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Abstract. Aiming at the problems that the target proportion of insulator defects is
small, and the defect features are not obvious, which leading to low detection rate, a
YOLOv5s algorithm based on saliency information improvement is proposed. Firstly,
saliency information extraction (SANet) module is used to generate saliency images to
enhance the discrimination between insulator target and background. Second, a small tar-
get detection layers are added, and a large target detection layer are removed to improve
the feature extraction ability of the network for small targets and speed up the network
reasoning. Then, the attention module (CBAM) is introduced to improve the network’s
attention to the target features along both channel and spatial dimensions. Finally, EIoU-
Loss as a loss function is used to accelerate the convergence speed and improve the regres-
sion accuracy. The experimental results show that compared with the original YOLOv5s
network, the improved algorithm with mAP50 and mAP50:95 increases by 3.43% and
3.32%, respect to the frame rate 36 frames per second, which is capable of real-time de-
tection.
Keywords: Insulator defects, YOLOv5s, Saliency information, CBAM, Target detec-
tion

1. Introduction.

1.1. Background. Insulators are the key components of high-voltage transmission lines,
which work in outdoor environment for a long time and their surfaces are highly sus-
ceptible to insulator breakdown and damage due to moisture erosion and pollution ash
accumulation [1], so it is necessary to inspect insulators of transmission lines regularly by
means of UAVs and other means. Since the insulator defects in the collected images have
small percentage, inconspicuous features, and complex background, which seriously affect
the recognition and detection accuracy of insulator defects. Therefore, a detection method
for small target defects in complex scenes is urgently needed to improve the recognition
and detection accuracy of insulator defects.

In recent years, with the continuous expansion of artificial intelligence applications
[2], deep learning-based target detection algorithms [3] have seen a spurt in development.
Compared with traditional detection methods, deep learning-based detection methods can
fully utilize the computing power of computers and learn target features autonomously
through input data, solving the problems of small number of features, poor robustness,
and low recognition rate in previous traditional methods, and have better adaptation and
extraction capabilities for target features in different scenes [4].

The current insulator defect algorithms based on deep learning are divided into two cat-
egories, one is two-stage detection algorithm, such as literature [5] proposed Faster-RCNN
algorithm based on dynamic selection network improvement to achieve the detection of
insulators; literature [6] used Cascade-RCNN network as the basic framework to train
multiple cascaded detectors to complete the detection of insulator defects by setting dif-
ferent thresholds detection. The above two-stage detection algorithms represented by
Faster-RCNN[7] and Cascade-RCNN[8] have relatively high detection accuracy, but the
detection speed is slow. Another category is one-stage detection algorithms, such as the
MobileNet-SSD-based overhead line defect detection algorithm in literature [9]; litera-
ture [10, 11] improves the detection accuracy of insulator defects based on YOLOv4 with
the loss function of a priori anchor frame and improved regression border; the YOLOv5
model is improved by incorporating attention mechanism in literature [12], which effec-
tively improves the YOLOv5 model is improved by incorporating attention mechanism in
the literature, which effectively improves the focusing ability of the target to be inspected
and achieves high accuracy detection of insulator defects in complex scenes. The YOLO
series algorithm represented by YOLOv5 [13] stands out in the first stage of detection
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algorithms with its good detection accuracy and fast detection speed, and is widely used
in industrial inspection, but the algorithm is mainly for the detection of targets of medium
size. Considering that insulator defects have a small target share and inconspicuous target
features, it is still challenging for YOLOv5s algorithm to achieve accurate detection of
small target defects in complex backgrounds.

To address the above problems, this paper proposes an improved YOLOv5s insulator
detection algorithm based on saliency information using the YOLOv5s network as a frame-
work, generating saliency images through the saliency information extraction (SANet)
module to improve the extraction of target features in complex backgrounds; adding the
detection of smaller-scale targets to the Head layer of the original YOLOv5s network,
removing The detection of large scale targets is removed from the Head layer of the orig-
inal YOLOv5s network, which improves the detection accuracy of smaller targets and
reduces the complexity of the network; a lightweight attention module (CBAM)[14] is
introduced to reduce the attention of the network to invalid information and reduce the
false detection rate of insulator defects; the EIoU[15] loss function is used to replace the
regression edge (CIoU) loss function to further improve the model performance. Experi-
ments prove that the improved model has a significant improvement in detection accuracy
compared with the original YOLOv5s network and can meet the minimum requirement
of 24 seconds/frame for real-time detection with real-time detection capability.

1.2. YOLOv5s network. YOLOv1, as the pioneer of the first stage of target detection
algorithms, makes the YOLO series algorithms have a very important position in the
field, and from YOLOv1 to YOLOv5, the YOLO series algorithms have been gradually
optimized and achieved wide popularity in the industrial detection field. yOLOv5s is a
version of YOLOv5, which considers both detection accuracy and detection speed, and the
network inference is faster, and the computational complexity is lower, which is easier to
deploy in embedded systems compared to mainstream target detection algorithms such as
SSD [16], Cascade-RCNN, and YOLO series, so this paper is based on YOLOv5s network
for improvement.

The structure of YOLOv5s network is shown in Figure 1, which consists of three parts:
feature extraction (Backbone) layer, feature fusion (Neck) layer and feature detection
(Head) layer. the Backbone layer of YOLOv5s network uses cross-stage local (CSP)
network as the backbone network, including five standard convolutional modules, four C3
modules and one spatial pyramid pooling (SPP) module. Among them, the C3 module
is used for the learning of residual features and consists of three convolutional layers as
well as multiple Bottleneck, which effectively reduces the number of model parameters
and computational complexity, and the SPPF module is used for feature integration,
which speeds up the feature fusion without affecting the accuracy; the Neck layer of
YOLOv5s network draws on the YOLO series algorithm Feature Pyramid (FPN) and
Path Aggregation Network (PAN) interlinked feature fusion, where FPN predicts to large
scale feature maps by up-sampling in a bottom-up manner to enhance image semantic
features, and PAN predicts to small scale feature maps by down-sampling in a top-down
manner to enhance image localization features, aggregating the features generated by
FPN and PAN at different scales of the detection layer. The Head layer of YOLOv5s
accomplishes target classification and location prediction on the feature maps at three
scales of 8x, 16x, and 32x of the input original image, respectively.
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Figure 1. Structure of YOLOv5s network improved based on saliency
information

2. Improved YOLOv5s network based on saliency information. For the prob-
lems of low recognition accuracy and poor localization accuracy in YOLOv5s network
for small target detection, this paper improves YOLOv5s network, and the specific im-
provement work is as follows: 1) add the Significance Information Extraction (SANet)
module, extract the significant target region by semantic segmentation network, generate
the significant image and then integrate it into Neck layer, which effectively suppresses
the background 2) add up-sampling operation in the feature pyramid network (FPN) to
get higher resolution feature maps, and add 160*160 smaller target detection and remove
20*20 large target detection in the Head layer to improve the small target feature expres-
sion ability while reducing the model complexity; 3) introduce attention (CBAM) module
to improve the network for useful information capture; 4) introduce EIoU loss function
instead of CIoU loss function to improve the regression accuracy of the model.
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Figure 2. Structure of YOLOv5s network improved based on saliency
information
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2.1. Significance Information Extraction (SANet) Module. The extraction of saliency
information is essentially a segmentation task, which is accomplished by identifying the
salient subjects of an image and then performing pixel-level segmentation and is widely
used in many fields such as robot collaboration, target detection, and vision tracking.
In the task of insulator defect detection, the interference of complex background makes
the extraction of insulator defect features more difficult. Therefore, SANet network sets
insulators as saliency targets, suppresses the influence of background information on in-
sulator defect detection by enhancing the extraction of insulator features, and improves
the detection accuracy of the network for insulator defects.

In order to extract the insulator features in the image, this paper refers to literature [17]
to design SANet network to separate insulator information from background information,
the network structure is shown in Figure 3, where the existence of rich edge information
in conv 3 layer helps to improve the accuracy of target localization, and the convolutional
features in conv 4 layer and conv 5 layer help to improve the recognition accuracy of the
target, so the Therefore, the feature maps generated by conv 3,conv 4 and conv 5 are
fused to improve the localization accuracy and recognition accuracy of salient targets in
SANet networks, and the specific process is as follows: input the original image, add a 1 Ö
1 convolutional block to conv 3 3, conv 4 3 and conv 5 3 feature maps after two fully con-
nected layers for pixel-by-pixel category prediction, denoted as conv 5 prediction, conv 4
prediction and conv 3 prediction. The feature map predicted by conv 5 is cascaded with
the feature map predicted by conv 4 through the deconvolution up-sampling operation
to generate a feature map with more deep semantic information, and to obtain better
target edge information, it is fused with the feature map predicted by conv 3, and the
insulator prediction map of the original image size is obtained through the deconvolution
up-sampling operation with a convolution kernel of 4× 4.
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Figure 3. SANet network structure

The insulator target is predicted pixel by pixel using SANet network, and the predicted
insulator part is labeled as foreground and the rest is labeled as background to output
the saliency image prediction results. The original image, the visualization results of
saliency features and the prediction results of saliency images are shown from left to right
in Figure 4. From the results in Figure 4(b) and Figure 4(c), the SANet network can
extract the insulator information intact. Since the task of saliency images is only used
to assist detection and provide saliency information for the Neck layer of YOLOv5s, only
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coarse localization of saliency information and segmentation of approximate contours are
needed to help the YOLOv5s network enhance the discrimination of insulator features
from background features to improve the localization accuracy of insulator defects.

The YOLOv5s network uses the feature fusion of FPN+PAN to generate feature maps
for detection at three scales: large, small, medium, and large. To make full use of the
saliency information, the saliency images are down-sampled at multiple levels and incor-
porated into the feature maps at different scales in the YOLOv5s network to assist the
network feature detection layer in enhancing the localization and extraction of saliency
features.

(a) Original image (b) Visualization result (c) Prediction result

Figure 4. Significance graphs generated based on SANet

2.2. SANet module loss function. The loss function of SANet network consists of
three parts: classification loss, regression loss and segmentation loss, in which cross-
entropy loss function and smooth loss function are used for classification loss and regres-
sion loss, respectively. In this paper, the segmentation separates the saliency information
in the image from the background, which is a dichotomous auxiliary detection task, so the
same loss function is used for the segmentation loss and classification loss in this paper.

LSANet{c,t,m} = α
∑
i

Lcls(ci, c
∗
i ) + β

∑
i

Lreg(ti, t
∗
i ) +

∑
i

Lmask(mi,m
∗
i ) (1)

where α is the weight coefficient of classification loss in SANet network and β is the
weight coefficient of regression loss. α and β take the values of 0.2 and 0.8 respectively
in the model training.

1) Classified loss Lcls∑
i

Lcls(ci, c
∗
i ) = −[cilnc

∗
i + (1− ci) ln (1− c∗i )] (2)

where Ci denotes the probability that the feature in the i − th prediction frame is an
insulator, and C∗

i denotes the probability that the intersection ratio of the i − th real
frame and the prediction frame is an insulator, if the intersection ratio of the i− th real
frame and the prediction frame is greater than 0.5, then the prediction result is a positive
sample C∗

i = 1, and vice versa is a negative sample C∗
i = 0 .

2) Regression loss Lreg∑
i

Lreg(ti, t
∗
i ) =

∑
j∈x,y,w,h

SmoothL1(ti,j − t∗i,j) (3)

where j denotes a one-dimensional vector containing coordinate and aspect information,
ti,j denotes the coordinate and aspect information of the i− th prediction frame, denotes
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the coordinate and aspect information of the i − th true frame, and the SmoothL1 loss
function is defined as

SmoothL1

{
0.5x2, |x| < 1

|x| − 0.5, other
(4)

3) Segmentation loss Lmask

∑
i

Lmask(mi,m
∗
i ) = −[milnm

∗
i + (1−mi) ln(1−m∗

i )] (5)

Where, mi denotes the probability that the i− th mask is an insulator, mi
∗ denotes the

i−th mask frame true frame label, target region mi
∗ = 1 , and conversely, the background

region mi
∗ = 0 .

2.3. Improvement of multi-scale detection layer. As shown in Figure 5(a), the Head
layer of YOLOv5s network has three scales of detection layers to complete the target clas-
sification and position prediction on the feature maps of 8x, 16x and 32x scales of the
input original image, i.e., when the input size is 640*640, T2, T3 and T4 extract 80*80,
40*40 and 20*20 feature maps respectively, which are fed into the Head layer for large,
medium and small target detection after multi-scale feature fusion in the F and P layers,
respectively.
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Figure 5. Significance graphs generated based on SANet

UAV inspection is the usual way of insulator fault detection, and the large field-of-view
property [18] of UAV makes insulator defects occupy a relatively small portion of the
image, which makes it difficult to complete accurate detection of insulator defects with
the 80*80 size feature map used in YOLOv5s network. In view of the feature that the
features of small targets on the high-resolution feature map are more expressive and easier
to be detected, this paper improves the multi-scale detection layer of YOLOv5s network,
and the improved network is shown in Figure 5(b), and the specific work is as follows: 1)
After continuing the up-sampling operation on the feature map generated by the F2 layer,
it is fused with the T1 layer features to obtain a higher resolution feature map, adding
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160*160 scale detection head to improve the detection accuracy of the detection layer
for smaller targets; 2) most of the target defect features account for small and medium
sizes, so the large target detection layer of 20*20 scale in the original YOLOv5s network is
removed to reduce the model computational complexity and improve the operation speed.

2.4. CBAM module. The literature [19] in 2018 proposed a lightweight and efficient
attention module, which inferred the attention mapping graph along two dimensions,
channel and space, where the channel attention mechanism calculates the weight coeffi-
cients of each channel of the input image through the network, and the spatial attention
mechanism finds the part with the most aggregated location information based on the di-
rection of the channel based on the channel attention to obtain the channel-space attention
graph that improves the feature representation of the network for the target region. Due
to the complex environment in the insulator detection images used in the dataset and
the small percentage of insulator defect parts compared to the image pixels, to achieve
accurate detection of insulator defects, this paper embeds the CBAM attention module
into the Neck layer based on the improved multi-scale detection layer, and the network
structure is shown in Figure 6.
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P1

Detect

Detect

DetectF3
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160*160

80*80

40*40

CBAM

CBAM
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Figure 6. Schematic diagram of YOLOv5s+CBAM network structure

The specific process of CBAM module is as follows, first set the middle layer feature
map F ∈ RC×H×W∗ as input, send it to Channel Attention Module (CAM), keep the input
feature map channel dimension unchanged, compress the spatial dimension to generate
the attention map Mc(F ) ∈ RC×1×1, multiply with the input feature residuals to get the
channel adaptive feature refinement map , then through the Spartial Attention Module
(SAM) module, use the spatial dimension of the feature map to get the spatial attention
map, and finally output the adaptive feature map after weighted multiplication. Spartial
Attention Module (SAM) module, using the spatial dimension of the feature map to obtain
the spatial attention map Ms(F ) ∈ R1×H×W , and finally output the adaptive feature map
F ′′ after weighted multiplication. The attention calculation formula is shown in Equation
(6)(7), and the structure of CBAM is shown in Figure 7:
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Figure 7. CBAM Module schematic

F ′ = MC(F )⊗ F (6)

F ′′ = MS(F )⊗ F ′ (7)

2.5. Loss function. The loss function of YOLOv5 network consists of three parts:
bounding box loss, classification loss, and confidence loss. CIoU-Loss, Logits, and Binary
Cross Entropy loss functions are used to calculate the target bounding box, classification,
and confidence losses, respectively. At present, the most widely used loss function in the
bounding box regression is CIoU-Loss, but in its regression process, there is a problem
that the width and height of the prediction box cannot be increased and decreased at the
same time when the w and h of the prediction box and the real box present a linear ratio.
To address the above problems, EIoU is improved since CIoU loss function by introducing
the difference between the width and height of the prediction frame and the width and
height of the minimum external matrix and redefining the aspect ratio loss term to make
the prediction frame more consistent with the real frame. Therefore, EIoU-Loss is finally
chosen to replace CIoU-Loss as the loss function of the regression frame in this paper,
and the EIoU calculation process is as follows:

LEIOU = LIOU + Ldis + Lasp (8)

LIOU = 1− IOU (9)

Ldis =
ρ2(b, bgt)

c2
(10)

Lasp =
ρ2(w,wgt)

c2w
+

ρ2(h, hgt)

c2h
(11)

where IOU (Intersection of Union) is the intersection and ratio of the prediction frame
and detection frame, which indicates the degree of overlap between our detection area
and the target area, and it takes values in the range of [0,1], LIOU denotes the overlap
loss, Ldis denotes the center distance loss, Lasp denotes the aspect ratio loss, ρ2 = (x2 −
x1)

2+(y2−y1)
2 denotes the Euclidean distance between two points, c denotes the diagonal

distance of the minimum external matrix of the overlap, w , h , and b denote the width,
height, and center point coordinates of the prediction frame, respectively, wgt , hgt , and
bgt denote the width, height, and center point coordinates of the real frame, respectively,
Cw and Ch denote the width and height of the direct minimum external matrix of the
prediction frame and the real frame.
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3. Experiments and results analysis.

3.1. Experimental data set. The experimental dataset consists of insulator images
collected by China Power Grid, and there are 3409 insulator images in the dataset, in-
cluding 892 images of insulator defects. Therefore, this paper adopts random rotation and
cropping, contrast adjustment, Gaussian blur, and noise injection to expand the insulator
defect data set, and some of the image enhancement effects are shown in Figure 8. In this
paper, 3568 insulator defect images are randomly divided into training set, test set and
validation set in the ratio of 8:1:1, and then the insulator defects are manually labeled by
via toolbox, and the labeled images are saved in VC2007 format for model training.

(a) Random rotation and cropping (b) Contrast adjustment

(c) Gaussian blur (d) Injecting noise

Figure 8. Example of partial image enhancement

3.2. Descriptive statistics. The experimental configuration of this paper is: CPU: In-
tel(R) Core(TM) i5-1135G7, GPU: NVIDIA RTX 1080Ti, OS: Windows 10, deep learning
framework: Pytorch 1.7.0, python 3.8, CUDA 11.4. the hyperparameter settings of the
improved model are shown in Table 1.

Table 1. Model hyperparameter settings

Learning
rate

Number of it-
erations

Batch
size

Decay
weights

Optimizer

0.01 300 32 0.0005 SGD

To verify that the improved algorithm proposed in this paper has superiority in de-
tection accuracy, the widely recognized correct rate P(%), recall rate R(%) and average
accuracy mAP(%) in the field of target detection are chosen as indicators to evaluate the
model performance, as follows:

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)



802 X. Fang, X. Wu, Y.-H. Ma and H. Lian

AP =

∫ 1

0

P (R) dR (14)

mAP =
1

n

n∑
i=0

AP (i) (15)

where TP is the number of insulator defect samples with correct prediction results, FP
is the number of insulator defect samples with incorrect prediction results, and FN is the
number of non-insulator defect samples with incorrect prediction results.

3.3. Ablation experiments. To verify the effectiveness of the improved algorithm in
this paper, ablation experiments are conducted for each module, and the experiments
compare (1) YOLOv5s model; (2-5) YOLOv5s +EIoU model, YOLOv5s +CBAM model,
YOLOv5s +improved detection layer model and YOLOv5s based on YOLOv5s by adding
improvement mechanisms one by one +SANet model; (6) YOLOv5s +SANet +improved
detection layer model based on significance information extraction and multi-scale de-
tection layer improvement; (7) YOLOv5s +SANet +improved detection layer +CBAM
model based on serial number 6 with the introduction of CBAM module in front of differ-
ent scale detection layers; (8) EIoU based on serial number 7 with loss function to replace
the CIoU loss function in the original model for the improved model in this paper. In
this paper, the above eight models are experimented on insulator defect detection dataset
using P, mAP5o and mAP5o:95 as evaluation indexes, Where mAP5o indicates the detec-
tion accuracy when the IOU cross-merge ratio threshold is 0.5, when the confidence of the
predicted sample is greater than the threshold, the sample is predicted to be positive, and
vice versa. mAP5o:95 indicates the average detection accuracy of 10 different cross-merge
ratios in 50-95, and the experimental results are shown in Table 2.

Table 2. Ablation experiments

NO. SANet Detection
layer

CBAM EIoU P(%) mAP5o(%)mAP5o:95(%)

1 89.54 86.75 53.17
2 ✓ 90.26 86.94 53.41
3 ✓ 90.67 87.05 53.34
4 ✓ 91.28 88.29 54.88
5 ✓ 92.12 89.11 55.63
6 ✓ ✓ 93.23 86.97 56.41
7 ✓ ✓ ✓ 93.55 89.92 56.36
8 ✓ ✓ ✓ ✓ 93.79 90.18 56.49

As can be seen from the experimental results in Table 2, Sequence No. 2 uses EIoU to
replace the loss function of the original network, which improves the regression accuracy
of the prediction frame and improves P by 0.72% compared to the YOLOv5s network;
Sequence No. 3 adds the CBAM module to the original network and improves P by 1.13%
compared to the YOLOv5s network; Sequence No. 4 adds a smaller target detection layer
to the multiscale detection layer to improve The detection accuracy of the network for
small targets is improved by 1.54 and 1.71% compared with YOLOv5s network mAP5o

and mAP5o:95, respectively; the addition of SANet module to the original network by serial
number 5 improves mAP5o and mAP5o:95 by 2.36% and 2.46%, respectively. positive effect.

Finally, Sequence 8 improves the multi-scale detection layer by fusing both SANet
saliency information module and CBAM attention module into the network, and replaces
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the original network loss function with EIoU loss function, which effectively improves
the detection accuracy of the network, compared with the original YOLOv5s network,
the detection accuracy P improves by 4.25%, mAP5o improves by 3.43%, and mAP5o:95

improves by 3.32%. The detection accuracy P is improved by 4.25%, mAP5o by 3.43%
and mAP5o:95 by 3.32% compared with the original YOLOv5s network. By combining the
above improvements, the detection accuracy P can reach 93.79%, mAP5o and mAP5o:95

can reach 90.18% and 56.49% respectively, which has a better detection effect in the
detection of insulator defects in complex scenarios.

To further verify the effectiveness of the improved algorithm, some images from the
insulator defect dataset are selected for testing, Figure 9(b)(c) shows the feature visual-
ization results of the YOLOv5s algorithm and the algorithm in this paper for insulator
defect detection, respectively, from the experimental results, it can be seen that the fea-
tures of insulator defects are not obvious in the YOLOv5s algorithm network, while the
improved algorithm in this paper can effectively suppress the influence of background
information on detection and improve the network’s attention to the features of small
target insulator defects. Figure 10 shows the detection effect of insulator defects, and
the improved YOLOv5s algorithm based on saliency information proposed in this paper
achieves the accurate detection of small target insulator defects in complex environments,
which has some practical value.

Figure 11 shows the comparison of mAP5o(%) between this algorithm and the original
algorithm YOLOv5s in 300 training rounds. From the figure, it can be seen that the
improved model gradually converges around the 55-th round, and the original algorithm
YOLOv5s gradually converges around the 100-th round, compared with the original al-
gorithm, this algorithm has obvious improvement in convergence speed and accuracy.

(a) Original image

(b) YOLOv5s algorithm feature visualization results
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(c) The visualization results of the algorithm features in this paper

Figure 9. Comparison of insulator feature visualization results

Figure 10. Insulator defect detection results comparison
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Figure 11. Comparison chart of loss function training.
3.4. Comparison experiments. To verify the superiority of the algorithm in this paper,
mAP5o and FPS (frames per second) are chosen as evaluation indexes to compare this
algorithm with mainstream target detection algorithms, and the comparison results are
shown in the following table.

Table 3. Comparison of mainstream target detection algorithms.

N0. Algorithm name mAP5o(%) FPS(Hz)
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1 SSD 75.33 26
2 Cascade-RCNN 81.97 19
3 Faster-RCNN 84.65 16
4 YOLOv4 87.37 43
5 YOLOv5s 86.75 107
6 YOLOR 88.23 33
7 Our 90.18 36

As can be seen from Table 3, compared with SSD, Cascade-RCNN, and Faster-RCNN
algorithms, this paper has significant advantages in detection accuracy and speed, and
compared with YOLO series target detection algorithms, this paper has improved the
detection accuracy by 2.57%, 3.43% and 1.95% respectively. Although the detection
speed is slightly inferior, it still has the ability of real-time detection. In summary, this
algorithm has higher detection accuracy than the current mainstream insulator defect
detection algorithms based on real-time detection requirements.

4. Conclusion. In this paper, we propose an improved YOLOv5s algorithm based on
saliency information to address the problem of low detection rate of insulator defect
recognition in complex scenes, generating saliency images through SANet network to
suppress the influence of background information; improving the multiscale detection
layer to enhance the detection capability of the network for smaller targets; introducing
CBAM module in Neck layer to improve the network for defect features The CBAM
module is introduced in the Neck layer to improve the focus of the network on the defect
features; the EIoU-Loss is replaced to accelerate the convergence of the model and improve
the regression accuracy. The average detection accuracy of mAP5o and mAP5o:95 reaches
90.18% and 56.49%, respectively, which is an improvement of 3.43% and 3.32%, and
effectively reduces the false detection and leakage of insulator defects, and the algorithm
has better recognition and performance than other target detection algorithms.
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