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Abstract. Most graphs or networks in the real world are inherently heterogeneous and
involve different types of nodes and relationships. Typically, existing models define mul-
tiple metapaths in the heterogeneous graph to capture complex semantic relationships and
guide neighbor selection. However, such models ignore node characteristics and do not
consider information about intermediate nodes. Alternatively, in such models, the tar-
get node is assimilated by neighboring nodes or only information about a metapath is
considered. Thus, in this paper, we proposed the neighborhood similarity-based metapath
aggregation graph neural network (MANS-GNN) model. The proposed MANS-GNN first
uses node mapping for the input of node features. Second, to avoid embedding and exces-
sive assimilation between different node types, a similarity-aware neighborhood selector
based on reinforcement learning is employed to select the most similar neighborhood for
the target node. Then, a local aggregation module is employed to merge intermediate
semantic nodes. Finally, global aggregation is employed to merge information from in-
dividual metapaths. The proposed MANS-GNN model was evaluated experimentally in
node classification and node clustering tasks on two heterogeneous graph datasets. Exper-
imental results demonstrated that the proposed MANS-GNN model obtains more accurate
predictions than the baseline model.
Keywords: Metapaths, Heterogeneous graph, Neighbor selection,Reinforcement learn-
ing
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1. Introduction. Many real-world problems can be solved by structuring data into
graphs, where objects and the relationships between objects are represented by nodes
and edges, respectively [1]. In the real world, large amounts of data can be modeled
in the form of heterogeneous graphs [2], e.g., smart cities [3], stock evaluation function
[4], recommender systems [5], road traffic monitor systems [6] and natural language pro-
cessing [7]. Heterogeneous graphs comprise different types of nodes and edges associated
with attributes. For example, a network graph in a movie scenario contains five of node
types, i.e., user(U), movie(M), director(D), group(G), and movie type(T). In this case,
the meaning of the edge is intuitive. For example, the edge type U-G indicates that the
user has joined the group, and the edge type U-M indicates that the user has seen the
movie and given a score. Heterogeneous graphs involve different types of nodes and edges
compared to homogeneous graphs; thus, heterogeneous graphs are rich in semantic in-
formation and heterogeneous structural information. The concept of homogeneous graph
embedding is applied in heterogeneous graph embedding, which represents the nodes in
the graph as low-dimensional vectors and preserves the heterogeneous structural and se-
mantic information in the graph, thereby making heterogeneous graph embedding better
for various downstream tasks, e.g., node classification and node clustering [8].

Most existing methods for embedding in heterogeneous graphs are based on the idea
of metapaths, each of which is an alternating sequence of nonrepetitive nodes and edges
[1]. For example, in a network of movie scenes comprising users, movies, and directors,
user-movie-user (UMU) and user-movie-director-movie-user (UMDMU) are two different
metapaths describing the relationship between users. Here, the UMU metapath associates
two users watching the same movie, and the UMDMU metapath connects two users who
watch movies by the same director. Early heterogeneous graph embedding models, e.g.,
Metapath2vec [9], used random wandering based on metapaths to obtain the heteroge-
neous neighbors of nodes, which were then input to the skip-gram [10] model to learn the
representation of nodes. With the rapid development of deep learning technologies, in-
creasing attention is being paid to extending deep learning techniques to graph structures.
For example, graph neural networks (GNN) have emerged, e.g., the graph convolution net-
work (GCN) [11] and the graph attention network (GAT) [12]. In addition, the GNN has
been introduced in the heterogeneous graph model, where a specially designed neural layer
is used to realize graph representation learning. Heterogeneous graph attention network
(HAN) [14] uses node-level and semantic-level attention mechanisms to mine metapaths
in heterogeneous graphs, learns the representations of nodes in different metapaths, and
aggregates these representations with the learned weights.

Compared to traditional network embedding methods, existing metapath-based em-
bedding methods perform better on downstream tasks, e.g., node classification and node
clustering; however, several limitations must be considered [15]. (1) Existing metapath-
based embedding methods may not use node features, resulting in poor performance on
heterogeneous graphs with a large number of nodes. (2) Imprecise feature selection may
not be able to extract the effective semantics of nodes and may easily lead to embedding
and excessive assimilation between different types of nodes, which greatly reduces the
accuracy of GNN feature learning representation. (3) Existing metapath-based embed-
ding methods may only considers the start and end nodes of the meta path, and does
not consider the intermediate nodes and relationships on the meta path, which results in
information loss. (4) Existing metapath-based embedding methods may relies on only a
single metapath to embed the heterogeneous graph, which loses the information of other
meta paths, thereby resulting in poor performance.
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To address these limitations, this paper proposes a metapath aggregation graph neural
network (MANS-GNN) based on neighborhood similarity. The proposed MANS-GNN
solves the above problems well by applying node mapping, a similarity-aware neighbor-
hood selector based on reinforcement learning (RL), local aggregation, and global aggre-
gation to obtain the final node embedding. The dimensionality of different node types is
not equal; thus, the proposed MANS-GNN first applies node mapping to shadow hetero-
geneous node genus features into the same latent vector space. Then, the MANS-GNN
performs local aggregation for each metapath through a layer of attention mechanisms.
Prior to aggregation, to avoid over-assimilation of embeddings between different types of
nodes, the proposed MANS-GNN also employs a similarity-aware neighborhood selector
based on RL, which is used to select the most similar neighborhood of the target node
under a certain relationship. After local aggregation, the MANS-GNN uses an attention
mechanism [16] for global aggregation and merges the potential vectors obtained from
multiple metapaths into the final node embedding. By integrating multiple metapaths,
the model can learn comprehensive semantic information from the heterogeneous graph.

Our primary contributions are summarized as follows.
(1) The proposed MANS-GNN model considers node features, the information of all

nodes on the meta-path and multiple meta-paths, and avoids the problem of over-assimilation
of embeddings between different types of nodes.

(2) The RL-based similarity-aware neighborhood selector selects the most similar neigh-
borhood of the target node under a certain relationship; thus, the proposed model avoids
over-assimilation of embeddings between different types of nodes.

(3) Numerous node classification and node clustering experiments were conducted on
the IMDB and DBLP datasets. The experimental results demonstrate that the node
embeddings learned by the proposed MANS-GNN outperform existing models.

2. Related Work. In the following, we review related research, including GNNs, het-
erogeneous graph embeddings, and the combination of GNNs and RL.

2.1. Graph neural networks. Due to the rapid development of deep learning in recent
years, GNNs have made great progress and attracted considerable attention in graph rep-
resentation learning. The core concept on a GNN is to aggregate the feature information
of neighboring nodes through neural networks and combine the independent information
of the nodes with the corresponding structural information in the graph [16]. According
to the differences in modeling of actual graph data, GNNs can be roughly divided into
two categories, i.e., homogeneous GNNs and heterogeneous GNNs.

Homogeneous GNN models typically do not consider node data types and edge prop-
erties. Conventional methods include GCN [11], GAT [12], and Graph-SAGE [18]. GCN
[11] defined the first successful graph convolution by applying convolution operations to
graphs. Through the approximate analysis of the graph in the frequency domain, the
local structure and node characteristics of the graph are modeled and learned. Graph-
SAGE [18] is an inductive learning framework that uses node attribute information to
generate unknown node feature representation on a large-scale graph. Here, the core idea
is to generate the feature representation of the central node by learning a function that
aggregates the neighbor nodes rather than learning the embedding of the node itself. In
contrast, GAT [12] achieves adaptive matching of weights to different neighbors through
a self-attentive mechanism to aggregate neighboring nodes, thereby improving the repre-
sentational power of the model. Although these models have strong graph representation
learning ability, their primary limitation is that they ignore the diversity of data types
and relationships in real-world data [23].
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In contrast, heterogeneous GNN models do consider node data types and edge proper-
ties. Conventional approaches include HNE [13], HAN [14], HGT [19], HetSANN [20], and
MAGNN [15]. HNE [13] Use highly nonlinear multi-layer embedded functions to capture
complex interactions between heterogeneous data in the network. HAN [14] employs hier-
archical attention to describe node level and semantic level structures, and MAGNN [15]
considers the intermediate node information of the metapath. HGT [19] involved param-
eters related to node and edge types to characterize the heterogeneous attention on each
edge such that it can maintain a special representation for different types of nodes and
edges. In addition, HetSANN [20] can encode the structural information of HIN directly
without a metapath, thereby realizing more information representation. However, to the
best of our knowledge, no previous study has investigated methods to select neighboring
nodes in order to construct the most expressive, explanatory, and stable aggregations.

2.2. Heterogeneous graph embedding. Heterogeneous graphs comprise multiple types
of nodes and edges, which makes it difficult to preserve structural information in node
embeddings properly [21]. Heterogeneous graph embedding is essentially the projection of
different types of nodes in a graph into the same low-dimensional vector space. Many stud-
ies have addressed this challenge. For example, Metapath2vec [9] implements a metapath-
based random walker technique and utilizes the skip-gram model [10] to generate node
embeddings. HERec [22] transforms a heterogeneous map into multiple homogeneous
maps based on different meta paths, and it applies the DeepWalk model to learn the node
embedding of the target type.

A GNN can learn the representation of graph structured data efficiently; thus, various
GNN-based approaches have been extended to model heterogeneous graphs and encode
the representation of attribute information [21]. For example, HAN [14] converts het-
erogeneous graphs into multiple homogeneous graphs based on metapaths, aggregates
neighborhood information using GATs, and uses attention mechanisms to combine vari-
ous metapaths.

However, the above methods either ignore node features, discard all intermediate nodes
on the metapath, or utilize only a single metapath. Thus, performance improvements
can be achieved by realizing more comprehensive use of the information embedded in the
heterogeneous graph [15].

2.3. Combining graph neural networks with reinforcement learning. With the
development of GNNs and RL methods, numerous studies have attempted to combine
these technologies [23]. For example, Graph2Seq [24], which is an RL-based graph-to-
sequence model, employs a deep alignment network to effectively integrate the answer
information into the article, and a bidirectional GNN is used to process the directed
channel graph. Many studies have used RL to optimize the learning of graph represen-
tations. For example, RL-HGNN [25] models the metapath design process as a Markov
decision process and uses a policy network to design metapaths adaptively for each node
to learn an efficient representation. In addition, DeepPath [26] employs an agent with a
continuous state based on a knowledge graph embedding that extends the path by sam-
pling the most promising relations and reasoning in the knowledge graph vector space.
Policy-GNN [27] employs a meta-policy to determine the number of aggregations per node
adaptively, and the meta-policy is trained using deep RL by exploiting the feedback from
the model. GraphNAS [28] employs a search space that covers sampling functions, ag-
gregation functions, and gating functions, and it employs RL to search the graph neural
architecture. However, although the GraphNAS [28] and Policy-GNN [27] models are
more concerned with the search of neural architectures, neither model considers hetero-
geneous neighborhoods in aggregation.
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Figure 1. The overall architecture of MANS-GNN.

3. Proposed Metapath Aggregation Graph Neural Network. Here, we present the
proposed MANS-GNN based on neighborhood similarity. Figure 1 illustrates the overall
architecture of the MANS-GNN, which comprises the following components. (1) Het-
erogeneous node features are mapped into the same feature space. (2) An over-selection
operation is performed on the similarity-aware neighborhood selector based on RL. (3)
The final node embedding is generated through local aggregation, intra-metapath aggre-
gation using the attention mechanism, and finally global aggregation and inter-metapath
aggregation using the attention mechanism.

3.1. Node mapping. Nodes and edges in heterogeneous graphs have different types.
Different types of node attributes have different dimensional feature vectors, and even
if the nodes happen to be of the same dimension, they may belong to different feature
spaces. To solve this problem, it is necessary to first project the heterogeneous node
features into the same feature space.

Here, for a node of type , the mapping process can be expressed as follows:

h′v = Wa ∗ hv (1)

where hv is the feature representation of node v before the mapping process, and hv is
the feature representation of node v after the mapping process. In addition, Wa is the
parameter weight matrix of the nodes of type a. After this process, the features of the
heterogeneous nodes in the graph are mapped into the same feature space with a certain
number of dimensions.

3.2. Neighborhood selector. MANS-GNN learns semantic information in embedded
nodes by encoding metapath examples using a relational rotation encoder to convert
all node features of a metapath instance into a single vector. The relational rotation
encoder, proposed by RotatE for knowledge graph embedding, is a meta-path instance
encoder based on the rotation of relations in complex spaces [29]. The relational rotary
encoder is expressed as follows:

hM(v,u) = f(M(v, u)) = f(h′v, h
′
u, {h′g,∀g ∈ {tM(v,u)}}) (2)
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where M(v, u) is a metapath instance connecting the target node v to its metapath-
based neighbor u. tM(v,u) denotes the intermediate node of M(v, u).

After encoding the metapath instances into a vector representation, for a target node v,
a metapath instance based on the target node v is considered a neighborhood of the target
node v. First, we calculate the neighborhood similarity between nodes and neighbors
based on the proposed neighborhood similarity metric. Here, a Multi-layer Perceptron
(MLP) is used as a node predictor, and the node and neighbors prediction result scores
are used for the similarity measurement. For a target node v under the relation r of edge
(v, v′), the similarity measure between v and v′ is defined as follows:

S(v, v′) = ||σ(MLP (hvv′))|| (3)

The RL-based similarity-aware neighborhood selector performs adaptive filtering to
select the best number of similar neighbors automatically, thereby avoiding the high cost
of data annotation. Here, the sampling is used with an adaptive filtering threshold to
select similar neighbors under each relation, and an RL algorithm is used to identify the
optimal threshold during GNN training.

Specifically, in the training phase, for node v in the current batch under relation r,
MANS-GNN first calculates a set of similarity metric scores using Equation (3). Then, the
neighborhoods are arranged in descending of the similarity measurement score, retaining
the part of the current batch with the highest similarity and discarding the rest of the
neighborhoods.

To optimize the computational efficiency of the neighbor selection, the proposed model
employs an RL framework to find the optimal threshold tr. Given an initial threshold tr,
ar is defined as a fixed small value for which the neighborhood selector chooses to increase
or decrease tr. The optimal tr value is expected to find the most similar neighborhood of
the target node under relation r. The average similarity score for cycle e under relation
r is expressed as follows:

G(Sr)
(e) =

∑
v∈Vtrain

Sr(v, v
′)(e)

|Vtrain|
(4)

Then, the reward mechanism is designed based on the difference in mean similarity
scores between two consecutive batches. The reward for period e is as defined as follows:

f(tr, ar)
(e) =

{
+1 if G(Sr)

(e−1) −G(Sr)
(e) ≥ 0

−1 if G(Sr)
(e−1) −G(Sr)

(e) ≤ 0
(5)

Note that the reward is positive when the average distance of the newly selected neigh-
borhood of cycle e is less than the previous cycle; otherwise, the reward is negative. We
designed greedy strategies that do not require search and use immediate rewards to update
actions.

3.3. Local and global aggregation. After selecting the best neighborhood, we adopt
local aggregation and use the attention mechanism to weighted sum the metapath in-
stances M(v, u) based on the target node v, as shown in Equation (6).

βM
vu =

exp(LeakyReLU(aTM∗[h
′
v ||hM(v,u)]))∑

k∈NM
v

exp(LeakyReLU(aTM∗[h′
v ||hM(v,k)]))

hMvu = σ(
∑

u∈NM
v
βM
vu ∗ hM(v,u))

(6)

Here,aTM is a parametric attention vector for metapath M , || denotes the vector con-
nectivity operator, NM

v is the set of neighbors of node v based on the metapath M , and
βM
vu is the normalized importance weight learned for each metapath instance. Finally, the

output is passed through the activation function σ(•).
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The learning process is stabilized using a multiheaded attention mechanism, thereby
reducing the high variance associated with heterogeneous graphs. The proposed model
applies independent attention mechanisms and splices their outputs as follows:

hMv = ‖Tt=1σ(
∑

u∈NM
v

[βM
vu]t ∗ hM(v,u)) (7)

where [βM
vu]t is the normalized importance of the metapath instance M(v, u) on the t-th

attention head.
After aggregating the information of the nodes within each metapath at the local ag-

gregation layer, the semantic information of all metapaths is combined using the global
aggregation layer. Note that different metapaths have different importance in the het-
erogeneous graph; thus, the attention mechanism is used to assign different weights to
different metapaths for aggregation.

The feature vector of node v under a particular metapath is fused using the attention
mechanism as follows.

IMi
= gTa ∗ 1

|Va|
∑

v∈Va
tanh(Qa ∗ hMi

v + la)

αMi
=

exp(IMi
)∑

M∈Pa
exp(IM )

hPa
v =

∑
M∈Pa

αM ∗ hMv

(8)

Here, |Va| is the number of potential vector sets of node type a, Qa and Ia are learnable
parameters, gTa is a parameterized attention vector of node type a, and αMi

is the relative
importance of metapath Mi to the node type a.

Finally, linear transformation is employed to embed and project the nodes into the
vector space with the required output dimension.

hv = σ(Wk ∗ hPa
v ) (9)

Here, σ(•) is the activation function, and Wk is the weight matrix. This projec can be
considered a linear classifier for node classification.

3.4. Loss function. After local and global aggregation, the final node representation
that can be used in different downstream tasks is obtained. Under the guidance of a few
labeled nodes, the model weight is optimized by minimizing the cross entropy through
backpropagation and gradient descent in order to learn meaningful node embeddings in
the heterogeneous graph. The cross-entropy loss formula is given as follows:

L = −
∑
v∈VL

G∑
g=1

Ov[g] ∗ log hv[g] (10)

where VL is the set of nodes with labels, G is the number of classes, Ov is the single-hot
label vector of node v, and hv is the predicted probability vector of node v.

Table 1. Experimental datasets

Dataset Number of node Number of edge Metapath

IMDB
movie(M):4278
director(D):2081
actor(A):5257

M-D:4278
M-A:12828

MDM
MAM

DBLP
author(A):4057
paper(P):14328
term(T):7723

A-P:19645
P-T:85810
P-V:14328

APA
APTPA
APVPA
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4. Experiments. The effectiveness of the proposed MANS-GNN model for heteroge-
neous graph embedding was evaluated experimentally.

Figure 2. Network patterns for two heterogeneous graph datasets: (a)
IMDB and (b) DBLP.

4.1. Datasets. The IMDB and DBLP heterogeneous graph datasets were used to per-
form node classification and node clustering experiments to evaluate the performance of
the proposed MANS-GNN model, which was compared to existing graph embedding mod-
els. Table 1 shows the statistical information of these two datasets, and Figure 2 shows
the network patterns of these two datasets. IMDB is an online database of movies and
TV shows, including information about actors, production teams, and plot summaries.
We used a subset of IMDB collected from the web that has been preprocessed with data
and contains 4278 films, 2081 directors, and 5257 actors. In the experiments, the film
nodes were divided into training, validation, and test sets of 400 (9.35%), 400 (9.35%),
and 3478 (81.30%) nodes, respectively. DBLP is a computer science bibliography website.
In these experiments, we used a subset of the DBLP database containing 4057 authors,
14328 papers, 7723 terms, and 20 publication sites In the experiments, the author nodes
were divided into training, validation, and test sets with 400 (9.86%), 400 (9.86%), and
3257 (80.28%) nodes, respectively.

4.2. Baseline. The proposed MANS-GNN model was compared to different types of
graph embedding models, including the traditional heterogeneous graph embedding model,
the homogeneous GNN model, and the heterogeneous GNN model. The baseline models
considered in our evaluations are summarized as follows.

Metapath2vec is the traditional heterogeneous graph embedding model. This model is
based on a random walker of metapaths, and the skip-gram model is then used to generate
node embeddings. Note that we selected the most efficient metapath by considering test
performance.

The GCN is a homogeneous GNN model. It is a semi-supervised graph convolutional
network. We tested GCN on metapath-based homogeneous graphs, and we report the
best performance.

The GAT is a homogeneous GNN model. It is also a semi-supervised graph convolu-
tional network. We tested GAT on metapath-based homogeneous graphs, and we report
the best performance.

The HAN is a heterogeneous GNN model. Learn metapath specific node embeddings
from different metapath-based isomorphic graphs. This model employs a two-layer atten-
tion mechanism to aggregate them into vector embeddings representing each node in the
network.
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4.3. Parameter settings. For the proposed MANS-GNN models, we set the dropout
rate to 0.005, the training, validation, and test sets were split at the same proportions,
and the ADAM optimizer was employed, where the learning rate was set to 0.001, and
the weight decay (i.e., the L2 penalty) was set to 0.001. We trained these models for 100
cycles and stopped early with 20 patience. For the GAT, HAN, and MANS-GNN models,
the number of attentional heads was set to eight. For the HAN and MANS-GNN models,
the dimension of the attention vector in the metapath inter-aggregation was set to 128.
In addition, the RL action step was set to 0.02 in the proposed MANS-GNN model.For
the traditional heterogeneous graph embedding model Metapath2vec, we set the window
size to five, the step size to 100, the number of steps per node to 40, and the number of
negative samples to five.To facilitate a fair comparison, the embedding dimension of all
models was set to 64.

Table 2. Experimental results (%) of node classification task on IMDB
and DBLP datasets.

Dataset Metric Train % Metapath2vec GCN GAT HAN MANS-GNN

IMDB

Macro-F1

20% 48.14 49.93 50.73 53.69 54.34
40% 49.78 50.41 51.51 53.70 56.14
60% 50.58 51.63 52.46 54.01 56.90
80% 50.14 51.81 52.33 54.12 57.27

Micro-F1

20% 49.15 49.78 50.64 55.21 54.50
40% 50.99 50.71 51.67 55.17 56.41
60% 51.81 51.29 52.23 55.37 57.22
80% 51.53 51.61 52.77 55.53 57.66

DBLP

Macro-F1

20% 85.47 85.33 88.35 90.54 93.10
40% 86.78 86.15 89.56 91.34 93.35
60% 88.10 87.26 89.96 92.15 93.70
80% 88.69 88.56 90.55 92.76 93.56

Micro-F1

20% 86.59 86.03 89.22 91.33 93.60
40% 87.15 86.54 90.15 91.89 93.81
60% 88.23 87.69 90.69 92.56 94.14
80% 89.56 88.57 91.29 93.15 94.00

4.4. Node classification. We first performed a node classification task to evaluate the
effectiveness of the proposed model. We feed the embeddings of labeled nodes generated
by each model to a linear support vector machine (SVM) classifier with varying training
proportions. Similarly, the training/test split of the linear support vector machine is the
same as that of the embedding model. The evaluation metrics used in these experiments
were the Macro-F1 and Micro-F1. The node classification results are shown in Table 2.

The results demonstrate that the proposed MANS-GNN outperformed the baseline
models under different training scales. We found that the heterogeneous GNN model
obtained better results, which indicates that the GNN structure can make better use
of heterogeneous node features and improve the embedding performance. The proposed
MANS-GNN outperformed the best baseline (i.e., HAN), which indicates that metapath
instances contain richer information than the metapath-based neighbor instances. The
performance of the proposed MANS-GNN improved with increasing proportion at dif-
ferent training set proportion. On the DBLP dataset, the proposed MANS-GNN model
outperformed the strongest baseline by 1–2%.
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Table 3. Experimental results (%) on IMDB and DBLP datasets for node
clustering task.

Dataset Metric Metapath2vec GCN GAT HAN MANS-GNN

IMDB
NMI 3.95 5.54 5.11 8.67 12.23
ARI 4.33 5.66 5.53 7.65 11.75

DBLP
NMI 72.15 72.15 72.33 76.79 80.78
ARI 76.54 73.46 72.59 82.37 85.89

4.5. Node clustering. A node clustering experiment was also conducted to evaluate
the effectiveness of the proposed MANS-GNN model. Here, the embeddings of the tagged
nodes generated by each learning model were input to the k-means clustering algorithm.
The number of clusters in k-means was equal to the number of classes in each dataset.
In addition, the normalized mutual information (NMI) and adjusted Rand index (ARI)
evaluation metrics were used to evaluate the clustering results. In this experiment, k-
means clustering was repeated 10 times for each run of the embedding model, and each
embedding model was tested 10 times. The node clustering results are shown in Table 3.

The results demonstrate that the proposed MANS-GNN model outperformed all of
the compared baseline models in the node clustering task. The experimental results show
that the heterogeneous graph models MANSGNN and HAN outperform the homogeneous
graph complex models GCN and GAT on both datasets. MANS-GNN outperforms HAN
because MANS-GNN uses an RL-based similarity-aware neighbourhood selector to choose
the most similar neighbours of the target nodes under certain relationships, which avoids
over-assimilation of different types of node embeddings. It follows that the heteroge-
neous model has an advantage over the homogeneous model in terms of node clustering.
The use of an RL-based similarity-aware neighbourhood selector can also improve model
performance.

Table 4. Quantitative results of ablation studies (%)

Variant
IMDB DBLP
Macro-F1 Micro-F1 NMI ARI Macro-F1 Micro-F1 NMI ARI

MANS −GNNnb 54.08 54.35 9.15 7.19 91.33 91.95 75.74 81.81
MANS −GNNavg 55.09 55.03 12.28 10.53 92.90 93.45 79.03 84.43
MANS −GNNlinear 55.98 55.06 11.62 9.47 93.39 93.82 77.35 82.09
MANS −GNNnorl 55.88 55.75 11.43 9.54 92.85 93.38 79.62 84.75
MANS −GNNrot 56.16 56.45 12.23 11.75 93.43 93.89 80.78 85.89

4.6. Ablation study. In order to verify the validity of each component of the proposed
model, additional experiments were conducted using different variants of the MANS-
GNN model. The ablation study results are shown in Table 4. Here, MANS − GNNrot

represents the version of proposed model used for comparison with the baselines in Tables 2
and 3. MANS−GNNnb only considers the metapath-based neighbors, MANS−GNNavg

used the mean metapath instance encoder, and MANS − GNNlinear used the linear
element path instance encoder. Finally, MANS − GNNnorl is the model for removing
neighborhood selectors. Note that all other settings were same for these MANS-GNN
variants.

A comparison of the MANS − GNNnb model to the MANS − GNNavg, MANS −
GNNlinear, and MANS − GNNrot model revealed that aggregating metapath instances
rather than metapath-based neighbors improved performance, which validates the efficacy
of the intra-metapath aggregation process. The results obtained by the MANS−GNNavg,
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MANS−GNNlinear, and MANS−GNNrot models demonstrate that the relational rotary
encoders help improve the performance of the proposed MANS-GNN model. We also
found that the MANS −GNNrot model exhibited a clear advantage over the MANS −
GNNnorl model, which indicates that including the neighborhood selector helps improve
performance.

Figure 3. Visualization of node clustering in DBLP dataset.

4.7. Visualization. To facilitate a more intuitive comparison, we visualized the learned
embeddings in two-dimensional space. This method represents the distribution of nodes
in a low-dimensional space. We learned the node embeddings for each model on the DBLP
dataset, and the nodes embedded in the DBLP dataset were visualized using the t-SNE.
For ease of observation, this paper take all the test sample nodes. The results are shown
in Figure 3.

As shown in Figure 3, Metapath2vec is poorly expressed and has difficulty distinguishing
the distribution of nodes. The baseline methods, e.g., the GAT and GCN models, can
essentially distinguish between the different classes of nodes; however, there are no clear
boundaries, and a significant number of different nodes are mixed together. In addition,
we found that the proposed MANS-GNN model outperformed the GAT and GCN models.

Finally, the proposed MANS-GNN model clearly distinguished the different classes and
exhibits clear boundaries. These results further demonstrate the effectiveness of adding
the RL-based neighborhood selector for similarity perception.
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5. Conclusion. In this paper, we have proposed the MANS-GNN model to address sev-
eral limitations in existing metapath-based embedding methods, i.e., (1) node features
are not utilized; (2) excessive assimilation of embedding occurs between different types
of nodes; (3) intermediate nodes on the metapath are not considered; and (4) only single
metapaths are considered. The proposed MANS-GNN model solves these problems by
applying node mapping, an RL-based similarity-aware neighborhood selector, and local
aggregation and global aggregation to generate node embeddings. The RL-based neigh-
borhood selector can adaptively filter and automatically select the best number of similar
neighbors to avoid high data annotation costs. In addition, a metapath instance encoder is
employed to extract the deep-rooted structural and semantic information in the metapath
instance.

The proposed MANS-GNN model was evaluated experimentally on node classification
and node clustering tasks using the IMDB and DBLP datasets. We found that the
proposed model outperformed the compared baseline models. In addition, ablation studies
have demonstrated that the proposed MANS-GNN model’s metapath instance encoder
and RL-based similarity perception neighborhood selector can improve performance.

The reinforcement learning algorithms currently in use define relationships manually.
In the future, we therefore aim to use multi-negotiation reinforcement learning algorithms
to adaptively identify meaningful relationships on nodes, thus enabling automatic repre-
sentation learning of heterogeneous data. In addition, to investigate how our model can
be applied to other tasks such as health insurance fraud detection, recommender systems,
and so on.
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