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Abstract. With the continuous updating and development of deep learning theory, the
research of hyperspectral image classification has entered a new era. The emergence
of convolutional neural networks has greatly improved the representation and recognition
capabilities of hyperspectral images. The problem of misclassification arising from the un-
derutilization of the spatial-spectrum features and the complexity of the high-dimensional
spectral space is still a difficult area for accurate classification. To solve the above prob-
lems, we propose a novel network model. First, according to the high-dimensional char-
acteristics of hyperspectral images, the channel attention mechanism can be used in the
network to better extract spatial-spectral features. Secondly, a convolutional layer that
adapts to the edges of irregular object contours in the image is incorporated to capture
more complete object features. Finally, experiments are performed using authoritative
datasets such as Pavia University, Indian Pines, and KSC, and compared with other
current state-of-the-art network models. The results show that our network can provide
more accurate classification results and is more robust.
Keywords: Hyperspectral image classification; Convolutional network; Attention mech-
anism

1. Introduction. Hyperspectral imagery (HSI) is a three-dimensional data block con-
sisting of multiple continuous spectra taken at high altitudes by specific sensing devices,
and the data features in HSI can accurately reflect the land properties of the near-surface
layer. Based on the acquired hyperspectral images, the objects in the images are precisely
analyzed, which can provide effective data support for several fields, such as agricultural
inspection [1], smart cities [2] and geological surveys [3], etc. The HSI classification task
is a fundamental task among the many tasks of HSI, requiring extremely high accuracy
of the classification results of images to provide accurate data support for other fields.
However, there are some problems in the HSI classification task, such as the high di-
mensionality of a small number of samples leads to the Hughes phenomenon, the ”same
subject with different spectra” phenomenon makes the classification task more difficult,
and the small sample size also makes the classification task difficult. Therefore, it is ex-
tremely difficult to classify them efficiently and accurately. This task has been studied in
academia and industry for many years.

Machine learning includes classical algorithms such as random forest algorithms, regres-
sion trees, and SVMs, and is used in a wide variety of fields, such as options trading [4],
capital structure analysis [5], and transport pattern detection [6]. The machine learning
approach also shows excellent performance in processing hyperspectral image classifica-
tion tasks. Wang et al. [7] used feature transformation methods such as PCA and ICA to
reduce the dimensionality of the original image, followed by a random forest algorithm to
finely classify the ground objects in the image. Shape adaptive reconstruction was used
for preprocessing in the work of Li et al. [8], each pixel in the image was preprocessed
to make full use of spatial-spectrum information. Wang and Zeng [9] considered that the
traditional hyperspectral remote sensing image classification methods only use the spec-
trum features of the image and ignore the texture features in the image, so they proposed
to use the above two features together and extract the most prominent texture features
using the grayscale contribution matrix to form texture-spectrum features, which greatly
improves the efficiency of feature usage in HSI. To deal with the linear indistinguishability
problem in hyperspectral image classification, a KCRC-based packing algorithm was dis-
cussed by Su and Hongjun et al. [10], using bootstrapping to increase the diversity of the
underlying classifiers to improve the classification performance and generalization ability.
Su et al. [11] proposed a novel RCR method based on band weighting with superpixel
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segmentation for HSI classification, which can effectively improve the classification accu-
racy by using the L2 norm of band coefficients and global average coefficients to ensure
the similarity, while the variance determines the specific correlation weights of each band.

An M-3DCNNAttention-based HSI classification method was introduced in the work
of Sun and Kun [12], where an expanded dataset is used to highlight spectral features
in image features in a CNN structure. To alleviate the problem of small samples in
classification tasks, Xue et al. [13] used a minimized fully convolutional network and a
semi-supervised loss function for pixel-level classification of hyperspectral images. A semi-
supervised spatial-spectrum method based on 3D Gabor and co-selective self-training are
discussed by Pan et al. [14]. This method is used for HSI classification to make full use
of spatial-spectrum features. Regarding the overfitting problem in training, it is solved in
the 3D asymmetric concept network AINet [15]. A lightweight convolution operator was
used in CNN networks by Lv et al. [16] to optimize the high computational cost of the
network during training and the high redundancy of the convolution kernel. In HSI, data
features are unique representations of objects, and therefore, the recognition of image ob-
jects is highly dependent on feature data. However, in feature data, phenomena such as
data redundancy and data insufficiency can occur from time to time. To overcome these
challenges, an integrated convolutional neural network (C-CNN) was proposed by Chang
et al. [17] . This approach uses a 3DCNN to represent spatial-spectral features, a 2DCNN
to learn abstract spatial features, and then a dimensionality reduction algorithm to reduce
the redundancy of the spectral bands. A high-level semantic perspective to learn spatial-
spectrum features was used in the work of Xu et al. [18] to obtain two feature descriptions
of the same data from different perspectives, which can better utilize the feature infor-
mation of spectrum images. To further capture the spatial-spectrum information in HSI,
Guo et al. [19] proposed a spatial feature obtained using CNN-enhanced multilevel Haar
combined with Haar wavelet decomposition features for better information interaction.

In this paper, we propose a new network model to relieve the impact of underuti-
lized edge information and spatial-spectrum information on HSI classification results.
The model uses convolutional neural networks in a deep learning approach to effectively
classified for the complex curvilinear edge information of objects in HSI. The main con-
tributions of this paper are as follows.

(1) In our network, convolutional layers that can adapt to object edge contours in
images are used in the network, i.e., deformation convolution. During the convolution
process, more complete object information is extracted based on the offset information of
the target object pixels.

(2) To use the high-dimensional information in HSI more effectively, the channel at-
tention mechanism is used in our network. The attention mechanism targets the multi-
channel information of HSI and can accurately extract the spectral features.

(3) Extensive experiments show that adding deformable convolution and channel at-
tention mechanisms to the network can effectively improve the classification of HSI. After
deformable convolution, more complete object features are obtained. The feature map
of the target object is salient through the channel attention mechanism. It provides a
better feature map for the subsequent feature extraction network part and improves the
classification accuracy of the network.

2. Related work. A convolutional neural network (CNN) is a major approach for pro-
cessing images in deep learning, and its main structure includes an input layer, con-
volutional layer, pooling layer, fully connected layer, and output layer. It has better
classification performance in the field of hyperspectral image classification compared to
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the traditional approaches [20]. The convolution layer is the core part of CNN, which is
responsible for extracting feature information from images.

2D convolution was discussed in Zhang’s work [21], targeting specific regions in the
image for feature extraction, effectively synthesizing the features of objects in the regions,
and improving the classification of the network. MDCNN was proposed by Kumar et
al. [22], which uses mathematical morphology in CNN not only to describe the spatial
features of HSI directly but also significantly reduce the computational workload. Ren et
al. composed MSAC by combining superpixels with conventional convolution [23], which
increases the flexibility of the convolution kernel during convolution and fully suppresses
the effect of edge noise. To increase the usage of different scale features in the network,
FBMB was proposed by Shi et al. [24] to use multiple branching multiscale modules in
the network to fuse features of different network depths. Wang and Fan [25] proposed
the densely connected network (MSDAN), a model that enhances the classification perfor-
mance and mitigates the generation of overfitting and gradient disappearance phenomena.

Based on two principles of pixel-level classification and hyperspectral image spatial
information feature focus mechanism (SDPCA), a scaled dot product center focus mech-
anism was designed by Liu et al. [26] for extracting spatial-spectrum information similar
to the center pixel and the center pixel in HSI. However, in CNNs, a deeper and broader
architecture and a large amount of training data often need to be designed to obtain good
performance, and the over-reliance on forwarding connectivity leads to no efficient use of
data information. To overcome these drawbacks, Pande and Banerjee [27] presented a
self-looping network scheme in which each layer in the self-looping unit has forward and
backward connections, and each layer has inputs and outputs from other layers, maxi-
mizing information exchange and significantly improving the classification performance of
the network. A residual attention network (SpaAG-RAN) for guiding spatial attention in
HSI classification is discussed by Li and Wang [28], which utilizes spectrum similarity to
capture relevant spatial regions and maximizes the promotion of classification accuracy.
ConvNeXt is the latest CNN model designed by Liu et al. [29]. It has a faster inference
speed as well as a higher accuracy rate. However, the huge number of parameters is a
prominent problem of this network.

3. Methodology. Based on the characteristics of multiple channels in HSI, we design
a neural network model. The model draws on ShuffleNetV2, a lightweight network with
high classification accuracy, and optimizes it. The details are as follows: (1) To address
the problem of low classification accuracy caused by curved edges of objects in hyper-
spectral images, the normal convolution in the shallow part of the network is replaced
by deformable convolution. According to the adaptive object shape of deformable con-
volution, the classification effect of object edges is effectively improved. (2) Due to the
complex spatial structure of object edges, we believe that more attention to spectrum
features is needed. The spectrum features in the image are extracted using the channel
attention mechanism as a way to compensate for the disadvantage of using spatial features
prone to classification errors. This is shown in Figure 1.

3.1. Backbone network. ShuffleNetV2 [30] is a fast classification network model with a
particularly lightweight feature. However, in the hyperspectral image classification task,
classification results did not achieve comparatively excellent results. However, the classi-
fication results were not particularly outstanding in the hyperspectral image classification
task. Based on this issue, ShuffleNetV2 was optimized and improved for the characteristics
of HSI in our work.
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Figure 1. Network structure

The Stage structure is used as the main component of ShuffleNetV2, as shown in Figure
2. Figure (B) contains a 3×3 convolutional stage with a convolutional kernel step size
of 1, which can downsample the input feature map. The convolutional layer in figure
(A) is all convolutional kernels with step size 1, which can extract more detailed feature
information and enhance the characterization ability, and has a separate branch to realize
the fusion of the input initial feature map and the processed feature map. At the end of
the network, a 1×1 convolution kernel improves the interaction between channels in the
feature map, and this convolution can be well used in hyperspectral image classification
tasks. However, the process of convolution consumes huge computational resources, so
Channel shuffle is used instead of 1×1 convolution to break up the channels and enhance
the overall generalization ability of the network.

As in Figure 1, we have simply divided the network into 4 parts in our network. The
first part (Base1) includes deformable convolution. The second part (Base2) is the Max-
Pool layer. The third part (Base3) includes S1, S2, and S3 modules. The fourth part
(Base4) includes the 1×1 convolution of the deeper layers of the network and the final
classification module. In base 1, the original convolution is replaced by deformable convo-
lution. Deformable convolution allows adaptive convolution in shallow networks based on
object boundaries in the most original image, and the resulting feature maps contain more
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Figure 2. STAGE STRUCTURE

complete information about object features. And between Base1 and Base2, the channel
attention mechanism is used in the network, which can efficiently process and extract
spatial-spectrum features based on the feature maps outputted from the previous layer of
the network. After that, the feature maps outputted by Base2 are further processed by
Base3, and the feature maps are input to the classification module Base4 to get the final
classification results.

3.2. Adaptive object edge convolution module. To alleviate the impact of the com-
plex curved outline of objects in HSI on the classification results, we add deformable con-
volution to the network model. Make the convolution kernel adjust itself to the shape of
the target object during the convolution process to obtain more effective feature maps.

The shape of convolutional kernels in traditional convolutional layers is square, es-
pecially the 3Ö3 convolution kernel structure, which can make better use of the GPU
operation performance. But there is also a more obvious drawback that it cannot be
adjusted well to the shape of the target in the image, which will affect the prediction
effect of the network model to a certain extent. The deformable convolution is proposed
to remedy this defect well, and the convolution kernel adds an orientation parameter to
adapt to the feature changes of the target object during the computation, as in Figure 3.

In the deformable convolutional layer used in this network, the kernel is set to 3×3 and
the stride is set to 1. It contains two conventional 3×3 convolution kernels, and the number
of channels in the first convolution kernel is 2×k2 (k=3 in 3×3 convolution, indicating the
convolution kernel size), which is used to learn the amount of offset information on the x-
axis and y-axis in the plane coordinate system for each position in the extracted perceptual
field. Because the pixel positions after adding the offset information are not integers and
cannot be corresponded to the pixels on the feature map, bilinear interpolation is used
to calculate the pixel values at these positions, and the pixel values of the interpolated
points are the weighted sum of the distances between the interpolated points and the pixel
points in the four directions adjacent to them in the original feature map. At this point,
we have completed the one-to-one correspondence between the interpolated points and
the pixel points in the feature map. Finally, a standard 3×3 convolution kernel is used for
the computation, and the resulting feature map is the one after deformable convolution
processing. The feature map contains richer and more complete information about the
object.

To process the original image with deformable convolution first in the network, de-
formable convolution is used in Base1 of the network. Based on the object contour
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information in the original image, a deformable convolution operation is performed to
greatly preserve the original information.

3.3. Channel attention mechanism. The attention mechanism in computer vision is
inspired by the human visual attention mechanism and is applied in the field. It simply
means that more attentional resources are devoted to a target object in a region, and
therefore more detailed information can be obtained for that target object, which helps
to optimize the prediction results.

SENet [31] is an attention mechanism that was first proposed to focus on important
object features by capturing the relationship between channels in the feature map. How-
ever, the dimensionality reduction of channels in shallow networks makes a lot of feature
information lost, which affects the final network results. Therefore, an ECA [32] module
that focuses more on channel information is proposed and is also the attention mecha-
nism used in this paper. The ECA module is based on SENet, avoiding the downscaling
of the number of channels and maintaining some cross-channel interaction capability. In
our network, the ECA attention mechanism is used to better process the image feature
information for the characteristics of the HSI multi-channel.

In this ECA attention module, the feature map is first downsampled using an adaptive
pooling function. Afterward, a convolutional layer with a kernel size of 1×1 is used to
maintain and optimize the connections to other channels. In this process, the number of
input and output channels of the convolution kernel is set to be the same, and the number
of channels is not reduced, so that the object feature information in the image is retained
to the maximum extent. Then the sigmoid activation function is used to increase the
nonlinearity of the output data.

4. Experimental results and analysis. In this section, we introduce the dataset and
the experimental environment used in this experiment, followed by the selection of the
loss function and the optimizer and the setting of the hyperparameters of the network in
the experiment. The network implementation is based on the Win10 operating system
and utilizes the PyTorch 1.8 deep learning framework, with an RTX 8000 (48GB) GPU
used to train the network. To reflect the classification effectiveness of the network, current
advanced classification models are used in experiments for comparison. Finally, To ensure
the stability of the experimental results, each set of experiments is repeated multiple times.
We used overall accuracy (OA), average accuracy (AA), and Kappa coefficient as measures
of experimental results.
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Figure 4. ORIGINAL, TRUE VALUE, AND CATEGORICAL
REPRESENTATION OF THE PAVIA UNIVERSITY DATASET

4.1. Hyperspectral dataset. The datasets used in the experiments are those that are
frequently used in HSI classification, namely: Pavia university, India pines, and KSC.

The Pavia University dataset is captured by the reflective-optics-spectrographic-imaging-
system (ROSIS) sensor over the University of Pavia in northern Italy. It is illustrated in
Figure 4. The spatial resolution of the image is 1.3 meters, and the spatial size is 610×340
pixels.The original image contains a total of 115 spectral bands, and the spectral range
is in the range of 0.43-0.86µm. However, in our experiments, some of the noise bands
were discarded and 103 spectral bands were selected as the dataset, with a total of 42776
sample data.

The India pine dataset is the first dataset taken by the airborne-visible-infrared-imager-
spectrometer (AVIRIS) sensor in northwestern Indiana, USA. It is illustrated in Figure 5.
The spatial resolution of the image is 20 m, the size is 145×145 pixels, and the spectral
range of the image obtained is 0.4-2.5µm. There are 224 spectral bands, but some of
the spectra are contaminated by noise such as water vapor, so 204 spectral bands are
used as data sets for experimental analysis. The data set contains a total of 16 different
categories, but from a statistical point of view, we discard 8 small categories and select 8
major categories for experiments [33, 34], a total of 8504 sample data.

Woods
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Corn-notill
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Figure 5. ORIGINAL, TRUE VALUE AND CATEGORICAL
REPRESENTATION OF THE INDIAN PINES DATASET

The KSC dataset was taken in Florida in 1996 by the airborne-visible-infrared-imager-
spectrometer (AVIRIS) sensor. It is illustrated in Figure 6. The spatial resolution of the
image is 18 meters, and the spatial size is 512×614. The image consists of 176 bands and
contains 13 categories.
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4.2. Experiment 1. Convolutional neural networks are data-driven model networks that
require a large amount of data to update and improve the weights of the network during
the training process. We add Gaussian noise and level flipping to the original training set
and double the number of samples to the original training set, which can better improve
the generalization ability of the network.

For Pavia University, we randomly selected 200 samples per class for training and other
samples for testing. And the same operation was taken for the Indian Pines dataset. In
the KSC dataset, due to the small total number of samples, we randomly selected 50
samples from each class as the training set of the network, and the remaining samples
constitute the test set. In the experiments, Adam was used as the optimization in the
network, the learning rate was set to 0.001, Epoch was set to 500 for the experiments,
and Batch size was set to 512. For the loss computation, CrossEntropy Loss is used in
our experiments, for it is widely used in classification tasks. To better fit the local feature
extraction network, we extracted a 25×25 square local image centered on the target pixel
as the input to the network.

To know how well our proposed network model classifies, we ran other networks in the
experiment to compare the results. In the comparison experiments, the parameter config-
uration was set to the same to ensure the same experimental environment for all networks.
The comparison network models used in the experiments include ShufflenetV2 [30], Hy-
bridSN [35], DR-CNN [24], TBTA-D2Net [36], and SE-CNN [37]. HybridSN uses a com-
bined 2D-3D convolution scheme to make fuller use of the spectral features of the image.
DR-CNN performs spatial feature extraction for six regions of the spatial location where
a pixel point is located, and captures spatial features more finely. TBTA-D2Net adds
the Dense2Net bottleneck block and attention mechanism to the triple-branch ternary-
attention mechanism to improve the effective classification accuracy of the TBTA-D2Net
algorithm. SE-CNN combines squeezing and excitation networks with convolutional neu-
ral networks to increase its performance in extracting features and classifying HSI.

In Table 1, the classification accuracy of our proposed network is above 98% in all nine
categories of the Pavia University dataset, and the majority of them remain above 99%
with high stability. The overall classification accuracy of the dataset is 99.51%, which
is 0.69 percentage points higher than the classification accuracy of the second-place DR-
CNN, with a significant advantage. And in the Indian Pines dataset shown in Table 2, our
network achieved an overall classification accuracy of 97.88%, all of which exceeded the
other three network models. The accuracy in five categories is optimal, and the accuracy
in four categories is 100%, which has a relatively good classification effect. The network
also achieved the highest accuracy of 98.06% in the KSC dataset shown in Table 3, and
both AA and Kappa coefficients exceeded those of the other comparison networks.

According to the above analysis, our network model has a good classification effect and
is robust. The inclusion of deformable convolution in the network can be well adapted
for the edges of objects in hyperspectral images. In the deformable convolution, the
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Table 1. CLASSIFICATION ACCURACY ON THE PAVIA
UNIVERSITY DATASET

Class ShufflenetV2 TBTA-D2Net SE-CNN HybridSN DR-CNN Ours
1 93.59 99.73 98.56 97.59 99.47 99.22
2 99.97 99.96 99.97 99.57 99.73 99.86
3 91.25 97.88 98.53 99.51 95.65 98.43
4 99.87 87.81 93.70 96.99 97.86 99.28
5 100 100 99.93 99.06 99.39 99.41
6 91.62 98.07 99.90 99.58 99.01 99.92
7 99.22 98.88 99.47 71.04 98.43 98.95
8 98.84 99.37 99.70 95.05 95.12 98.85
9 98.85 96.51 97.76 93.16 99.20 99.05

OA(%) 97.26 98.45 98.85 97.30 98.82 99.51
AA(%) 95.82 99.13 99.39 94.86 98.84 99.17

Kappa×100 96.38 97.96 98.48 96.42 98.42 98.35

Table 2. CLASSIFICATION ACCURACY ON THE INDIAN PINE
DATASET

Class ShufflenetV2 TBTA-D2Net SE-CNN HybridSN DR-CNN Ours
1 96.91 98.92 96.84 97.97 91.65 92.55
2 99.72 88.94 94.75 88.99 92.52 100
3 99.79 95.04 99.79 97.23 98.77 100
4 99.79 100 100 99.30 100 100
5 91.92 98.74 97.76 99.29 99.89 100
6 92.73 98.28 97.93 98.51 100 98.05
7 96.23 98.96 96.15 99.14 97.35 99.16
8 100 100 99.61 99.46 99.68 98.98

OA(%) 96.01 97.62 97.78 97.63 97.37 97.88
AA(%) 95.70 97.81 97.58 97.15 97.95 98.16

Kappa×100 95.19 97.15 97.32 97.43 96.84 97.56

convolution kernel can be automatically adjusted according to the offset information of the
object pixels to fit the contour of the object to the maximum extent. At the same time, the
feature information of the object is obtained to the maximum extent in the receptive field.
Based on the visualized images, it can be seen that there is a significant improvement in
the classification of object contour edges. HSI is a high-dimensional data image, its multi-
channel is one of its distinctive features. In this article, the use of the channel attention
mechanism greatly enhances the information interaction between different channels in
the image and improves the efficiency of using spectral features. Therefore, it can be
optimized for some misclassification cases. And the channel attention mechanism in the
network can be used for the characteristics of HSI with multiple channels. The results
of the use are reflected in the visualized images, and there is a significant improvement
in the misclassification of objects within the images.The visualized images are shown in
Figures 7, 8 and 9.
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Table 3. CLASSIFICATION ACCURACY ON THE KSC DATASET

Class ShufflenetV2 TBTA-D2Net SE-CNN HybridSN DR-CNN Ours
1 95.84 97.44 99.48 100 100 99.61
2 89.92 95.51 97.01 97.10 94.42 95.22
3 100 99.61 98.81 98.05 95.85 93.73
4 83.64 95.45 93.90 96.86 96.09 95.85
5 95.78 98.10 98.73 88.95 90.00 99.29
6 97.54 98.23 97.41 98.25 100 99.10
7 100 99.04 100 93.75 87.50 100
8 96.40 97.47 98.84 96.41 98.40 97.70
9 99.43 99.81 100 99.05 100 99.62
10 97.96 95.63 96.50 96.79 98.72 98.28
11 99.76 99.52 99.52 100 100 99.76
12 91.54 95.02 93.54 97.16 96.22 95.59
13 99.78 99.78 99.46 99.57 98.72 99.67

OA(%) 96.35 98.06 98.14 98.06 97.93 98.25
AA(%) 93.85 97.00 97.20 97.30 97.09 97.34

Kappa×100 95.94 97.04 97.93 97.84 97.69 98.06

(2)ShuffleNetV2(1)Label

(7)Ours

(3)TBTA-D2Net (4)SE-CNN

(5)HybridSN (6)DR-CNN

Figure 7. THE CLASSIFICATION MAPS ON THE PAVIA
UNIVERSITY DATASET

4.3. Experiment 2. The data of the ablation experiments for the whole network are
recorded in Table 4. The main ones include ShuffleNetV2, using the ECA attention mech-
anism in the backbone network (i.e., Using ECA), the backbone network using deformable
convolutional modules at the base1 (i.e., Using DConv in base1), and our proposed net-
work. The OA improves by 0.89%, 1.64%, and 1.33% on the three data sets for the
backbone network with the ECA attention mechanism added compared to the backbone
network. The backbone network with the addition of the deformable convolution module
improves OA by 0.9%, 1.71%, and 0.71% on the three data sets, respectively, compared
to the backbone network. In this stage, we can conclude that using the attention mecha-
nism and the deformable convolutional module to the backbone network respectively can
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(1)Label (2)ShuffleNetV2 (3)TBTA-D2Net (4)SE-CNN

(7)Ours(6)DR-CNN(5)HybridSN

Figure 8. THE CLASSIFICATION MAPS ON THE INDIAN PINE
DATASET

(1)Label (2)ShuffleNetV2 (3)TBTA-D2Net (4)SE-CNN

(6)DR-CNN(5)HybridSN (7)Ours

Figure 9. THE CLASSIFICATION MAPS ON THE KSC DATASET

improve the classification effect of the network to different degrees. In summary, using
the ECA attention mechanism and deformable convolution in the backbone network can
improve the classification effect of the network.

In the ECA attention mechanism, the size of the convolutional kernel affects the size
of the receptive field, which affects the overall network classification effect. Therefore
it is particularly important to find the most suitable convolutional kernel size for the
network, and we performed ablation experiments based on different convolution kernel
sizes on the datasets of Pavia University, Indian Pine, and KSC. In the experiments, the
size of convolution kernel were respectively set to 1, 3, 5, 7, and 9. As can be known from
Figures 10, 11, and 12, the OA keeps increasing when the convolution kernel size is 1 and
3 and reaches its best when it is 3. However, the OA keeps decreasing when taking 5, 7,
and 9. Therefore, it can be concluded that the best classification of the whole network is
achieved when the convolution kernel is taken as 3.
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Table 4. EXPERIMENTAL RESULTS OF THE NETWORK USING
DIFFERENT MODULES ON THREE DATASETS

Index ShuffleNetV2 Using ECA Using DConv in base1 Ours

OA(%) 97.26 98.15 98.16 99.51
Pavia university AA(%) 95.82 95.95 97.75 99.17

Kappa×100 96.38 97.55 97.57 99.35
OA(%) 96.01 97.65 97.72 97.88

Indian pines AA(%) 95.70 97.28 97.94 98.16
Kappa×100 95.19 97.17 97.26 97.46

OA(%) 96.35 97.68 97.06 98.25
KSC AA(%) 93.85 96.52 95.46 97.34

Kappa×100 95.94 97.41 96.73 98.06

Figure 11. EXPERIMENTAL RESULTS OF CONVOLUTION
KERNELS OF DIFFERENT SIZES IN CEA ON THE INDIAN PINE

DATASET

Figure 10. EXPERIMENTAL RESULTS OF CONVOLUTION
KERNELS OF DIFFERENT SIZES IN CEA ON THE PAVIA

UNIVERSITY DATASET

5. Conclusions. We propose a network model that effectively relieves the problem of
error-prone object edge classification in hyperspectral images. The model uses the ECA
channel attention mechanism for feature extraction of different channels of hyperspectral
images. And the deformable convolution module is added, which can be adjusted based on
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Figure 12. EXPERIMENTAL RESULTS OF CONVOLUTION
KERNELS OF DIFFERENT SIZES IN CEA ON THE KSC DATASET

the complex and curved characteristics of the object contours, and the final classification
results are optimized to a large extent. After comparing it with other current advanced
network models, the practicality and robustness of our designed network are proven.
However, network model training is still limited by hardware resources. Therefore, we will
optimize the network model in the next work. We will further investigate the lightweight
network model by reducing the number of parameters, provided that the network has a
good classification effect.
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