[40] D. Kim, A. Oh, “How to find your friendly neighborhood: Graph attention design with self-
supervision,” in International Conference on Learning Representations. ICLR, 2022, pp. 1-25.

[41] C. Zheng, B. Zong, W. Cheng, D. Song, J. Ni, W. Yu, H. Chen, and W. Wang, “Robust graph
representation learning via neural sparsification,” in International Conference on Machine Learning.
PMLR, 2020, pp. 11458-11468.

[42] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T Eliassi-Rad, “Collective Classification
in Network Data,” AI Magazine, vol. 29, no. 3, pp. 93-93, 2008.

[43] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network representation learning with rich
text information,” in Twenty-fourth International Joint Conference on Artificial Intelligence. IJCAI,
2015, pp. 2111-2117.
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