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Abstract. Shared decision-making (SDM) is a process by which patients and doctors
make medical decisions together based on clinical evidence. It balances risk and expected
outcomes with the preferences and values of patients. However, SDM is rarely employed
in practice. Part of the reason for this is that the decision-making process is complex,
takes long time, and the number of healthcare professionals trained in these techniques
is limited. In this study, we first simplify the SDM preference negotiation problem as a
multi-objective optimization (MOO) problem with bilateral treatment preferences. Then,
we attempt to solve the MOO using an agent negotiation technique for bilateral MOO.
We therefore propose a particle swarm optimization-based SDM-automated negotiation
framework (PSOAN) that provides decision support for doctors and patients was pro-
posed. The experimental results show that PSOAN obtains more overall satisfaction than
other existing models by 11.1%–11.6%, indicating that it achieves higher social welfare.
In addition, it reduces the satisfaction gap to 31.9%–34% and promotes social equity.
It takes only 7.8 rounds to reach an agreement on average, which requires less than 1
minute. In summary, the proposed model can effectively improve agreement satisfaction
and social welfare for both parties while reducing the time and space costs required for
negotiation. The designed negotiation framework has bright future to assist and promote
the implementation of SDM for both doctors and patients, and deserves more intensive
studies.
Keywords: Shared decision making, Agent negotiation, Meta-heuristic algorithms
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1. Introduction.
With the advancement of medical science, there are typically varied treatments for

many diseases. This gives options to patients with different preferences, but it also makes
it difficult for patients to select proper treatment due to the limited medical literacy
and inadequate doctor–patient communication time during traditional doctor visits. In
particular, due to significant information asymmetry, most medical decisions are domi-
nated by doctors in practice, and patients find it difficult to participate effectively. To
respect the autonomy of personal health management and restrain the immoral behavior
of doctors, researchers from philosophy and medicine have proposed a “shared decision-
making” (SDM) model. which is defined as a process in which patients and doctors jointly
participate in the medical decision-making process and agree on treatment decisions [1].
The potential benefits of implementing SDM include ethics, quality, informed decisions,
patient satisfaction, the enhanced realization of patient self-management, improved ad-
herence, and meaningful outcomes [2]. Currently, there are three main SDM process
models in common use: the Makoul model [3], the three-step talk model [4], and the
Stiggelbout model [5]. The Makoul model, also known as the integrative model, identifies
the essential and ideal elements of SDM through a systematic review of articles address-
ing the conceptual definition of SDM. It includes nine essential elements: (1) define the
problem, (2) present options, (3) discuss pros/cons, (4) patient preferences, (5) discuss
patient ability/self-efficacy, (6) doctor knowledge/recommendations, (7) check/clarify un-
derstanding, (8) make or explicitly defer the decision, and (9) arrange follow-up. In 2012,
Elwyn et al. translated conceptual descriptions into a three-step talk model by assigning
the various steps to respective phases. In this model, the SDM process was organized as
choice talk, option talk, and decision talk. The talk model is more practical for real-world
applications and combines good communication skills with the use of patient decision
support tools to make the process work [4]. Stiggelbout redesigned SDM as an easy
memorized four-step model for easy implementation.

Although SDM has been advocated as a model for decision-making in preference-
sensitive decisions since 1982, it is still not widely implemented in clinical practice [5, 6].
Therefore, there is an ongoing debate on how to improve its implementation, including
strategies for doctors and patients and tools and instruments to assist SDM. Knowledge
and awareness among both professionals and patients, as well as training in tools and
communication skills, are important factors for SDM implementation [5]. Kunneman et
al. [7] treated choice awareness as the first step in SDM and found that oncologists rarely
express that a treatment decision needs to be made in consultation, missing a crucial
opportunity to facilitate SDM. Shaoibi et al. [8] thought the accurate diagnosis of patient
preferences is central to SDM and proposed a Bayesian collaborative filtering algorithm
that combines pretreatment preferences and patient-reported outcomes to make treat-
ment recommendations. Besides, many SDM implementation measurement instruments
have been designed and used in surveys [9].

Few SDM tools have been developed to date to assist patients in understanding treat-
ment options and participating in treatment decisions based on their values and prefer-
ences. Current technologies supporting SDM are focused on patient decision aids (Pt-
DAs) and clinical decision support systems (CDSS). PtDAs (which may be flyers, videos
or audiotapes, or interactive media) can help patients understand clinical evidence and
determine their preferences by promoting a positive doctor–patient relationship [10, 11].
It is also helpful in informed medical decision-making that is consistent with the values
and preferences of target objects. Meanwhile, CDSS aims to create human–computer



760 X. Chen, P. Lu, K.-B. Lin and J.-Y. Zeng

interactive healthcare systems with data or models [12]. It matches patient characteris-
tics with a computerized clinical knowledge base, and then patient-specific assessments or
recommendations are presented to physicians or patients for decision-making [13]. How-
ever, the above approaches primarily use traditional media to guide patients in making
issue-specific decisions. They do not consider or balance the values and preferences of
doctors and patients to propose referable treatment protocols that support doctors and
patients in making informed treatment decisions together.

Therefore, the main research objective of this study is to solve preference-sensitive
decision-making problems through artificial intelligence (AI) technology, provide refer-
able treatment plans, reduce the time and cost of decision-making, and balance the value
preferences of doctors and patients. Agent negotiation technology is a widely used technol-
ogy in the AI field currently. Automated agents can simulate human behavior, negotiate
on behalf of human negotiators, and find better results than human negotiators. Jonker
et al. [14] proposed a generic component-based agent architecture for multi-attribute (in-
tegrated) negotiation. The framework uses a distributed design, where each agent uses
available information about an opponent’s preferences to predict the opponent’s prefer-
ences by introducing a “guessing” heuristic to improve the negotiation results. Hsu et
al. [15] proposed an agent-based fuzzy-constrained directed negotiation mechanism for the
scheduling problem of distributed job shops. The concept of using a fuzzy membership
function was introduced to represent imprecise preferences. This increased information
sharing accelerates convergence and achieves global consistency by repeatedly exchang-
ing offers and counteroffers. These models are essential for improving the efficiency and
effectiveness of agent negotiation.

In this study, we first simplify the SDM preference negotiation problem as a multi-
objective optimization (MOO) problem with bilateral treatment preferences. Then, we
attempt to solve the SDM preference negotiation problem using an agent negotiation
technique for bilateral MOO.

The primary contributions of this study are summarized as follows.
(1) We propose an MOO-based agent bilateral preference negotiation framework to

implement SDM. The proposed model creatively combines advanced SDM principles and
agent negotiation techniques.

(2) We develop autonomous agents of doctors and patients based on their behaviors,
including how they evaluate proposals, how to offer a proposal, and how to reach an
agreement.

(3) We combine the multi-objective particle swarm optimization (MOPSO) algorithm
and technique for order preference by similarity to ideal solution (TOPSIS) to implement
MOO to generate a win–win protocol. This protocol can improve the satisfaction and
social welfare of both patients and doctors.

The remainder of this paper is organized as follows. Section II describes the related
work. Section III presents the proposed SDM agent negotiation model in detail. Section
IV evaluates and discusses our proposed model from different perspectives. Section V
concludes the study.

2. Related Work.

2.1. SDM.
SDM is a healthcare delivery model in which healthcare providers invite patients or

their caregivers to participate in patient care decisions [16]. SDM must involve at least
two participants (e.g., doctors and patients). The SDM process is characterized by clinical
decision-making, information sharing, and the consideration of patients’ preferences, and
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both parties must make consistent decisions [17]. Studies have shown that SDM can help
improve patient participation in healthcare decision-making, improve the quality of care,
and lower healthcare costs [18,19].

2.2. Decision Support Techniques.
Several decision support technologies have been developed to facilitate SDM. The best-

known technique is PtDAs [20, 21], and it can adequately inform patients of feasible
treatment options and the risk–benefit relationship involved in various treatment options.
However, these technologies do not help patients combine their values and preferences
with information about the benefits and risks of choices to reach the best option.

Some researchers have also studied decision coaching. Trained health professionals
guide patients through face-to-face consultations or by phone, email, or the Internet
to help them access medical evidence, articulate their values and preferences, develop
skills to consider options, and become more involved in SDM [22]. This approach can
help patients understand their values and preferences and improve their decision-making
experience, but it requires a significant amount of time and high labor costs [23].

In addition, some scholars have developed CDSS [24–26]. CDSS aims to improve health-
care delivery by enhancing medical decision-making with targeted clinical knowledge, pa-
tient information, and other health information [27]. There are two main types of CDSS:
knowledge-based CDSS and non-knowledge-based CDSS. Most knowledge-based CDSSs
consist of data repositories, inference engines, and communication mechanisms, where
each data point is structured in the form of IF–THEN rules [28]. In CDSSs, an inference
engine combines rules from a knowledge repository with a patient’s data. The results
are displayed to the user through a communication mechanism in the form of diagnostic
recommendations, a series of treatment options, or a ranked list of possible solutions.
Nevertheless, the final decision rests with the human expert [29]. Non-knowledge-based
CDSS still requires data sources, but the decisions utilize AI, machine learning, or sta-
tistical pattern recognition rather than being programmed to follow specialized medical
knowledge [30]. Both approaches can assist healthcare providers by analyzing patient
data and using that information to help formulate a diagnosis. However, there are still
issues such as high implementation costs and the lack of consideration of the user’s value
proposition or preferences.

2.3. Agent Negotiation Techniques.
Agents are software entities that simulate human behavior, and they are used in mul-

tiagent systems (MASs) to study the informational and dynamic behaviors of complex
systems. Given the capabilities and characteristics of agents, the most widely used agent
architecture is the belief–desire–intention (BDI) model. It provides practical reasoning
by defining what is to be accomplished and how it should be accomplished. The BDI
architecture consists of three basic components that define the state of an agent [31].

Belief: Information that agents possess about their environment, other agents, and
themselves. This information forms the basis of all further decisions and plans.

Desire: An agent’s motivations and goals. The goals an agent wants to pursue in each
situation are dynamically determined.

Intention: Achieving specific goals through executable plans.
An agent can simulate the behaviors of negotiation participants and perform negotia-

tions according to relevant protocols and frameworks to automate the negotiation process.
Agent-based auto-negotiation has been extensively used in service-level agreements

(SLAs) [32], e-commerce, etc. Regarding research content, studies on agent negotiation
primarily focus on the negotiation framework, negotiation or conflict resolution mod-
els, and negotiation strategies to seek a satisfactory solution. For example, Rajavel et
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al. [33] proposed an automated dynamic negotiation framework (ADSLANF) for SLAs
that employs a bulk negotiation behavioral learning approach based on reinforcement
learning techniques to optimize the negotiation strategy. Cao et al. [34] developed a the-
oretical model and algorithm for multi-strategy selection based on time-dependent and
behavior-dependent strategies applied to e-commerce. Li et al. [35] proposed a genetic
algorithm-based negotiation strategy that employs a genetic algorithm to investigate the
preferences and utility functions of adversaries to achieve a win–win situation for cus-
tomers and suppliers in the absence of incomplete information. These methods ensure
their satisfaction and success rate through negotiation strategies and conflict resolution
through behavioral learning, modified assessments, or concessions. They improve the
success rate of the negotiating parties, optimizing performance in terms of negotiation
rounds, total negotiation time, and communication overhead. However, these methods
could be improved in terms of finding optimal solutions and prioritizing feasible solutions.

2.4. Summary of Related Work.
Currently, there are several barriers to healthcare providers implementing decision sup-

port technology in clinical practice, including lack of time, knowledge, and skills and
inadequate training in decision coaching. There are also no studies in the literature that
provide suggestions for solutions to support SDM. Previous research has shown that agent
negotiation techniques can provide and achieve mutually beneficial solutions. Therefore,
supporting SDM with agent-based negotiation techniques may be a proven way to recon-
cile values and preferences between healthcare providers and patients to provide feasible
treatment options.

3. PSOAN for SDM.
In this section, we introduce the SDM problem formulation (Section 3.1) and design

agents according to the SDM process (Section 3.2). Then, in Section 3.3, we describe
how to solve the SDM preference negotiation problem using the MOO design negotiation
framework for the bid strategy and how to map it to SDM negotiation. Finally, the
negotiation protocol designed for the SDM negotiation framework is presented in Section
3.5.

3.1. Problem Definition.

3.1.1. SDM Problem Definition.
SDM is defined as a process with three main components: (1) sharing information,

(2) discussing treatment options, and (3) reaching a mutual decision that both parties
can agree on. In an actual clinical setting, more information cannot be shared between
doctors and patients due to various constraints such as time, medical literacy, and beliefs.
Therefore, we assume that doctor agents (DAs) and patient agents (PAs) operate in a
limited information environment with fuzzy and imprecise information about their own
and their opponent’s preferences. We attempted to represent this inaccurate preference
and information using a trapezoidal fuzzy membership function. A doctor and patient
evaluation of a treatment protocol is defined as aggregate satisfaction values (ASVs) with
negotiation content, which is expressed using the following function.

U(S) =
n∑

i=1

wi ·Mi(S) (1)

Here, Mi(S) denotes the ith membership degree of solution S. It can be obtained di-
rectly from a set of doctors and patients and will flexibly and efficiently represent their
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preferences for certain problems. In addition, n represents the number of issues to be
negotiated by doctors and ith issue.

3.1.2. Convert to MOO Problem.
Based on the above considerations, we reduce the SDM problem to an MOO problem

with bilateral treatment preferences that follow the traditional SDM process.
We aim to achieve a win–win agreement for both physicians and patients, i.e., an

agreement that results in the highest possible ASV for both parties. Here, an optimization
problem with multi-objective functions is involved. Thus, the SDM bilateral preference
negotiation problem can be converted into an MOO problem as follows.

maxo F (O) = (fdoctor(O), fpatient(O)) , (2)

fdoctor = Udoctor(O) =
n∑

i=1

wi ·Mi(O), (3)

fpatient = Upatient(O) =
n∑

i=1

h̄w
i · h̄f

i (O). (4)

The fitness function F has two objectives: the doctor’s satisfaction value fdoctor and
the patient’s fpatient. O represents the agreement that they have reached.
Next, we use agent technology to construct bilateral agents (DA and PA) and use MOO

to help these agents solve multi-issue (treatment protocol) problems.

3.1.3. Agent Design.
As shown in Figure 1, we can consider the direct participants of SDM as independent,

interconnected, and environmentally retrained agents. Here, communication between doc-
tors and patients is considered a negotiation between agents. In addition, the aggregate
satisfaction of doctors and patients with the treatment protocol is considered the individ-
ual utility of an agent. Thus, agents can support the medical decision-making process for
both doctors and patients.

First, we generate behavioral models of DAs and PAs based on the BDI architecture.
Table 1 describes an example of the individual behavior of BDI-based DAs/PAs. Then,
based on the behavioral model of DAs/PAs, an agent-based negotiation framework was
constructed to simulate the SDM process between doctors and patients, as depicted in
Figure 2. The specific process is described in detail in Section 3.4 Negotiation Protocol.

Figure 1. Conversion of doctor and patient to agent

3.2. Bidding Strategy.
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Figure 2. PSOAN to simulate the SDM process

Table 1. BDI-based example of individual behavior of DA/PA

Input SDM

Belief Number of humans: two (doctor and patient)
Information: the content of treatment plan, own and others’ preferences,
communication history, etc.

Desire Select the most mutually satisfactory treatment that can support SDM.

Intention (1) Negotiate with the doctor/patient, and obtain their ideas or proposals
for treatment.
(2) Analyze each of their treatment preferences.
(3) Select and propose the appropriate treatment plan.

Actions (1) Propose treatment content.
(2) Reject opponent’s offer and propose counteroffer.
(3) Accept opponent’s offer and terminate negotiation.
(4) Reject opponent’s offer and terminate negotiation.
(5) Terminate negotiation.

3.2.1. MOO.
Because the bilateral SDM problem has two objective functions (i.e., user and opponent

utility functions) and SDM has imprecise information about user preferences and incom-
plete information about opponent preferences, in this model, user modeling (i.e., user
utility function) uses a trapezoidal fuzzy membership function. The user needs to give
the maximum acceptable range and desired range and weights for the treatment protocol
issues. During the negotiation, opponent modeling uses a Bayesian learning-based oppo-
nent model. Therefore, we solve the bilateral SDM problem by solving the MOO problem
that generates the Pareto optimal offer. This study combines MOPSO and TOPSIS to
generate (near) optimal solutions in the bidding strategy. The method has two phases,
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as shown in Figure 3.

A. Phase I:
The MOPSO algorithm was proposed by Coello et al. [36] in 2004 to apply the principle

of particle swarm optimization, which can only be used for a single objective, to multiple
objectives to achieve MOO. The basic principles of the MOPSO algorithm are as follows:

1) Initialize the population particles in the initial population;
2) Calculate the fitness value to evaluate the solution quality given a certain velocity

and position of the particles;
3) Continuously iterate through the velocity and position equations to find the optimal

solution;
4) Output the optimal solution when the set number of iterations or the global optimal

solution is reached.

These phases can be summarized as follows.
Stage 1 (initial population): Initialize a random population P . The population contains

n particles. Each particle pi has its position and velocity and is represented by a d-
dimensional vector, as shown below. Copy the non-dominated particles of the current
population to the archive set.

pi = (pi1, pi2, . . . , pid) (5)

pi = qL +Rand ∗ (qU − qL) (6)

Stage 2 (particle evaluation): The position of each particle is evaluated according to the
fitness function of Equation 2. (1) Compare its fitness value with the current individual
optimal pBest. if it is better than pBest, replace the current pBest with the new position
of the particle; otherwise, it remains unchanged. (2) Calculate the density information of
particles in the archive set and select gBest in the archive set.

Stage 3 (particle location updating): (1) Update the velocity vid and position xid of
each particle according to the following equation. (2) Update the archive set and copy the
non-dominated particles in the updated population P to the archive set. (3) When the
number of particles in the archive set exceeds a specified number, the excess individuals
should be removed to maintain a stable archive set size.

vk+1
id = ω × vkid + c1 × rand×

(
pBestk1d − xk

id

)
+ c2 × rand×

(
gBestkd − xk

id

)
(7)

xk+1
id = xk

id + vk+1
id (8)

Stage 4 (stopping criteria is satisfied): Output the set of non-dominated particles in
the archive set as alternative solutions S when the set number of iterations or the global
optimal solution is reached.

Figure 3. MOO generation offer process diagram

B. Phase 2:
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We use TOPSIS to select the best solution from the set S output in MOPSO. In our SDM
negotiation framework, we have three criteria (m = 3) or targets: our satisfaction value,
the opponent satisfaction value predicted by the opponent model, and the satisfaction
gap value between the two parties.

• A decision matrix Z = n × m is created consisting of alternatives n and criteria
m. m1 = U (Si), m2 = Uopponent (Si), m3 =|m1 −m2|, where i = 1, 2, .... , n,
j = 1, 2, .... , m. zij denotes the value of the jth criterion assigned to the ith

solution.
• If the jth criterion in the matrix Z is not a very large index, forwarding is performed
according to Equation 9.

zij = max [zi1, zi2, . . . , zim] – zij, (9)

Zij =
Xij√

n∑
k=1

(Xij)
2 .

(10)

• The gap between each evaluation criterion and the optimal and inferior solutions is
calculated and defined as Di+ and Di−. Here, Zj+ and Zj−denote the maximum and
minimum values of the jth evaluation criterion, respectively.

D+
i =

√√√√ m∑
j=1

wj

(
Z+

j − zij
)2

, (11)

D−
i =

√√√√ m∑
j=1

wj

(
Z−

j − zij
)2
, (12)

Z+ = (max {z11, z21, . . . , zn1} ,max {z12, z22, . . . , zn2} , · · · ,max {z1m, z2m, . . . , znm})(13)

Z− = (min {z11, z21, . . . , zn1} ,min {z12, z22, . . . , zn2} , · · · ,min {z1m, z2m, . . . , znm})(14)
• Each alternative is ranked according to its relative proximity to the ideal solution,
Ci.

Ci =
D−

i

D+
i +D−

i

(15)

• Finally, select the best solution based on the ranking and send it to the opponent as
the offer for this round.

3.2.2. SDM negotiation-mapping schema.
In the MOO, the population of MOPSO consists of a set of possible offers for each

negotiating agent party. Table 2 lists the negotiation mapping schema of SDM.

Table 2. SDM negotiation mapping schema

MOPSO SDM Negotiation

Dimensional search space (D) Set of negotiation issues (d)
Particle Possible offer (P )
Population Set of possible offers
Evolution of population Computing new offers
Best solution Counteroffer
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The negotiating parties (i.e., DA and PA) calculate the offer through MOPSO and
determine the best offer as a counteroffer exchange during the negotiation process. As
depicted in Figure 4, each particle in the MOSPO population corresponds to a message
containing the issues to be negotiated (e.g., offer O1). More specifically, each particle
contains the same number of issues as the negotiation issues. This setting is fixed for all
negotiating sides, and the ith negotiation issue is denoted issuei. For each negotiation
side, the population P of MOPSO is used to denote the subset of available offers.

Figure 5 shows an illustrative example of an offer O with five negotiation issues. The
value of each negotiation issue is generated within the acceptable interval of DA/PA.

Figure 4. MOPSO-based negotiation representation

Figure 5. Illustrative example of offer O1

3.3. Opponent Model and Acceptance Strategies.
Opponent model. The opponent model of the SDM negotiation framework uses a generic

framework based on Bayesian learning [37] to learn the value preferences of opponents
and the weights of the problem.

Acceptance strategies. Acceptance strategies can be considered utility-based, time-
based, or a combination of both [38]. The acceptance conditions for our agents are shown
below.

AC
(
r, Or

opponent

)
=


End if t > T,

Accept if U
(
Or

opponent

)
⩾ U

(
Or−1

counter

)
− t,

Offer (Or
counter ) otherwise.

(16)

t = α + (1− α)

(
r

Nmax

)β

(17)
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3.4. Negotiation Protocol.
Because we are considering a bilateral SDM problem, the proposed model is designed

for a bilateral (i.e., one-to-one) multi-issue, time-dependent function. Multiple bilateral
(i.e., one-to-many) negotiations can also be applied to multilateral negotiations. The
PSOAN for SDM has three stages, as described below.

Stage 1 (pre-negotiation stage): In this stage, DAs/PAs define their interval values
of negotiation issues and expected intervals and assign weights to each negotiation issue
according to their preferences. This stage also defines negotiation characteristics, such as
negotiation deadline and time loss.

Stage 2 (negotiation stage): The negotiation process follows the alternate offer protocol
and consists of the following steps.

• First, each party sends its most satisfactory target to the opponent as the first round
of offers.

• The negotiating sides generate near-optimal solutions as exchange offers based on
MOO (e.g., counteroffer Ocounter).

• The negotiating sides then exchange offers until an agreement is reached or a deadline
is met.

Stage 3 (negotiation result): At the end of the negotiation process, one action can be
taken (acceptance, rejection, or meeting the deadline). If either party accepts the offer,
the acceptance will be determined by mutual agreement. If its fitness value is less than the
minimum acceptable value, either party can reject the offer. If the negotiation deadline
is reached, the negotiation is over.

4. Experimental Results and Discussions.
In this section, to effectively validate the performance of our proposed SDM negotiation

framework, we conduct comparative experiments with a fuzzy constraint-based agent-
based negotiation framework (FCAN) [39] , which is also used for bilateral and multi-issue
preference negotiation in SDM. Note that there are few preference negotiation problem
frameworks using the agent method for solving SDM. Thus, the comparison experiments
in this study are limited.

4.1. Experimental Setup.
Environment. The program is written in Java and runs on IntelliJ IDEA on a Windows

10 operating system. In addition, the SDM negotiation framework, proposed in this study,
is implemented in the open-source negotiation software Genius [40].

Here, r represents the current negotiation round, Nmax denotes the deadline of the
negotiation, and t represents the time loss for the negotiation. α and β are constant;
1 > β > 0 and 0 ≤ α ≤ 1.
Dataset. The experiment used data on the preferences of doctors and patients for child-

hood asthma treatment options collected by Lin et al. [39]. The preference negotiation
questions involved in their treatment plans mainly include cost, effectiveness, side-effects,
risk, convenience, etc. The preference data include value and weight preferences for issues.

Parameter setup. The parameters involved in the experiments and their settings are
shown in Table 3. The data of DA and PA preferences in the experiments are shown in
Tables 4 and 5. All experimental results of this study are the average values after 200
repetitions of the experiments.

4.2. Performance Metrics.
The proposed SDM negotiation framework is evaluated based on the following perfor-

mance metrics.
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Table 3. Experimental parameter setup

PSOAN parameter setup Negotiation experimental setup

Number of iterations (Iter) 5 The maximum negotiation round
(Nmax)

20

Number of particles (P ) 1000 Number of experiments negotiated
(Negtotal )

200

Number of Grids Divided (nGrid) 10× 10 α 0.05

Acceleration factor 1 (c1) 1.49 β 1
e

Acceleration factor 2 (c2) 1.49

Table 4. Preference data of DA

issue
Preference

Issue
Value Range

Most
Preferred Range

Minimum
Preference Value

Maximum
Preference Value

Weight
Preference

Cost 0–8 k 4.5-7 3 7.5 0.15

Effectiveness 1–10 rank 7-8 4 10 0.3

Side-effects 1–100 % 10-15 1 20 0.25

Risk 1–100 % 10-20 5 25 0.2

Convenience 1–10 rank 7-8 7 10 0.1

Table 5. Preference data of PA

issue
Preference

Issue
Value Range

Most
Preferred Range

Minimum
Preference Value

Maximum
Preference Value

Weight
Preference

Cost 0–8 k 1-4 1 5 0.3

Effectiveness 1–10 rank 9-10 8 10 0.25

Side-effects 1–100 % 0-1 0 15 0.2

Risk 1–100 % 0-4 0 15 0.15

Convenience 1–10 rank 9-10 10 10 0.1

• Average doctor ASV (Avg.ASVdoctor): This metric indicates the average ASV of the
doctor with an agreement reached in all agreement reached negotiation experiments.
It can be calculated as follows.

Avg.ASVdoctor =

Agrtotal∑
i=1

UDA

(
Si
agree

)
/ Agrtotal, (18)

where Agrtotal denotes the number of negotiation agreements. UDA denotes the
doctor’s ASV function, calculated by Equation 1.

• Average patient ASV (Avg.ASVpatient): This metric indicates the average ASV of the
patient with the agreement reached in all agreement reached negotiation experiments.



770 X. Chen, P. Lu, K.-B. Lin and J.-Y. Zeng

It can be calculated as follows.

Avg.ASVpatient =

Agrtotal∑
i=1

UPA

(
Si
agree

)
/ Agrtotal (19)

where UPA denotes a patient’s ASV function, calculated by Equation 1.
• The combination of ASV (CASV ): This indicator represents the sum ofAvg.ASVdoctor

and Avg.ASVpatient, representing the social welfare of the doctor and patient. It can
be calculated as follows.

CASV = Avg.ASVdoctor + Avg.ASVpatient (20)

• The disparate of ASV (DASV ): This indicator represents the difference between
Avg.ASVdoctor and Avg.ASVpatient. The agreed solution may be mutually satisfactory
and not extreme. It can be calculated as follows.

DASV =| Avg.ASVdoctor + Avg.ASVpatient | (21)

• Agreement Ratio (AgrR): This metric represents the number of agreements reached
as a percentage of the total number of negotiations.

AgrR(%) =
Agrtotal
Negtotal

(22)

• Average negotiation rounds (Avg.R): This metric represents the average number of
negotiation rounds. Average negotiation rounds (Avg.R): This metric represents
the average number of negotiation rounds.

Avg.R =

Agrtotal∑
i=1

Ri/Agrtotal (23)

where Ri denotes the number of rounds required to reach a mutual agreement
about the negotiation process i between the doctor and patient.

• Average processing time (Avg.T ): This metric represents the average time (in sec-
onds) required to reach an agreement during a negotiation.

Avg.T =

Agrtotal∑
i=1

Ti/Agrtotal (24)

where Ti denotes the time to complete the negotiation process i.

4.3. Experimental results.
Table 6 shows the comparative experimental results for doctors and patients using

different negotiation frameworks. As presented in this table, although the Avg.ASVpatient

of PSOAN is slightly lower than that of FCAN, PSOAN is at least 0.111 higher than
FCAN in CASV . This means that PSOAN can obtain better social welfare than FCAN.
In addition, the DASV of PSOAN is 0.044, which is at least 0.319 lower than that of
FCAN. This indicates a smaller satisfaction gap between doctors and patients, promoting
social fairness. In terms of AgrR, both parties could reach a 100% agreement. However, in
terms of Avg.R and Avg.T , PSOAN performs slightly worse than FCAN. This is because
the heuristic search algorithm used by PSOAN needs to find near-optimal solutions in the
solution space. Its search time increases with the number of negotiation issues.

To verify whether PSOAN achieves better social welfare and stable social fairness at
different negotiation domain sizes than FCAN, we adjusted the number of negotiated
questions and compared their performance. The experimental results are shown in Figures
6 and 7.
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Table 6. Comparison of experimental results

Performance metrics
FCAN

PSOANCollaborative Win-win Completive

Avg.ASVdoctor 0.483 0.492 0.496 0.755
Avg.ASVpatient 0.867 0.861 0.859 0.711
CASV 1.35 1.353 1.355 1.466
DASV 0.384 0.369 0.363 0.044
AgrR 100% 100% 100% 100%
Avg.R 7 8 8 7.8
Avg.T 0.056 0.063 0.062 50.862

As shown in Figure 6, although PSOAN can obtain progressively decreasing CASV
as the number of negotiated problems increases, it still outperforms FCAN. In a small
negotiation domain (the number of negotiation issues is 3), PSOAN can obtain a CASV
of 1.525, which is at least 0.098 greater than that of FCAN. In a large negotiation domain
(the number of negotiation issues is 7), PSOAN can obtain a CASV of 1.383, which is
at least 0.128 greater than that of FCAN. In summary, PSOAN can obtain better social
welfare than FCAN for different negotiation domain sizes.

Figure 7 shows the comparison of DASV over different negotiation domain sizes. Al-
though the DASV of PSOAN increases with the size of the negotiation domain, it outper-
forms FCAN at all domain sizes. In the small negotiation domain, the DASV of PSOAN
is only 0.032. In addition, PSOAN maintains the disparity of ASV between doctors and
patients at 0.107 in the large negotiation domain. In conclusion, PSOAN promotes social
fairness and stabilizes the utility gap between the two sides better than FCAN.

In summary, previous auto-negotiation models for SDM can apply different negotiation
strategies but are poor at improving the quality of negotiation results. Specifically, SDM
has a large area to explore in terms of social welfare and equity. In the same configuration
(with 5 issues), the previous work (FCAN) achieved a value of approximately 1.290–1.355
for social welfare (e.g., CASV ) [39,41], whereas PSOAN achieved a value of up to 1.466. In
social equity (e.g., DASV ), the previous work maintained a value within 0.363–0.384 [39],
whereas PSOAN reduced it to 0.044. In [41], the average number of negotiation rounds
was 9, whereas PSOAN completed a negotiation in 7.8 rounds on average with high
performance. Moreover, with the number of issues increasing and the negotiation result
space becoming more complex and larger, PSOAN still exhibits good performance. The
disadvantage of PSOAN is that it sacrifices the negotiation time while keeping the required
time within an acceptable range (within 1 min).

5. Conclusion.
Previous related studies have focused on providing information for decision-making,

either through supported decision-making tools or manual negotiations. But time and
cost constraints have prevented widespread use. Therefore, supporting the process of
negotiated communication between healthcare professionals and patients with relevant
technologies and tools to reduce time and costs, which is the focus of this study. In this
study, we propose an MOO-based bilateral preference negotiation framework to solve the
bilateral SDM problem. Compared with the traditional manual SDM process, our pro-
posed agent negotiation framework considers the preferences of both doctors and patients,
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Figure 6. Comparison of CASV on different negotiation domains

Figure 7. Comparison of DASV on different negotiation domains

reduces the satisfaction gap between the two parties on the negotiation results, and avoids
potential conflicts.

The experimental results show that the proposed PSOAN can effectively support SDM
scenarios and promote social welfare and fairness in SDM. It can effectively reduce the
time required for doctor–patient communication, reduce the influence of emotions and
biases on decision-making, and obtain satisfactory negotiation results while considering
multiple value preferences of both parties.
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In summary, the framework helps make suggestions for bilateral SDM preference nego-
tiation, alleviating the problems of high cost, time-consuming, long response time, and
decision fatigue. In addition, it improves the efficiency of SDM negotiations while consid-
ering the value preferences of both doctors and patients and avoiding potential conflicts,
which is complementary to the clinical application of SDM.

Although agent negotiation-based SDM research is feasible and effective, it cannot be
fully implemented in clinical SDM yet, and the following problems still need to be inves-
tigated in the future. (1) The complexity of the medical problem context is such that
the decision-making of physicians and patients may be influenced by other social rela-
tionships. Therefore, considering the issue of group decision-making in the context of
doctor–patient social relations is a future research priority. (2) The preferences of doc-
tors and patients may change as the negotiation progresses and as medical knowledge
changes. Such dynamic preferences are more in line with a real-world healthcare environ-
ment and can facilitate SDM research based on agent negotiations. (3) Due to the severity
(significance) of medical decisions, we need additional empirical validation of the SDM
negotiation model with real-world future decisions before it can be applied in real-world
clinical scenarios.

Acknowledgment. This work was supported in part by Xiamen Youth Science and
Technology Innovation Project under Grant (3502Z20206073), Xiamen Overseas Returnees
Program under Grant (XM202017206), High Level Talent Project of Xiamen Univer-
sity of Technology under Grant (YSK20002R), and Graduate Student Science and Tech-
nology Innovation Program Project of Xiamen University of Technology under Grant
(YKJCX2021056). The authors also gratefully acknowledge the helpful comments and
suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] A. M. Butler, S. Elkins, M. Kowalkowski, and J. L. Raphael, “Shared decision making among parents
of children with mental health conditions compared to children with chronic physical conditions,”
Maternal and Child Health Journal, vol. 19, no. 2, pp. 410–418, 2015.

[2] R. E. Drake, D. Cimpean, and W. C. Torrey, “Shared decision making in mental health: prospects
for personalized medicine,” Dialogues in Clinical Neuroscience, vol. 11, no. 4, pp. 455–463, 2022.

[3] G. Makoul and M. L. Clayman, “An integrative model of shared decision making in medical encoun-
ters,” Patient Education and Counseling, vol. 60, no. 3, pp. 301–312, 2006.

[4] G. Elwyn, D. Frosch, R. Thomson, N. Joseph-Williams, A. Lloyd, P. Kinnersley, E. Cording, D. Tom-
son, C. Dodd, and S. Rollnick, “Shared decision making: a model for clinical practice,” Journal of
General Internal Medicine, vol. 27, no. 10, pp. 1361–1367, 2012.

[5] A. M. Stiggelbout, A. H. Pieterse, and J. C. De Haes, “Shared decision making: concepts, evidence,
and practice,” Patient Education and Counseling, vol. 98, no. 10, pp. 1172–1179, 2015.

[6] President’s Commission for the Study of Ethical Problems in Medicine and Biomedical and Be-
havioral Research, Making Health Care Decisions: Making Health Care Decisions: A Report on
the Ethical and Legal Implications of Informed Consent in the Patient-Practitioner Relationship.
Washington, DC: US Government Printing Office, 1982.

[7] M. Kunneman, E. G. Engelhardt, F. Ten Hove, C. A. Marijnen, J. E. Portielje, E. M. Smets, H. J.
De Haes, A. M. Stiggelbout, and A. H. Pieterse, “Deciding about (neo-) adjuvant rectal and breast
cancer treatment: missed opportunities for shared decision making,” Acta Oncologica, vol. 55, no. 2,
pp. 134–139, 2016.

[8] A. Shaoibi, B. Neelon, and L. A. Lenert, “Shared decision making: from decision science to data
science,” Medical Decision Making, vol. 40, no. 3, pp. 254–265, 2020.

[9] J. Zeng, L. Jin, Y. Sun, L. Pan, Y. Li, and B. Shi, “Review of assessment instruments for shared
decision-making between doctors and patients,” Medicine & Philosophy (a), vol. 39, no. 10, pp. 10–3,
2018.



774 X. Chen, P. Lu, K.-B. Lin and J.-Y. Zeng

[10] J. A. van Til, C. H. Drossaert, G. J. Renzenbrink, G. J. Snoek, E. Dijkstra, A. M. Stiggelbout,
and M. J. IJzerman, “Feasibility of web-based decision aids in neurological patients,” Journal of
Telemedicine and Telecare, vol. 16, no. 1, pp. 48–52, 2010.
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