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Abstract. The Archimedes optimization algorithm (AOA) is a new meta-heuristic in-
spired by Archimedes’ principle in physics. However, when solving complex optimization
problems, there are some defects, such as slow convergence and easy falling into local
optimum. In order to further improve the convergence performance of AOA, an im-
proved Archimedes optimization algorithm (IAOA) is proposed in this paper. This paper
mainly improves the learning factor and the acceleration updating formula of individual
attributes in the exploration stage to further maintain the diversity of the population
and improve the early convergence speed of the algorithm. At the same time, this paper
proposes a mechanism to update the individual position according to the probability and
introduces an adjustment factor in the development stage to improve the development
ability of the algorithm. In addition, the simplex method mechanism is used to correct
the poor individuals and improve the convergence speed and accuracy of the algorithm.
The experimental results of the CEC2013 test set show that IAOA has significant advan-
tages in terms of convergence speed, accuracy, and stability compared with the original
AOA algorithm and the four most excellent meta-heuristics algorithms so far.
Keywords: Archimedes optimization algorithm, meta-heuristic algorithm

1. Introduction. Optimization problems exist widely in industrial design, cloud com-
puting, internet communication, and other fields, such as the lowest cost, the best pa-
rameters, and the lowest energy consumption. For example, the traditional optimization
methods, such as the gradient descent method, usually have poor robustness and require
the optimization problem to be guided. Moreover, when the optimization problem is
complex, there are many constraints and multiple extreme values, the convergence speed
and convergence accuracy can hardly meet the actual demand. The meta-heuristic al-
gorithm, proposed by simulating biological habits or physical phenomena in nature, has
good exploration and development ability because of its randomness and intelligence.
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Meta-heuristic algorithms mainly include the following three types. 1) A meta-heuristic
algorithm based on biological behavior in nature. For example, ant colony optimization
algorithm (ACO) [1], whale optimization algorithm (WOA) [2], Particle Swarm Optimiza-
tion(PSO) [3], Bat Algorithm(BA) [4], Grey Wolf Optimizer(GWO) [5], hunting search
algorithm(Hus) [6]. Many meta-heuristic algorithms of this type have been proposed in
recent years. In 2018, Cheraghalipour et al. [7] proposed the Tree Growth Algorithm
(TGA) based on the competitive behavior of trees for access to light and food, which uses
trees as individuals to search for optimal solutions through intensification and diversifica-
tion stages; In 2021, Abdollahzadeh et al. [8] proposed the African Vulture Optimization
Algorithm (AVOA) based on the foraging and navigation behavior of African vultures,
in which the weakest and hungriest vulture is identified as the worst solution and the
optimal solution is sought by approaching the strongest and fullest vulture; In 2021,
Naruei et al. [9] proposed the Wild Horse Optimization Algorithm (WHO) based on the
social life behavior of horses, which designs a wild horse optimizer to search for the op-
timal solution by using group behavior, herding, mating, dominance and leadership; 2)
A meta-heuristic algorithm based on physical phenomena in nature. For example, har-
monious search algorithm (HS) [10], vibrating particle system algorithm (VPS) [11], ray
optimization algorithm (Ray) [12], magnetic system search algorithm (MCSS) [13], Sim-
ulated Annealing Algorithm (SA) [14]. Many meta-heuristic algorithms of this type have
also been proposed in recent years. In 2020 Rahmanzadeh et al. [15] inspired by the
electron discharge mechanism, proposed the Electron Radar Search Algorithm (ERSA),
which simulates the behavior of electrons searching for the best path in a medium and
evaluates the surrounding environment through a radar mechanism to select the best way
in the next step; In 2021, Hashim et al. [16] proposed the Archimedes optimization al-
gorithm (AOA), based on Archimedes’ principle in physics, which updates the optimal
solution by simulating the behavior of an object seeking equilibrium in a liquid; 3) A
meta-heuristic algorithm based on biological evolution in nature. For example, Genetic
Algorithm (GA) [17], Difference Algorithm (DE) [18]. In 2022, Oyelade et al. proposed
the Ebola Optimization Search Algorithm (EOSA) [19], based on the transmission behav-
ior of the Ebola virus, which updates the solution through dynamic mechanisms such as
susceptibility, infection, isolation, recovery and Inpatient area.

In recent years, further improving the convergence performance of existing evolution-
ary algorithms has become a research focus in the field of evolution. The convergence
performance of the AOA algorithm is significantly better than WOA, CSA, HHO, EO,
etc., and further improving the performance of AOA has attracted the attention of some
scholars. In this context, to further improve the convergence accuracy and speed of the
AOA algorithm for solving complex optimization problems, this paper proposes an im-
proved Archimedean optimization algorithm (IAOA). The main points of innovation and
motivation are as follows:

1. To improve the exploration phase of the algorithm. The learning factor and the
acceleration updating formula of individual attributes are improved. At the same time,
a regulatory factor is introduced to enhance the learning ability of the acceleration of
individual attributes and maintain population diversity while maintaining the algorithm’s
convergence rate.

2. To improve the development phase of the algorithm. A mechanism for updating
individual positions according to probability is proposed. The present individual learns
from the current best individual to improve the convergence speed of the algorithm and
learns from the individual itself to effectively maintain population diversity. At the same
time, this phase introduces an adjustment factor to learn from both the individual itself
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and the best individual to further balance the convergence speed and population diversity
of the algorithm.

3. The simplex method correction strategy is used to correct the positions of the poor
individuals to enhance the exploration capability of the algorithm in the early stages of
evolution and to improve the convergence speed.

The test results on the CEC 2013 test set show that compared with AOA and four more
representative optimization algorithms, the IAOA proposed in this paper has significant
advantages in terms of convergence speed, accuracy, and stability.

The rest of the paper is organized as follows: Section 2 summarizes the research of
some improved algorithms and AOA algorithm. Section 3 describes the working principle
and flow of the AOA algorithm. Section 4 analyses the shortcomings of the original AOA
algorithm and further proposes an improved IAOA algorithm. Section 5 shows the simu-
lation results and analysis of the IAOA algorithm with the original AOA algorithm and
other more mainstream improved algorithms on the CEC2013 test function set. Section 6
concludes the algorithm proposed in this paper.

2. Related work. To further improve the optimization effect, researchers have done a
lot of work on the performance improvement of existing meta-heuristic algorithms. In
2010, Cheng et al. [20] proposed an improved ant colony optimization algorithm (IACO),
which uses the metropolis criterion to select the paths of ants, overcoming the imma-
ture convergence of the algorithm and improving the algorithm’s ability to find the best;
In 2014, Layeb et al. [21] proposed a new Firefly Optimization algorithm (FCO), which
is a distributed greedy metaheuristic algorithm that uses positive feedback to construct
greedy optimal solutions, avoiding premature convergence and increasing the ability of the
algorithm to jump out of the local optimum; In 2014, Jia et al. [22] proposed an improved
max-min ant system algorithm (MMAS), which incorporates a local search algorithm for
better performance; In 2018, Zhang et al. [23] proposed the DLPSO algorithm, which
selects suitable vectors from those distributed in the search space, forms a new vector
and moves towards the better vector position, improving the possibility of jumping out
of the local optimum to a greater extent; In 2018, Abdel-Basset et al. [24] proposed an
improved Levy flight-based whale optimization algorithm (ILWOA) that introduces Lévy
flights to model the behavior of whale movements, while adding a new variational phase
to improve convergence speed. Finally, using chaotic logistic mapping balances the explo-
ration and exploitation capabilities of the algorithm; In 2019, Kang et al. [25] proposed
a caching optimization method based on cloud computing for communication systems to
reduce network traffic; In 2020, Truong et al. [26] proposed a quasi-oppositional chaotic
symbiotic biological search algorithm (QOCSOS), which introduces two search strate-
gies: quasi-oppositional learning and chaotic local search to increase the search exploita-
tion capability of the algorithm and thus achieve better performance; In 2020, Zhang
et al. [27] proposed a short-term traffic flow prediction algorithm based on quantum ge-
netic algorithms-Learning vector Quantization (QGA-LVQ) neural network for predicting
changes in traffic flow; In 2022 Shaik et al. [28] proposed a Gauss mutation - Spider
monkey optimization (GM-SMO) algorithm, in which Gauss mutation increased the di-
versity of the population and enabled GM-SMO to achieve a better balance in exploration
and development; In 2023, Chen et al. [29] proposed a genetic algorithm combined with
simulated annealing to solve the Vehicle Routing Problem.

Some scholars have done some work to improve the performance of the AOA algorithm.
Desuky et al. [30] proposed an enhanced Archimedes optimization algorithm (EAOA) for
feature selection in classification, which adds a new parameter depending on the step
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size of each individual while modifying the individual positions. This improvement im-
proves the balance of AOA exploration and exploitation and improves the classification
performance of feature selection problems in real-world datasets; Houssein et al. [31] pro-
posed to introduce local escape operators (LEO) and orthogonal learning (OL) into the
Archimedes optimization algorithm to increase the local and global search capabilities of
the algorithm, respectively; Sun et al. [32] proposed an improved Archimedes optimization
algorithm. The opposition-based learning (OBL) mechanism is added to increase the di-
versity of the population and accelerate the convergence rate. Chaotic learning theory was
used to generate some new solutions, thereby increasing the algorithm’s ability to jump
out of the local optimal; Yao et al. [33] adopted chaotic logic mapping to change random
numbers in the initialization stage of the population and carried out Lévy flight operation
to update individual positions. Thus, these operations increase the optimization ability
and convergence speed of Archimedes algorithm.

It can be seen from the above research on AOA that compared with AOA, the con-
vergence speed and convergence accuracy of the improved AOA algorithm have been
improved to a certain extent. However, when solving complex problems, there is still
much room for improvement in convergence performance. Compared with the existing
improved AOA algorithm, the IAOA proposed in this paper has the following advantages:
(1) It can better maintain the diversity of the population and balance the exploration
and development stages of the algorithm, which is conducive to the further improvement
of the algorithm’s convergence accuracy, convergence speed and stability; (2) It is more
competitive in solving complex problems.

3. Archimedes optimization algorithm. In physics, Archimedes’ principle states that
when an object is immersed in a stationary fluid, it will experience a buoyant force, the
direction of which is vertically upward and the size of which is equal to the weight of
the fluid displaced by the object. Inspired by the law, Hashim et al. [16] proposed an
Archimedes optimization algorithm with the pseudo-code shown in Algorithm 1, which
mainly contains three critical operations: initialization, individual position update, and
individual attribute update, as follows.

3.1. Initialization. In AOA, each individual contains three attribute information in ad-
dition to position information: volume, density, and acceleration. Suppose the number of
individuals in the iterative population X is N and the dimensionality of the optimization
problem is D. In the initialization phase, the position x0

i =
[
x0
i,1, x

0
i,2, . . . , x

0
i,j . . . , x

0
i,D

]
,

volume vol0i =
[
vol0i,1, vol

0
i,2, . . . , vol

0
i,j . . . , vol

0
i,D

]
, density den0

i =
[
den0

i,1, den
0
i,2, . . . , den

0
i,j . . . , den

0
i,D

]
,

and acceleration acc0i =
[
acc0i,1, acc

0
i,2, . . . , acc

0
i,j . . . , acc

0
i,D

]
of each individual are randomly

generated. The details are shown in Equations (1) – (4).

X0
i,j = XL + rand1 × (XU −XL) (1)

vol0i,j = rand2 (2)

den0
i,j = rand3 (3)

acc0i,j = XL + rand4 × (XU −XL) (4)

Where XU and XL correspond to the upper and lower limits of the jth dimensional search
space in the optimization problem, respectively, and rand1, rand2, rand3, rand4 are
different random numbers uniformly distributed within [0, 1].
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Algorithm 1 AOA

Input: population size popsize, maximum number of iterations tmax, Dimensionalities
of optimizing problem Dim, fixed constants C1, C2, C3, C4

Output: The optimal solution and its fitness value
1: Initialization of parameters(popsize, tmax, Dim, C1, C2, C3, C4)
2: Generate the initial population X and the density deni, volume voli and acceleration

acci of each individual Xi in the population according to section 3.1
3: Calculate the fitness value Fitnessi of each individual Xi

4: while t <= tmax do
5: Identify the optimal individual Xbest so far in the iteration, and its corresponding

denbest, volbest and accbest
6: Use Equation (5) to calculate the migration factor
7: for each individual Xi in population X do
8: if TF <= 0.5 then
9: Individual Xi performs the exploration phase of Section 3.2 to update its

position
10: else
11: Individual Xi performs the development phase of Section 3.2 to update its

position
12: end if
13: end for
14: Update the volume voli, density deni, and acceleration acci of each individual Xi

according to section 3.3
15: t = t+ 1
16: end while
17: Output the global optimal solution and its fitness value

3.2. Update individual position. The individuals in AOA go through the exploration
and development phases to achieve self-renewal. And the migration operator, as shown in
Equation (5), realizes the transition between the two phases as follows: when TF t < 0.5,
the algorithm enters the exploration phase; Otherwise, it will enter the development phase.
The specific updating mechanism is as follows.

TF t = exp

(
t− tmax

tmax

)
(5)

Where t and tmax represent the current and maximum iteration times, respectively.
(1) exploration phase
In the exploration phase, individual xt

i is updated according to Equation (6). If it
exceeds the boundary setting in dimensionality j, xt

i,j is directly placed near the boundary.

xt+1
i = xt

i + C1× rand(1, D)× acctnorm × dt ×
(
xt
k1 − xt

i

)
(6)

Where xt
i and xt+1

i represent the positions of individuals before and after updating, re-
spectively, C1 is an artificially set constant, usually set to 2, rand(1, D) is a vector of
length D between [0, 1], xt

k1 is the position information of a randomly selected individual
K1 in the population, dt is the density factor, as shown in Equation (7), and acct+1

norm is
the normalized acceleration, as shown in Equation (8).

dt = e
tmax−t
tmax − t

tmax

(7)
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acctnorm = u× accti −min(acc)

max(acc)−min(acc)
+ l (8)

Where max(acc) and min(acc) are the maximum and minimum accelerations in the current
population, both u and l are artificially set parameters and are usually recommended to
be set to 0.9 and 0.1, or can be modified according to specific problems.

After the individual renewal, the final individuals participating in the next iteration
are determined according to Equation (9).

xt+1
i =

{
xt+1
i , if fit

(
xt+1
i

)
≤ fit (xt

i)
xt
i, else

(9)

Where fit
(
xt+1
i

)
and fit (xt

i) are the fitness values of xt+1
i and xt

i, respectively.
(2) Development phase
In the development phase, individual xt

i is updated according to Equation (10). If it
exceeds the boundary setting in dimensionality j, xt

i,j is directly placed near the boundary.
After the update, the final individuals participating in the next iteration are determined
according to Equation (9).

xt+1
i = xt

best + F × C2× rand(1, D)× acctnorm × dt ×
(
T × xt

best − xt
i

)
(10)

Where xt
best represents the position of the optimal individual in the tth generation of

iterations, C2 is artificially set constant and is usually recommended to be set to 6, dt

and acct+1
norm are calculated according to Equations (7) and (8), respectively, parameter

T is calculated according to Equation (11), F determines the updating direction of the
individual in each dimensionality and is calculated according to Equation (12).

T = C3× TF (11)

Where C3 is artificially set constant, it is usually recommended to be set to 2.

Fj =

{
+1, if p ≤ 0.5
−1, else

(12)

Where p = 2× rand−C4, C4 is artificially set constant, it is usually recommended to be
set to 0.5.

3.3. Update individual attribute information. In AOA, the density dent
i and volume

volti in individual attribute information are updated according to Equations (13) and (14),
respectively. If the density dent

i and volume volti exceed the boundary range, they will be
corrected according to Equations (15) and (16), and the acceleration accti will be updated
in different ways according to different phases of individual evolution. The details are as
follows:

When the individual performs the exploration phase, the acceleration accti is updated
according to Equation (17); When the individual performs the development phase, the
acceleration accti is updated according to Equation (18).

dent+1
i = dent

i + rand(1, D)×
(
denbest − dent

i

)
(13)

volt+1
i = volti + rand(1, D)×

(
volbest − volti

)
(14)

Where denbest and vollbest are the density and volume of the optimal individual so far in
the iteration.

dent+1
i,j =

{
1, if dent+1

i,j > 1
0, esleif dent+1

i,j < 0
(15)

volt+1
i,j =

{
1, if volt+1

i,j > 1
0, esleif volt+1

i,j < 0
(16)
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acct+1
i =

dent
k2
+ voltk2 × acctk2
dent

i × volti
(17)

Where dent
k2
, voltk2 , and acctk2 are the density, volume, and acceleration corresponding to

a randomly selected individual xt
kn

in the population.

acct+1
i =

denbest + volbest × accbest

dent+1
i × volt+1

i

(18)

Where denbest, volbest, and accbest are the density, volume, and acceleration of the optimal
individual so far in the iteration.

4. Improved Archimedes optimization algorithm(IAOA). In order to further im-
prove the convergence performance of AOA, an improved Archimedean optimization al-
gorithm (IAOA) is proposed in this section, and its pseudo-code is shown in Algorithm 2.

Algorithm 2 IAOA

Input: population size popsize, maximum number of iterations tmax, Dimensionalities
of optimizing problem Dim, fixed constants C1, C2, C3, C4

Output: The optimal solution and its fitness value
1: Initialization of parameters(popsize, tmax, Dim, C1, C2, C3, C4)
2: Generate the initial population X and the density deni, volume voli and acceleration

acci of each individual Xi in the population according to section 3.1
3: Calculate the fitness value Fitnessi of each individual Xi

4: while t <= tmax do
5: Identify the optimal individual Xbest so far in the iteration, and its corresponding

denbest, volbest and accbest
6: Use Equation (5) to calculate the migration factor
7: for each individual Xi in population X do
8: if TF <= 0.5 then
9: Individual Xi performs the improved exploration phase of section 4.1 to

update its position
10: else
11: Individual Xi performs the improved development phase of section 4.2 to

update its position
12: end if
13: end for
14: Update the volume voli, density deni, and acceleration acci of each individual Xi

according to section 3.3
15: Execute the simplex method strategy of section 4.3 to revise and improve the poor

0.2 popsize individuals
16: t = t+ 1
17: end while
18: Output the global optimal solution and its fitness value

4.1. Improved exploration phase. It can be seen from Section 3.2 that all individuals
entered the exploration phase in the early stage of AOA evolution. Generally, in the
early stage of evolution, the evolutionary algorithm can improve its convergence speed as
much as possible on the premise of ensuring sufficient exploration ability to realize the
global search in the search range. Through in-depth analysis of the individual renewal
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mode in the exploration phase of AOA shown in Equation (6), it can be found that its
individual renewal can be essentially understood as “self-cognition + learning factor ×
social learning”. Among them, the self-cognition part retains the evolutionary information
carried by individuals themselves, and the social learning part makes each individual have
certain opportunities to learn from any individual in the population, which maintains the
diversity of the population to a certain extent and is conducive to the realization of global
search. The learning factor C1 × rand(1, D) × acctnorm × dt determines the degree of
learning. A large number of experimental studies have shown that the convergence speed
of AOA needs to be further improved at the early phase of evolution. In order to avoid
excessive aggregation of individuals due to the improvement of convergence speed and
retain the ability of self-cognition and social learning to maintain population diversity,
C1 in the learning factor and accti required in the calculation of acctnorm are improved, as
shown in Equations (19) and (20).

C1 = λ× exp

(
tmax − t

tmax

)
− γ × Fitnessi

sum(Fitness) +m
(19)

Where λ and γ are generally set to 2 and 5 to achieve the best effect, or can be modified
according to the specific problem. sum(Fitness) represents the sum of the fitness values
of all individuals in the current iteration population, and m is a minimal number to ensure
that the denominator is not 0.

acct+1
i = σ ×

dent
k2
+ voltk2 × acctk2

rand× dent
i × volti

+ (1− σ)×
(
accbest − acclti

)
(20)

Where σ is the regulatory factor, as shown in Equation (21).

σ = 1−
(

t

tmax

)2

−
2 arctan

(
Fitnessi

10

)
π

(21)

In summary, the adaptive learning factor proposed in this section has the following
advantages: Firstly, it can be seen from Equation (19) that the maximum value of C1 is
2e, which can fully ensure sufficient exploration capacity for global search. Meanwhile, C1
adaptively changes according to the individual’s own fitness value and evolutionary stage.
When it is closer to the end of evolution, those individuals with better fitness value, the
larger C1, they learn from the society to a greater extent and carry out greater global
search. The population diversity will not decrease too much. Thus, the convergence speed
and population diversity of the algorithm are well balanced; Secondly, it can be seen from
Equations (20) and (21) that the learning of the optimal individual acceleration is added to
the updating formula of acceleration at the initial stage of the algorithm. Meanwhile, the
regulatory factor σ is introduced, it adaptively changes according to the individual’s own
fitness value and evolutionary stage. When the distance from the evolutionary termination
is further, those individuals with worse fitness values have the smaller σ, the degree of
individual acceleration learning from the optimal individual acceleration accbest is higher
than that from the random individual acceleration. The evolutionary information of the
optimal individual acceleration is effectively absorbed by those individuals with worse
fitness values, which can better improve the convergence speed of the algorithm in the
early stage.

4.2. Improved development phase. In the later stage of AOA evolution, all individ-
uals enter the development phase and realize self-renewal according to Equation (10). It
can be seen from formula (10) that all individuals learn from the optimal individuals so
far, which speeds up the convergence of the algorithm to a certain extent and strengthens
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the fine-grained development of the algorithm near the optimal individuals. But it will un-
doubtedly greatly reduce the diversity of the algorithm. If the optimal individual deviates
from the actual theoretical optimal position and is in a local peak, the algorithm is very
likely to fall into the local optimum due to the extreme similarity of individuals, and the
phenomenon of algorithm stagnation occurs. According to the fact that each individual
has evolved to a certain extent in the exploration stage, they have carried certain evo-
lutionary information when entering the development stage. Although this evolutionary
information is inferior to the evolutionary information of the optimal individual, they are
very likely to carry other directional search information, which is extremely important for
the development of the global optimal position. Therefore, the individual renewal method
of the development stage is proposed, as shown in Equation (22).

xt+1
i =


xt
best + F × C2× rand(1, D)× acctnorm × dt × (xt

k3 − xt
i) if rand < 0.2

β × xt
best + (1− β)× xt

i + F × C2× rand(1, D)× acctnorm × dt

× (xt
k3 − xt

i) if 0.2 ≤ rand ≤ 0.6
xt
i + F × C2× rand(1, D)× acctnorm × dt × (xt

k3 − xt
i) if rand > 0.6

(22)
Where xt

k3 is a randomly selected individual in the population that is different from
individual xt

i, β is an adjustment factor, and the specific calculation method is shown in
Equation (23).

β = 0.8e
−
(

sum(Fitness)+m
5×Fitnessi+m

)
×(1.5− t

tmax
)
2

(23)

Compared with the individual updating method in AOA’s development phase, the
new updating method proposed in this section has the following advantages: Firstly,
the individual retains a certain possibility of learning from the optimal individual xt

best,
which does not reduce the convergence speed of the algorithm too much. On this basis,
it increases the opportunity to learn from individual itself xt

i and other individuals xt
k3,

and with the help of evolutionary information carried by them, the population diversity
is effectively maintained, and the possibility of the algorithm falling into a local optimum
is greatly reduced; Secondly, the adjustment factor β adaptively changes according to
the individual’s own fitness value and evolutionary stage. The further away from the
end of evolution, those individuals with better fitness values have the smaller β, the
degree of individual learning from the optimal individual xt

best is weaker than the degree
of individual learning from the individual xt

i. That effectively preserves the excellent
evolutionary information of the algorithm itself and further balances the convergence
speed and population diversity of the algorithm.

4.3. Poor individual correction strategy based on the simplex method. Gener-
ally, poor solutions in evolutionary algorithms slow down the convergence speed of the
algorithm. Literature [34] shows that the simplex method can improve the worst point
in the simplex and form a new simplex by internal compression, external compression,
mapping, and expansion. Then the worst point will continuously approximate the optimal
point, which is helpful to improve the convergence speed of the evolutionary algorithm.
In view of this, the simplex method strategy is introduced in this section to improve 0.2 N
poor individuals in each generation. The details are as follows:

Firstly, for individual xs who is to use the simplex method strategy, its reflection point
xr is calculated according to Equation (24).

xr = xc + a× (xc − xs) (24)

Where a is the reflection coefficient, generally set to 1, xc is the center point of the optimal
individual xhest and the suboptimal individual xer searched so far, as shown in Equation
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(25)

xc =
xbest + xer

2
(25)

Then, the relationship between xs’s fitness Fitnessxs and xr’s fitness Fitnessxr is com-
pared, and a certain operation is selected to generate a new individual x′

s. The details
are as follows: When Fitnessxr < Fitnessxbest

, the expansion operation is carried out
according to Equation (26); When Fitnessxr > Fitnessxs , the compression operation is
carried out according to Equation (27); When Fitnessxbest

≤ Fitnessxr ≤ Fitnessxs , the
contraction operation is carried out according to Equation (28). If x′

s is better than xs,
replace xs. Otherwise, retain xs unchanged.

x′
s = xc + λ× (xr − xc) (26)

Where λ is the expansion coefficient, it is generally set to 2.

x′
s = xc + η × (xs − xc) (27)

Where η is the compression coefficient, it is generally set to 0.5.

x′
s = xc − µ× (xs − xc) (28)

Where µ is the shrinkage coefficient, it is generally set to 0.5.

5. Experimental Results and Analysis. To fully validate the performance of the
IAOA algorithm, this section compares it with the AOA algorithm and the four evolu-
tionary algorithms that have been excellent so far on the CEC2013 test set [35]. These
include the sine cosine algorithm (ESCA) based on backward learning enhancement [36],
the artificial tree algorithm (IATTP) based on bi-population [37], the improved crow
search algorithm (ICSA) [38], and the improved Archimedes classification feature selec-
tion algorithm EAOA algorithm [30]. All the above experiments are run on a PC with
Windows 10 operating system and i5-8265U CPU, and are programmed using MATLAB
R2021a.

To ensure fairness of comparison, the number of population N = 50 for all algorithms,
the dimensionalities D of the optimization problem is 30 for all, and the maximum number
of function evaluations is MaxFEs = 100000. The other parameter settings for each
algorithm are shown in Table 1, where the parameter values for each comparison algorithm
are taken as in the original.

Table 1. Related parameter settings of each algorithm.

Algorithm Parameter

AOA C1 = 2; C2 = 6; C3 = 2; C4 = 0.5

ESCA h1 = h2 = h3 = 0.5, h4 = 0.8, m = 50, q = 0.8
IATTTP Pc = 0.6
ICSA AP = 0.1; FL = 1.5
EAOA C1 = 2; C2 = 6; C3 = 2; C4 = 0.5
IAOA C2 = 6; C3 = 2; C4 = 0.5

Table 2 gives the mean and standard deviation of 30 independent experiments for each
algorithm on the 30-dimensional CEC2013 test set, and the results of the algorithm that
achieved the best optimization on the same function are blacked out. Table 3 gives the
results of the Friedman test, and it gives the results of the Wilcoxon rank sum test of
each algorithm against the IAOA at a significance level of 5%.
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Table 2. Mean and variance of each algorithm on the 30-dimensional
CEC2013 test set

ESCA IATTP ICSA AOA EAOA IAOA

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

F1 5.20E+03 1.14E+03 1.38E+01 4.93E+00 3.54E+01 3.33E+01 2.13E+04 5.73E+03 2.62E+03 6.73E+02 0.00E+00 0.00E+00
F2 7.75E+07 1.73E+07 1.59E+07 4.91E+06 1.90E+07 8.38E+06 1.32E+08 7.45E+07 9.34E+07 2.84E+07 1.27E+06 1.24E+06
F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.07E+12 4.92E+12 1.87E+08 6.96E+08 0.00E+00 0.00E+00
F4 5.62E+04 5.19E+03 3.17E+03 9.28E+02 2.30E+04 4.84E+03 4.17E+04 1.33E+04 5.41E+04 8.83E+03 8.04E+03 9.16E+03
F5 9.72E+02 2.23E+02 4.68E+01 1.83E+01 2.72E+02 2.26E+02 1.05E+04 6.30E+03 1.53E+03 4.81E+02 0.00E+00 0.00E+00
F6 4.66E+02 1.15E+02 8.93E+01 3.01E+01 1.25E+02 2.24E+01 1.84E+03 7.23E+02 2.63E+02 6.51E+01 2.76E+01 2.38E+01
F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.85E+02 1.02E+03 1.30E+01 2.05E+01 0.00E+00 0.00E+00
F8 2.10E+01 5.68E-02 2.10E+01 6.46E-02 2.10E+01 3.85E-02 2.10E+01 4.49E-02 2.10E+01 5.20E-02 2.10E+01 4.91E-02
F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.52E+01 8.80E+00 4.74E+00 8.40E+00 0.00E+00 0.00E+00
F10 9.30E+02 1.79E+02 4.60E+01 1.81E+01 1.30E+02 6.83E+01 2.47E+03 6.58E+02 7.79E+02 2.50E+02 8.06E-02 7.42E-02
F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.72E+00 2.83E+00 4.78E+00 2.79E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F12 6.21E+01 8.27E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.33E+02 4.52E+01 1.62E+02 6.05E+01 0.00E+00 0.00E+00
F13 3.91E+01 7.01E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.39E+02 6.86E+01 1.15E+02 8.80E+01 0.00E+00 0.00E+00
F14 6.79E+03 3.67E+02 6.90E+03 3.72E+02 2.80E+03 8.27E+02 3.81E+03 5.20E+02 4.46E+03 5.45E+02 2.17E+03 4.12E+02
F15 7.48E+03 2.42E+02 7.12E+03 5.38E+02 6.97E+03 3.43E+02 5.96E+03 5.50E+02 5.79E+03 5.35E+02 6.92E+03 4.94E+02
F16 2.82E+00 2.98E-01 2.71E+00 3.78E-01 2.69E+00 3.03E-01 2.04E+00 3.45E-01 2.51E+00 4.53E-01 2.80E+00 3.61E-01
F17 5.55E+02 4.95E+01 2.18E+02 1.68E+01 9.27E+01 3.67E+01 1.07E+03 2.18E+02 4.39E+02 4.68E+01 4.37E+01 2.07E+01
F18 5.61E+02 8.01E+01 2.30E+02 1.82E+01 2.35E+02 3.54E+01 1.08E+03 2.30E+02 4.85E+02 6.41E+01 1.81E+02 2.66E+01
F19 1.12E+03 9.16E+02 1.94E+01 1.92E+00 1.22E+01 4.82E+00 2.49E+04 2.57E+04 2.84E+02 4.78E+02 1.18E+01 2.87E+00
F20 5.20E+00 5.60E+00 1.44E+00 3.30E+00 7.76E+00 4.44E+00 1.26E+01 2.23E+00 1.31E+01 2.68E+00 0.00E+00 0.00E+00
F21 6.63E+02 4.05E+01 4.05E+02 1.13E+00 4.26E+02 2.42E+01 1.53E+03 2.28E+02 6.26E+02 7.01E+01 3.93E+02 3.59E+01
F22 7.14E+03 3.89E+02 7.14E+03 3.27E+02 2.14E+03 6.26E+02 4.68E+03 8.61E+02 5.41E+03 5.10E+02 1.93E+03 5.04E+02
F23 7.63E+03 3.61E+02 7.77E+03 3.57E+02 5.95E+03 1.10E+03 6.39E+03 8.43E+02 6.74E+03 6.35E+02 6.65E+03 5.54E+02
F24 2.04E+02 3.00E+00 2.50E+02 1.05E+01 2.01E+02 3.98E-01 2.86E+02 3.13E+01 2.38E+02 2.57E+01 2.29E+02 3.38E+01
F25 2.78E+02 3.61E+01 2.31E+02 2.91E+01 2.70E+02 2.78E+01 3.29E+02 1.90E+01 3.02E+02 1.10E+01 2.82E+02 1.93E+01
F26 2.95E+02 6.62E-01 2.38E+02 4.76E+01 2.92E+02 3.11E+01 3.49E+02 5.17E+01 3.46E+02 4.44E+01 3.23E+02 2.78E+01
F27 2.05E+03 2.33E+02 3.40E+02 9.44E+01 3.62E+02 8.43E+01 1.08E+03 2.01E+02 9.65E+02 1.83E+02 8.68E+02 2.38E+02
F28 2.29E+03 2.46E+02 1.08E+03 3.95E+01 1.77E+03 6.05E+02 3.64E+03 4.34E+02 3.32E+03 1.06E+03 1.05E+03 5.10E+02

As can be seen from Tables 2 and 3, for the 30-dimensional optimization problem:
IAOA achieved theoretical optimal values on nine functions, including F1, F3, F5, F7,
F9, F11, F12, F13, and F20; ESCA achieved the theoretical optimal values on only
four functions, including F3, F7, F9, and F11; IATTP obtained the theoretical optimal
values on six functions, including F3, F7, F9, F11, F12, and F13; ICSA obtained the
theoretical optimal values on five functions, including F3, F7, F9, F12, and F13; EAOA
obtained a theoretical optimal value on F11 only; And the AOA did not converge to
the theoretical optimal values of either function. It can be seen that IAOA obtains
the most theoretical optimal values compared to AOA and the other four algorithms.
Compared to IAOA, ESCA performs significantly better only on F27 but significantly
worse on the 18 tested functions; IATTP performs similarly on the nine tested functions
and performs significantly better performance on the four tested functions but significantly
worse performance on the remaining 15 functions; ICSA performs significantly better only
on F23, F26, and F27 but significantly worse on the 13 tested functions; AOA performs
significantly better only on F16 but significantly worse on the 25 tested functions; EAOA
performs significantly better only on F15 but significantly worse on the 23 tested functions.
Combined with the Wilcoxon rank sum test results, it can be seen that IAOA has the
best overall performance among the six optimization algorithms, and its advantage is the
most obvious. IATTP has the 2nd best overall performance. ICSA has a slightly worse
overall performance than IATTP. EAOA and ESCA are tied for 4th place. And AOA has
the worst overall performance.

For a more intuitive comparison of the speed of convergence between the algorithms,
the convergence curves for each algorithm on each test function are given in Figure 1,
where the horizontal coordinate is the number of function evaluations, and the vertical
coordinate is the logarithm of the fitness value.

Figure 1 shows that for single-mode functions F1–F5, IAOA can achieve global optimum
on F1, F3, and F5 test functions, and its convergence rate on F1, F3, and F5 are all
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Table 3. Friedman test results and Wilcoxon rank sum test results of
IAOA with other algorithms (vs.IAOA)

Function SCA IATTP ICSA AOA EAOA

F1 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F2 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F3 1.000(=) 1.000(=) 1.000(=) 0.000(−) 0.011(−)
F4 0.000(−) 0.036(+) 0.000(−) 0.000(−) 0.000(−)
F5 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F6 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F7 1.000(=) 1.000(=) 1.000(=) 0.000(−) 0.000(−)
F8 0.967(=) 0.673(=) 0.083(=) 0.059(=) 0.013(−)
F9 1.000(=) 1.000(=) 1.000(=) 0.000(−) 0.000(−)
F10 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F11 1.000(=) 1.000(=) 0.000(−) 0.000(−) 1.000(=)
F12 0.000(−) 1.000(=) 1.000(=) 0.000(−) 0.000(−)
F13 0.001(−) 1.000(=) 1.000(=) 0.000(−) 0.000(−)
F14 0.000(−) 0.000(−) 0.002(−) 0.000(−) 0.000(−)
F15 0.000(−) 0.078(=) 0.876(=) 0.000(−) 0.000(+)
F16 0.923(=) 0.411(=) 0.222(=) 0.000(+) 0.011(−)
F17 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F18 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F19 0.000(−) 0.000(−) 0.801(=) 0.000(−) 0.000(−)
F20 0.000(−) 0.021(−) 0.000(−) 0.000(−) 0.000(−)
F21 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F22 0.000(−) 0.000(−) 0.270(=) 0.000(−) 0.000(−)
F23 0.000(−) 0.000(−) 0.021(+) 0.176(=) 0.411(=)
F24 0.793(=) 0.000(−) 0.084(=) 0.000(−) 0.051(=)
F25 0.293(=) 0.000(+) 0.145(=) 0.000(−) 0.000(−)
F26 0.562(=) 0.000(+) 0.000(+) 0.000(−) 0.000(−)
F27 0.000(+) 0.000(+) 0.000(+) 0.000(−) 0.073(=)
F28 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)

+/=/− 1/9/18 4/9/15 3/12/13 1/2/25 1/4/23

Avg.rank 4.29 2.59 2.71 5.05 4.29

sort 4 2 3 6 4

comparable to that of ICSA. IAOA shows better convergence accuracy and the fastest
convergence speed than the other five algorithms on F2. The convergence accuracy and
convergence speed of IAOA on the F4 are slightly inferior to IATTP, but compared with
the other four algorithms, IAOA can show the best convergence accuracy. In the early
stage of evolution, the IAOA algorithm shows a good convergence speed, and in the late
stage of evolution, the IAOA algorithm shows a good convergence accuracy. The IAOA
algorithm is very competitive in the single module function compared to other algorithms;
For the multi-mode functions F6-F20, IAOA can achieve global optimum on the test
functions F7, F9, F11, F12, F13, and F20. IAOA shows the fastest convergence speed on
all F7, F12, and F20 and convergence rate on F9, F11, and F13 are comparable to those of
ICSA. IAOA exhibits better convergence accuracy and comparable convergence speed to
the ICSA algorithm on the F6, F10, and F11 than the other five algorithms. IAOA shows
better convergence accuracy and better convergence speed on the F8, F14, F17, F18, and
F19 test functions, but it shows poorer convergence accuracy and convergence speed on
the F15 and F16 test functions. In the early stage of evolution, IAOA converges only
slightly slower than the ICSA algorithm. Reaching the late stage of evolution, IAOA is
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able to continue searching for better solutions on most functions of the CEC2013 test set
compared to other algorithms; For the composite functions F21-F28, IAOA shows better
convergence accuracy and the fastest convergence speed than the other five algorithms
on the F21 and F28 test functions. IAOA shows higher convergence accuracy and faster
convergence on the F22 test functions. The convergence speed and convergence accuracy
of IAOA on the F25 and F27 test functions are second to the two algorithms, ICSA and
IATTP. On the F23, F24, and F26 test functions, IAOA has similar convergence accuracy
to the three algorithms AOA, EAOA, and ESCA, where IAOA has a faster and higher
convergence speed.

In summary, it shows that IAOA has certain advantages in terms of convergence speed
and convergence accuracy compared to AOA and the other four superior optimization
algorithms.

Convergence curves on F1 Convergence curves on F2 Convergence curves on F3

Convergence curves on F4 Convergence curves on F5 Convergence curves on F6

Convergence curves on F7 Convergence curves on F8 Convergence curves on F9

Figure 1. Convergence curve of each function
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Convergence curves on F10 Convergence curves on F11 Convergence curves on F12

Convergence curves on F13 Convergence curves on F14 Convergence curves on F15

Convergence curves on F16 Convergence curves on F17 Convergence curves on F18

Convergence curves on F19 Convergence curves on F20 Convergence curves on F21

Figure 1. Convergence curve of each function



An Improved Archimedes Optimization Algorithm (IAOA) 707

Convergence curves on F22 Convergence curves on F23 Convergence curves on F24

Convergence curves on F25 Convergence curves on F26 Convergence curves on F27

Convergence curves on F28

Figure 1. Convergence curve of each function

6. Conclusion. In this paper, an improved Archimedes optimization algorithm (IAOA)
is proposed to further improve the convergence performance and the ability to jump out
of the local optimum of the AOA algorithm. Firstly, the updating formulas of learning
factor C1 and individual attribute acceleration in the exploration stage is improved, and
the regulatory factor is introduced to improve the convergence speed of the algorithm in
the early stage and maintain the population diversity; Secondly, this paper proposes a
mechanism to update the individual position according to the probability and introduces
an adjustment factor to improve the development ability of the algorithm; Finally, the
simplex method is introduced to correct the position of poor individuals to improve the
convergence speed of the algorithm. The experimental results on the CEC2013 test set
show that the IAOA proposed in this paper is more competitive on single-mode and
multi-mode problems compared with the other four optimization algorithms. However,
the complexity of the algorithm is slightly higher. In the future research work, we can
try to further reduce the complexity of AOA and use it to solve practical engineering
problems.
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