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Abstract. When dealing with time series data in real life, it is not possible to avoid
generating missing data due to network signal interruptions, environmental conditions
and sensor failures. Although many methods for imputing data have been proposed, there
are still limitations. To begin with, most imputation models do not consider the data’s
local information, such as its trend. Second, there will always be gaps in time series data
at random points. However, most previous research used particular imputation based
on known missing positions, and no simulation trials for the case where all positions
are missing are done. This is not applicable for future imputation tasks. To this end,
this paper proposes the time series combining convolutional and transformer (TimeCT)
model, which fuses the transformer’s global information modeling capability with convo-
lutional neural networks to extract local features and predict missing location data in both
directions for both historical and future data. Meanwhile, we develop a deficient dataset
constructor algorithm to simulate the location of missing values in a real time series
data set (K-fold missing construction). Finally, we conduct numerous experiments to
confirm the model’s effectiveness. Our model generates better results when compared to
the most sophisticated comparison methods. This method addresses the issue of filling in
numerous missing cases to improve the accuracy of subsequent tasks like prediction and
classification
Keywords: time series data, missing data, imputation, Convolution, Transformer, miss-
ing construction algorithm.

1. Introduction. In the fields of finance, meteorology, hydrology, signal processing, and
engineering technology, time series data is frequently used. In time series analysis, im-
putation of missing values has always been a major concern [1]. Real-world time series
are frequently collected for various reasons and always contain missing entries, resulting
in incomplete data, which affects data quality and makes downstream time series classi-
fication or regression problems difficult to solve. Furthermore, local information on the
context of missing data is rarely used, and missing data might occur at any time, mak-
ing the location of missing data distribution generally uncertain. Then the information
utilized to generate the missing at different locations is different. It makes it difficult
to convert simple static imputation to dynamic imputation, which makes the imputation
work harder when the missing data position is unknown.

A neural network model would be a good choice to solve these issues. The neural
network will analyze the data and look for correlations between the data for imputation.
As we will discuss in the next section, there is a large literature devoted to solving missing
and irregular patterns in time series datasets. By reading some related literature [2], we
consider the benefits of convolutional neural networks. We propose TimeCT, a combining
convolutional and transformer depth imputation approach, to address these concerns.
Through feature fusion [3], the model combines the local characteristics collected by CNN
with the global features extracted by transformer [4]. As a result, we turn the missing
value imputation problem into a missing position prediction problem using the missing
position context data. Meanwhile, we simulate a missing situation and propose a K-fold
missing construction algorithm to generate missing in all positions in a dataset. Training
the model on this dataset improves the model’s applicability, while increasing the amount
of data makes model training easier. The experimental findings demonstrate that the
TimeCT model performs better when filling in the missing data. The following are this
paper’s main contributions:
� 1) We design a combinatorial convolution and transformer in-depth imputation model

called TimeCT. The model uses both CNN feature extraction and transformer’s content
attention and location self-attention mechanisms [5] to capture global information from
temporal data, allowing the model to consider both local and global information when
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predicting missing values and thus improving overall model performance. It has outper-
formed CNN and transformer in terms of performance.
� 2) We propose a construction algorithm for missing data (K-fold missing construction)

to simulate the situation where missing data may occur at any position, increasing the
data sample and extending the applicability of the model.
� 3) We validated the TimeCT model on the Australian water quality time series dataset

and the Beijing air pollution time series dataset to show its validity.
The remainder of the paper is structured as follows: We briefly touch on related work

in Section 2. In Section 3, we formally introduce the setup and problem description of
the time series imputation task. We present the overall architecture and each module of
the TimeCT model, as well as our time series imputation method. Then we describe the
K-fold missing construction algorithm in detail. To assess the model’s performance, we
carry out extensive experiments in Section 4. Finally, we conclude the work in Section 5.

2. Related Works. Missing data strongly affects the performance of downstream tasks
in time series datasets, and time series data imputation challenges [6] are particularly
widespread in real life. And most of the datasets for any downstream tasks are subjected
to data imputation preprocessing operations. Although there has been a lot of research
into dealing with missing values, such as simple deletion methods, they may overlook
critical information. There are also statistical methods such as eigenvalue padding, mean,
median, and common values of statistical data for imputation. The multiple interpolation
method [7], using multiple imputation by chained equations (MICE), in various iterations
to estimate the missing values.

In addition to statistical methods, many researchers used machine learning [8] models
for data imputation, such as the nearest node algorithm [9], multilayer perceptron [10],
and random forest [11]. These are commonly used in data imputation algorithms. These
methods, on the other hand, ignore the time dependence of time series data.

In recent years, many researchers have used deep learning methods to process time series
data [12], and recurrent neural networks (RNN) have shown good results in modeling
time series data. For example, Jiang et al. [13] used RNN for short-term urban traffic
prediction. Meanwhile, various RNN-based data imputation and prediction approaches
have been presented [14, 15], such as long-short time memory networks (LSTM) [16]. Li
et al. [17] used long-short time memory with support vector machines (SVM-LSTM) to
fill in missing values in real-time traffic monitoring data. Generative adversarial networks
(GAN) are also often used for data imputation. Yoon et al. [18] utilized a generative
adversarial network to fill time series data, while Luo et al. [19] used an end-to-end
generative adversarial network to fill the missing data. Furthermore, convolutional neural
networks perform well in the prediction of time series. Despite the fact that convolutional
neural networks play a critical role in solving computer vision problems, and time series
prediction is a very different challenge, we may still use CNN’s benefits to help with time
series prediction tasks [20] or other time series tasks [21, 22]. For example, Guo et al. [23]
proposed using one-dimensional convolution with GRU and other algorithms for short-
term water consumption. There are also other traditional time series forecasting models
that use causal convolution internally, such as the temporal convolutional network [24]
(TCN) and the WaveNet [25] model. It can be seen that convolution operations have
good results in time series prediction tasks.

In the prediction [26] of time series data, the recent popular transformer model has
shown improved results [27]. For example, Wu et al. [28] used the transformer model to
accurately predict influenza prevalence using a time-series dataset of influenza epidemic
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cases. Zerveas et al. [29] proposed a new framework for learning multivariate time se-
ries representations based on the transformer encoder architecture and demonstrated the
effectiveness of this architecture by evaluating it on a publicly available dataset. In the
field of data imputation, Yu et al. [30] proposed a geometry-sensitive point cloud impu-
tation transformer for missing point cloud generation by modeling the point cloud as a
set of disordered point agents and applying the transformer’s encoder-decoder structure.
Wan et al. [31] took advantage of transformer’s ability to obtain global structural in-
formation to generate structural information for the image’s missing component. These
results demonstrate that transformer has a unique advantage in solving time series prob-
lems. This approach represents each input sequence element simultaneously by taking
into account the context (future-past) of each input sequence element and learns complex
patterns from time series data using a self-attentive mechanism [32]. While taking into
account many correlations between various representation subspaces and input elements,
multiple attention headers are especially well suited for time series data.

Based on the transformer model’s efficiency in the task of time series data imputation
and prediction, we propose a combining convolutional and transformer model. This model
not only uses transformer’s self-attention mechanism to learn the complex structure of
time series data, but also uses convolution to extract the data’s local information. The
multi-headed attention mechanism now focuses on the shifting trend of time series data
rather than just the information of a single data point. This is the first time we apply the
transformer model to the imputation of time series data. At the same time, we construct
the missing dataset using the algorithm we designed to simulate the possible cases of
missing and verify the validity of this model.

3. Methods.

3.1. Problem Description. Due to objective factors such as equipment malfunction,
lack of constant power supply, data transmission issues, and so on, there is always a
completely random absence of certain data in most sensors. It is possible for data to be
absent at any point in time in time series data. This can lead to different prior knowledge
being utilized at different locations of the absence. As a result, determining the location
of the missing values is critical.

To formulate this type of problem, we assume that the time series data produces com-
pletely random missing at each moment. As a technique to verify the model’s and algo-
rithm’s stability, we use a sliding window with a window of 1 to create a missing value
for 24 hours of time series data. To test the model’s scalability, the missing construction
method with a sliding window of 4 is utilized to simulate the data and generate continuous
missing [33]. The 24-hour time series is denoted as:

T = t1, t2, . . . , ti, . . . , t24 (1)

where denotes the data at the moment.
After constructing the positions of the missing values, the time series can be expressed

as:

T
′

= t1, t2, . . . , ti−1, 0, ti+1, . . . , t24 (2)

or

T
′

= t1, t2, . . . , ti−1, 0, 0, 0, 0, ti+4, . . . , t24 (3)
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where (2) indicates a simple random position missing in the time series data and (3)
denotes four consecutive missing data points. In the next chapter, we will describe the
specific construction methods in detail.

To solve the problem, we design a deep learning model that learns the relationship
between sensor monitoring parameters in the past and future to fill in missing values
based on missing positions in time series data. Furthermore, we offer a way for producing
a large number of training samples for both training and validation. Finally, we use the
test set to train and assess the proposed model.

3.2. Models & Algorithms. The structure of the data imputation method proposed in
this paper is shown in Figure 1. For long time series data, processing with models such
as RNN and LSTM does not solve the problem of gradient disappearance and gradient
explosion, resulting in LSTM not easily obtaining global information. However Trans-
former solves this problem and is able to capture the global information between data
more accurately. In addition, the combination of CNN’s local feature extraction capa-
bility to find local correlations between data allows for more accurate complementation.
Among them, the TimeCT model effectively reduces local redundancy by improving the
transformer model and adding a convolutional layer in Self-Attention while capturing
global dependencies using the transformer. This not only improves the ability to model
contextual information in time series, but it also allows the transformer to capture global
information, which helps predict missing location data.

We also propose a K-fold missing construction algorithm by simulating missing data on
a real-time series dataset to give a data basis for data imputation, due to the randomness
and continuity of missing data.

Data imputation should be able to see both past and future information to fill in the
missing location data, unlike the conventional approach of using only past data to predict
future data. So we get inspiration from bi-directional complementary time series data in
Bi-Directional GAN [34] and Multi-Directional RNN [35]. We split the missing data set
into past and future data using the missing location as a barrier. Using past and future
data, the model will predict missing values in both directions.

In Figure 1, we construct the complete data as missing data by the proposed missing
construction algorithm and divide the remaining complete data into historical data and
future data. We then fed the two segments of data into the model separately for train-
ing. The input time series is convolved, embedded, and fused to obtain the extracted
feature vectors. The features are sent into the transformer’s encoder layer, which out-
puts a forward embedding vector or a backward embedding vector. The encoder layer
is made up of two layers, each of which has two sub-layers: the first is a multi-headed
attention mechanism that computes the input self-attention, and the second is a simple
fully connected layer. Residual networks and normalized (ADD & Norm) are employed in
each sub-layer. Then the vector passes through the decoder, which is made up of a linear
layer, to produce the prediction results. The bidirectional loss function MSELoss is also
designed for training, and the output of the result with the minimum loss is obtained for
final filling.

3.3. TimeCT model. TimeCT employs the transformer’s encoder’s multi-header atten-
tion method, such as the encoder shown in Figure 1. The encoder takes the missing values
from the input time series and maps them to the hidden layer. To forecast the value of
the missing position, the deep neural network (DNN) functions as a model decoder.

The model presented in this paper extends the classic transformer model’s encoder with
a convolutional layer. We perform convolution operations to compute the query and key
of the multi-headed attention mechanism using a convolution kernel of size greater than
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Figure 1. Data Imputation Method Structure

1 [36, 37], so that the attention can pay more attention to the local context of the data
itself and extract the relevant features for matching.

For the time series with missing values x = x1, x2, ..., xn where xi ∈ Ri , each of xi is a
multi-source time series with d-dimensional features. For the input temporal data, in order
for the network to identify its sequential relationships, the position information of each
temporal data must be provided to the transformer. So, we add position encoding, which
internally uses a linear transformation of the sum function to give the model the sequence
information of the temporal data, mapping the position information to a point in the
position space, thus giving relative position information to the input vector. Equation
(4) is the embedding operation of the input sequenceX, the output embedding vector
Xembedding, Equation (5) is the location encoding operation of the embedding vector, the
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output vector Xembedding:

Xembedding = Embedding(X) (4)

Xembedding = pos encoder(Xembedding) (5)

where Embedding is the vector encoding function and pos encoder is the position en-
coding function.

To extract the local features from the input data, we perform a one-dimensional convo-
lution operation (matrix multiplication of the input) with a layer of convolution kernel size
of 2 Ö 2 and a step size of 1 for the input data. Convolution improves the model’s ability
to simulate local contextual information in time series, lowering the impact of outliers
on prediction outcomes and increasing prediction accuracy. So, we use the convolution
operation on the input X to extract its local features and output the feature vector X conv
after the activation function:

X conv = Sigmoid(Convolution(X)) (6)

where Sigmoid is the activation function, and Convolution is a one-dimensional convo-
lution function with a convolution kernel size of 2 Ö 2 and a step size of 1.

Subsequently, in order that the long-range dependency information obtained by the
transformer module is not missing, the convolved temporal data is fused with the encoded
data before calculating the query, key, and value:

Input = X embedding + X conv (7)

Q = Linearq(Input) = Input ∗WQ (8)

K = Lineark(Input) = Input ∗WK (9)

V = Linearv(Input) = Input ∗WV (10)

Xatt = Self Attention(Q,K, V ) (11)

where Linear is the linear layer, WQ, WK , and WV are the linear layer learning param-
eters, and Self Attention is the self-attention mechanism function.

Multiple groups of self-attention are composed of multi-head attention. The attention
mechanism computes (WQ

0 ,WK
0 ,W V

0 ), (WQ
1 ,WK

1 ,W V
1 ) focus on different contexts, respec-

tively. Since the attention score in the whole time series prediction only evaluates the
association between single time points, such as in (A) in Figure 2, which only considers
values with similar time points without taking into account its own local data informa-
tion, we add a convolutional layer to enhance the modeling ability of the local context,
as in (B) in Figure 2. After using convolution, the model focuses on its own information,
such as the change trend of the data.

3.4. K-fold missing construction algorithm. We offer a method for processing the
dataset that simulates the condition where time series data may be missing at any point.
To construct missing data, different values might be set according to the sliding window
K. Here is an example of K = 1 and K = 4. The method of construction using a sliding
window of 1 emphasizes the randomness of the missing position more. The time series
data may be missing at any time, as seen in Figure 3, where red indicates the missing
data. To construct a missing value, the sliding window is set from 24 hours to 0 hours
with a step size of 1, and K = 1, referred to as the 1-fold missing construction method.
As illustrated in Figure 4, the construction method with a sliding window of 4 simulates
the condition of continuous missing time series data.
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Figure 2. Australian water quality dataset data for a certain time period.
(A) Attentional focus without convolutional layers (B) Attentional attention
part after adding convolutional layers

Figure 3. Missing value construction algorithm with 1 step size and 1
sliding window

After constructing the missing data set, the whole data set will be divided into past
and future data. When the missing position is 5, for example, there are 5 data points in
the past moment and 19 data points in the future moment of the missing data in Figure
3.

This method generates a large amount of training and validation data, which is essential
for training deep learning models. The large sample size allows the models to learn more
effectively how to exploit historical and upcoming data sets in the presence of diverse
missing places.

4. Experiment.

4.1. Datasets and pre-processing. We process and experiment on the groundwater
resources time series dataset obtained from the Australian government’s water quality
monitoring program and the Beijing air pollution time series data in order to assess
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Figure 4. Missing value construction algorithm with 4 step size and 4
sliding windows

the efficacy of the created model. These two datasets contain multi-source features and
are typical time series datasets. The training and validation datasets are comprehensive
datasets that are used to check the precision of the imputation performed in this paper.

For the Australian Government’s water quality multi-source time series data, the data
included sediment and nutrient monitoring at 43 sites in 20 major catchments. In this pa-
per, we only use the measured nitrogen (NO3) as the missing feature, and other variables
are auxiliary features. Other features affect the missing features, so we input them into
the model together as auxiliary features, so that the model can find the relationship be-
tween the auxiliary features and the missing features, and thus fill them in better. When
the data volume is limited, we therefore utilize a total of 8736 time series data points
from January 1 to October 1 as the training set and data from October 1 to December 31
as the validation set. Due to the small amount of data, the model cannot be trained and
evaluated adequately if the original data is utilized directly for the experiment. Using the
K-fold missing data construction algorithm, the data is divided into a group of 24 hours
by day, and the missing data of the experiment is constructed by sliding window of 1
with a step size of 1. A set of time data will be used 24 times, so it is expanded from the
original 8736 data to 209664 data for training. As a result, the amount of data increases
and the model can be trained better.

For the Beijing air pollution multi-source time series data, the source is the hourly
weather and air pollution indices collected by the U.S. Embassy in Beijing for a total
of five years from 2010 to 2014. The dataset includes dates, PM2.5 concentration, dew
point, temperature, wind direction, wind speed, cumulative hourly snow, and cumulative
hourly rainfall. In this paper, we use PM2.5 as the missing feature. Then we utilize the
data from January 2, 2010 to January 1, 2013 (a total of 26,304 time series data) as the
training set, and the data from December 31, 2012 to December 31, 2014 as the validation
set (a total of 17,544 data). This dataset has a huge amount of data, which allows the
model to be better trained and give better results.

In the above two time series datasets, we apply the proposed K-fold missing construc-
tion algorithm to accomplish 1-fold missing construction and 4-fold missing construction,
respectively. The 1-fold missing construction makes each position produce a missing,
which can make the model focus more on learning the information of the missing value
position. The 4-fold missing construction is focused on solving the case of continuous
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missing data. Specifically, when the missing occurs at the very beginning and the very
last moment of the time series, only the data from the future or past moments is used
to complete the data, respectively. In summary, the missing data processed in this pa-
per contains all possible locations where the missing may occur and the possibility of
continuous missing, which is more applicable and scalable.

4.2. Experimental setup. In the experiments, we implement the TimeCT model for
training and experimental validation of the constructed missing dataset using PyTorch.
The hyperparameters of the model are determined by the performance of the model on
the validation set. We employ the Adam optimizer with an initial learning rate of 0.001
during the training phase and adjust the learning rate using StepLR of Pytorch, setting the
adjustment round interval to 100 rounds, with each adjustment 0.1 times. The batch size
is 64. 500 rounds of training are conducted simultaneously, and the training is terminated
when the validation set error does not drop in 100 consecutive rounds. And when the
validation set error is reduced, the hyperparameter is the hyperparameter of the model.
We constructed 1 missing, 2, 4, 12, and 24 consecutive missing for experiments to verify
the performance of the model.

4.3. Comparison with Current Data Imputation Methods. We compare the TimeCT
model with the following baseline used for data imputation:
� MEAN: The mean fill algorithm fills in the missing position data by calculating

the mean of the data. This is the most basic interpolation method, which is very fast to
compute, but has the disadvantage that mean interpolation reduces the variance difference
of the data.
� LOCF algorithm: Last observation carried forward (LOCF), fills with the last obser-

vation before the missing one.
� Kalman filtering: The Kalman filtering algorithm effectively estimates the system

state from the system input and output values by using the state equation of a linear
system. We use Kalman smoothing for missing value estimation.
� RF algorithm: Multiple decision trees are built by Random Forest to fill in the missing

values, resulting in random and uncertain data. This better reflects the true distribution
of this unknown data, further ensuring the accuracy and reliability of the obtained filled
values. We use a training set of samples without missing values for all data (including
historical and future data) with missing positions removed, and a test set of samples with
missing values, and use the random forest algorithm for regression modeling to predict
the missing values.
� MICE algorithm: Multiple interpolation of chained equations, this method fills in the

missing data in the dataset through a series of iterations of the predictive model. In each
iteration, each specified variable in the dataset is estimated using other variables in the
dataset, and these iterations continue to run until convergence is satisfied. The default
fill strategy taken is Predictive Mean Matching (PMM). It has the advantage of being
able to interpolate appropriate values when the assumption of normality does not hold,
and the disadvantage is that it is difficult to determine the random error term.
� RNN: Recurrent neural networks perform well in time series prediction, so we use

RNN to forecast missing location data based on the remaining complete data as past and
future data.
� LSTM: Long and short-term memory networks are a particular form of RNN that

can learn long-term temporal dependence in prediction tasks. Similarly, we use the past
data to predict the missing positions and the future data to predict the missing position
data in reverse.
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As evaluation measures, we employ the mean absolute error (MAE), root mean square
error (RMSE), and symmetric mean absolute percentage error (SMAPE):

MAE =
1

n
Σn

i=1|y − yhat| (12)

RMSE =

√
1

n
Σn

i=1(|y − yhat|)2 (13)

SMPE =
100

n
Σn

i=1

|y − yhat|
|y|+ |yhat|

% (14)

where y and yhat are the true and predicted values, respectively. The smaller the value
of the evaluation index we chose above, the smaller the model filling error and the better
the filling effect.

Table 1. Performance comparison of different data imputation methods
on the constructed Australian water quality missing data set

Model MAE RMSE SMAPE

MEAN 23.31 61.00 116.66
MICE 8.68 34.96 51.35
LOCF 5.58 23.89 29.54

Kalman filtering 3.28 15.11 23.71
RF 16.76±0.46 45.06±1.65 57.27±0.36

RNN 6.99±0.07 25.88±0.16 48.20±0.13
LSTM 6.69±0.08 25.87±0.17 47.58±0.17

TimeCT 2.82±0.11 11.85±0.13 21.50±0.10

Table 2. Performance comparison of different data imputation methods
on the constructed missing data set of Beijing air pollution

Model MAE RMSE SMAPE

MEAN 20.42 48.68 119.96
MICE 1.65 6.31 28.58
LOCF 1.16 4.86 17.89

Kalman filtering 0.87 3.44 14.38
RF 3.28±0.24 11.43±0.46 542.65±0.41

RNN 1.07±0.10 3.82±0.07 20.19±0.17
LSTM 0.97±0.13 3.69±0.05 18.91±0.10

TimeCT 0.63±0.12 2.60±0.12 10.38±0.10

As demonstrated in Tables 1 and 2, the TimeCT model performs best in terms of
evaluation metrics on the missing dataset produced using the 1-fold missing construction
strategy. The missing case constructed at K = 1 simulates the possibility of random
missingness in time series data at any point in time. The model has a good filling effect
in this case indicating that the model can handle such missing cases well.

It should also be addressed whether the model is still viable in the presence of contin-
uous missing data. To validate the model, we created a missing dataset with 2 versus
4 consecutive missing points at a time using the 2-fold and 4-fold missing construction
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Table 3. Comparison of model performance in the Australian water qual-
ity dataset at K=2 and K=4

K=2 K=4

Model MAE RMSE SMAPE MAE RMSE SMAPE

MEAN 23.35 78.86 113.28 24.38 38.30 117.32
MICE 10.20 35.90 53.14 12.79 28.89 61.66
LOCF 9.20 45.08 41.97 16.42 7.64 66.04

Kalman filtering 10.90 41.58 66.05 17.58 62.97 122.12
RF 22.86±0.72 52.57±0.32 74.36±0.33 19.65±0.59 32.62±1.39 68.64±2.23

RNN 6.21±0.59 28.24±1.39 36.47±2.23 10.52±0.11 24.08±0.17 51.83±0.16
LSTM 5.81±0.10 26.85±0.17 30.11±0.18 9.75±0.10 23.02±0.17 50.03±0.18

TimeCT 4.89±0.34 19.28±0.42 28.47±0.72 8.29±0.19 20.79±0.30 48.76±1.53

Table 4. Comparison of model performance in Beijing air pollution data
set at K=2 and K=4

K=2 K=4

Model MAE RMSE SMAPE MAE RMSE SMAPE

MEAN 19.79 49.31 114.39 20.11 29.78 117.75
MICE 2.06 7.53 0.71 2.23 4.98 36.02
LOCF 1.96 10.53 26.17 2.99 6.83 39.02

Kalman filtering 4.12 13.52 56.63 6.94 22.09 116.87
RF 4.71±0.41 13.45±0.52 57.42±0.12 4.28±0.12 9.05±0.34 54.76±0.61

RNN 1.80±0.19 4.69±0.22 16.76±0.31 .08±0.20 5.05±0.21 29.53±0.52
LSTM 1.43±0.21 4.33±0.34 15.59±0.55 1.81±0.32 8.79±0.41 28.97±0.62

TimeCT 0.99±0.15 4.20±0.21 14.93±0.42 1.43±0.21 3.93±0.33 21.26±0.44

Table 5. Comparison of model performance in the Australian water qual-
ity dataset at K=12 and K=24

K=12 K=24

Model MAE RMSE SMAPE MAE RMSE SMAPE

MEAN 24.60 133.06 133.52 28.00 197.17 155.16
MICE 12.51 97.68 62.25 22.22 165.50 91.48
LOCF 19.47 150.16 974.68 23.51 183.41 98.04

Kalman filtering 22.94 171.70 164.84 23.71 125.37 176.13
RF 33.03±0.62 190.95±1.22 108.49±1.32 34.94±0.71 234.73±1.29 119.86±1.46

RNN 13.53±0.31 67.20±0.42 57.25±0.44 22.08±0.10 75.05±0.11 89.53±0.72
LSTM 13.13±0.33 6.13±0.60 56.79±0.42 20.91±0.50 74.24±0.66 8.92±0.32

TimeCT 13.05±0.35 66.02±0.43 56.32±0.61 18.63±1.01 67.59±0.79 8.03±0.44

algorithms on both datasets. The results are shown in Table 3 and Table 4. In order
to verify the maximum number of consecutive absences that the model can fill, we again
took K = 12 and K = 24 for experiments on the Australian water quality dataset. In the
experiment, in order to use more data to predict the missing values more accurately, we
expanded the time length to 72 hours and used data from the past day versus the future
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day to predict the intermediate missing parts. The results are shown in Table 5. It can
be seen that even in the case of continuous missing, the TimeCT can still produce a good
filling effect compared with other models. However, as the number of consecutive missing
increases, the difficulty of filling grows, resulting in a decrease in model performance.

From all the above results, it is clear that the majority of machine learning and con-
ventional statistical methods are not particularly good at solving the issue of missing
time series data. Among them, the Kalman filter algorithm produces better results for
a small number of missing, but the performance decreases significantly as the number of
missing increases with increasing K values. In contrast, recurrent neural networks in deep
learning have better results for filling time series. However, for LSTM, although improve-
ments have been made to RNN with improved performance, the gradient disappearance
and explosion problems are still not solved for long sequences, resulting in LSTM not
being able to obtain global information easily, which can be solved by transformer archi-
tecture. The transformer has a stronger long-term dependency modeling capability, so it
is easy to obtain global structural information. At the same time, different heads in the
transformer’s multi-head attention can focus on different patterns, so that long-term de-
pendencies and short-term dependencies can be modeled simultaneously. The transformer
with added convolutional layers places more emphasis on local information, allowing the
head to focus not only on global information, but also on local contextual information.
The experiment results demonstrate that the TimeCT model can successfully capture the
local information of the context in multivariate time series complementation and produce
superior prediction of the missing location data, outperforming LSTM.

4.4. Ablation experiments. To further validate the model, two variants were created
to test the effect of convolutional layers on the model. Variant 1 uses the traditional
transformer model to fill in the constructed Australian water quality missing data set
using the fill method above. Variant 2 operates on the same dataset as the model after
adding a convolutional layer to variant 1 (i.e., the TimeCT model designed in this paper).

Variant 1 (Transformer): The basic model includes a traditional transformer encoder
and a DNN decoder.

Variant 2 (Conv+Transformer): Add convolutional layers to the traditional trans-
former, which is the model TimeCT for time series data imputation.

Table 6. Ablation experiment

Variant MAE RMSE SMAPE

Variant 1 (Transformer) 3.66 13.93 27.98
Variant 2 (Conv+Transformer) 2.71 11.77 21.44

Doing so was able to demonstrate that the added convolutional layers were effective
in the data filling process and were not a result of the performance of the self-attentive
mechanism in Transformer. As shown in Table 6, the convolutional layer in TimeCT
is effective in the imputation of the time series data. In addition, we also compare the
performance of variant 1 with that of LSTM in Table 1. The traditional transformer
makes processing time series data better than LSTM because of its multi-headed attention
mechanism. And by ablation experiments, we can get that, for the imputation of time-
series data, the convolutional layer helps to focus on the trend of past and future data,
thus enabling more accurate prediction of missing location data. Rather than focusing
only on the association between a certain data point and the traditional transformer,
TimeCT enhances the ability to model the local context, providing sufficient information
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for the complementary task. The ablation experiment, as shown above, demonstrates the
model’s validity on time series data imputation.

5. Conclusions. When handling data from real-world applications, dealing with missing
values and incomplete time series is a labor-intensive, unpleasant, and unavoidable task.
Most of the imputation models in the current study lack the ability to model the local
information of the time-series data, and they all fill in the discovered missing locations
with low robustness. In this paper, we design a model (TimeCT) to deal with the missing
time series data problem. It is based on the transformer model and performs convolu-
tional operations on time series data to extract local features as an effective complement
to global features. In addition, we propose a dataset processing method named K-fold
missing construction by constructing a sizable number of missing data points for training
and testing. The task of filling in the missing time series data is then transformed into a
prediction problem using the contextual information of the missing positions. Numerous
experimental results demonstrated that the TimeCT model outperformed previous im-
putation techniques while also strengthening the model’s emphasis on the change trend
of the time series data itself and improving the correctness of the imputation data. In
order to more precisely forecast the missing values, this method collects characteristics
from both global and local information using deep mining techniques. However, the anal-
ysis using only the temporal dimension is biased, and in the future, the analysis can be
merged with the spatial dimension at the same time to fill in the gaps in many dimen-
sions. Among them, the use of graph neural networks to extract deeper spatial features
and how to capture the continuity between time and space are also directions that we
need to consider in the future. In addition to this, we should explore more the stochastic
nature of the missing data, making the designed model sufficiently stable.
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