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Abstract. With the development of smart electricity technology and demand response,
optimization of household electricity consumption behavior has become an important re-
search element for energy saving in residential buildings. In the study of smart electricity
consumption in households, the differences in users’ lifestyles and their preferences for
the use of various appliances can have a great impact on the results. And many existing
methods need to rely on users’ awareness, which does not meet the popular demand. In
this paper, we propose a new method for residential load scheduling that takes into account
the load characteristics of appliances and electricity consumption habits. By analyzing
the household electricity consumption data set and mining the personalized needs and us-
age preferences of this user for various appliances, we establish an optimization model for
electricity consumption behavior that combines the minimization of electricity expenses
and user comfort. Finally, an improved artificial bee colony algorithm is proposed for
solving the optimization model and generating a personalized dispatching strategy com-
bined with real-time electricity pricing (RTEP) tariff. The proposed improved artificial
swarm algorithm is compared with other classical algorithms, including GA, PSO, ABC,
and QABC, and the analysis of cases shows that the model can effectively reduce the elec-
tricity consumption cost and ensure the customer satisfaction, and the proposed improved
ABC-based algorithm outperforms other algorithms in terms of cost and user comfort.
Keywords: Demand response, Optimized scheduling, Home power optimization, Elec-
tricity consumption habits, Improved artificial bee colony algorithm

1. Introduction. Nowadays, electricity has penetrated people’s production and life, en-
terprises and residents’ electricity demand is getting bigger and bigger, especially the
household residential electricity consumption shows a growth trend, the increasing use of
high-powered intelligent appliances and the popularity of home electric vehicles, so that
the power supply cannot quickly keep up with the development needs, resulting in the
increasing contradiction between power demand and supply, the peak time power demand
tension and low time power demand less, resulting in energy waste. With the continuous
construction of a smart grid and smart measurement system, it can improve the reliability
of power supply while allowing residential customers to participate in demand response,
appliance scheduling is to shift household loads from peak hours to off-peak hours, use
demand-side management to schedule electricity demand in a real-time tariff environment,
adjust the way household appliances use electricity, and do not perform load shedding
throughout the process, thus improving electricity efficiency and reduce the cost of elec-
tricity consumption [1]. However, due to the rapid development of smart homes and
unfamiliarity with tariff information, residential customers find it difficult to manually
schedule these loads to work at the right periods. Therefore, home energy management
systems play an important role in the residential sector for cost savings and comfortable
and convenient living [2], and home energy management systems can effectively reduce
household electricity expenses and improve the energy consumption of household loads
while ensuring user comfort requirements [3].

Many scholars have conducted systematic and in-depth research work on smart home [4,
5], among which, the research on home electricity optimization is very extensive. The lit-
erature [6] proposes a method to reduce household electricity costs by considering electric
vehicles and uninterruptible power supplies as energy storage systems in combination
with real-time electricity prices. The literature [7] classifies household appliances into two
categories, transferable and non-transferable, and proposes a new dragonfly algorithm for
electricity consumption optimization to minimize the cost of electricity consumption. In
the literature [8], a comprehensive classification of household appliances and a separate
comfort assessment model for each category is developed to obtain a clear cost-comfort
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analysis to ensure the comfort of users during load dispatching. Currently, artificial in-
telligence algorithms and machine learning techniques are widely used [9, 10]. In the
literature [11], an innovative appliance scheduling framework based on the fused Gray
Wolf and Crow Search Optimization (GWCSO) algorithm is proposed, which has a bet-
ter performance compared to other classical algorithms, including BPSO and GA. The
literature [12] integrates renewable energy system (RES) and energy storage system (ESS)
in a home energy management system but does not consider the installation and post-
maintenance costs of RES and ESS. The literature [13] proposes a distributed mechanism
and introduces the subgradient method to solve the energy optimization problem. In
general, there are multiple factors to be considered for real-time problems in-home energy
management systems, and multi-objective evolutionary algorithms can also be used to
solve them when there is more than one objective function to achieve trade-offs between
multiple problems such as electricity cost and comfort [14, 15, 16].

The analysis of customers’ electricity consumption habits is important for the develop-
ment of demand-side electricity optimization schemes, and currently data mining technol-
ogy is mainly used to analyze customers’ classification and electricity consumption habits.
In the literature [17], a method for analyzing user’s electricity consumption behavior for
smart electricity consumption environment is proposed to cluster user loads, which can
effectively distinguish users with different electricity consumption behaviors. In the liter-
ature [18], an integrated clustering approach is proposed to analyze the weekly electricity
consumption data of customers and suggest the corresponding electricity consumption.

In these studies of smart home electricity use, the settings of various device usage pa-
rameters such as the type of appliance, on-time, and run-time are the basis for appliance
scheduling, and these data change depending on the diversity of different users’ habits.
However, many studies rely on experience for this part of the work, and most users are
unable to abstract their daily operating habits accurately. The lifestyles and appliance
usage preferences of different households are very different, and users’ electricity habits
show a large inconsistency [19]. If user demand and operation preferences are not an-
alyzed, users’ electricity behavior habits may be changed during load scheduling, which
will greatly reduce their comfort and may lead to energy waste in serious cases.

This paper is carried out based on such a background and will analyze the user’s house-
hold electricity consumption dataset, dig out the user’s electricity consumption behavior
habits, and use the K-means clustering algorithm to classify each device, analyze the
characteristics and usage preferences of that device, and give the constraints for the op-
timization of appliance operation. On this basis, an optimization model of electricity
consumption behavior considering users’ usage habits is established, a minimization of
electricity expenditure function and a user satisfaction function is constructed, and in
addition, an improved ABC algorithm based on which the model is solved is proposed.
Finally, it can develop corresponding energy saving schemes according to different user
groups and formulate targeted home energy optimization strategies. The general structure
of this paper is organized as follows: Section 2 describes household energy management
systems and user behavior habits analysis methods, Section 3 establishes the energy opti-
mization and comfort model for the actual problem, Section 4 select an improved artificial
bee colony algorithm to solve the model, and Section 5 conducts simulation experiments
based on real data sets to verify the effectiveness of the proposed method, and Section 6
concludes this study.

2. Home Energy Management System and User Habit Analysis. An important
prerequisite for home electric load dispatch is the Home Energy Management System
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(HEMS), as it is an important tool for residential customers to participate in demand
response, so let’s first introduce the HEMS.

2.1. Home Energy Management System. The HEMS is to use communication tech-
nology to interconnect power generation, energy storage, power consumption and the
outside world, so that electricity and information can flow in both directions to achieve
real-time monitoring, intelligent processing and intelligent regulation. An ideal home
energy management system is mainly composed of distributed energy, advanced measure-
ment system, intelligent control terminal and intelligent home appliances.

(1) Energy Supply Side: HEMS has four sources of energy supply: the grid, renewable
energy generation, energy storage devices, and electric vehicles.

(2) Advanced Metering Infrastructure: The Advanced Metering Infrastructure (AMI) is
a control and processing system capable of collecting, analyzing, storing and transmitting
household electricity consumption data, and is the core component of a home energy
management system. Smart meters are the most core equipment in AMI. In addition to
traditional power metering and billing functions, they also add functions such as power
monitoring, data storage, and two-way communication [20], providing important technical
support for home power scheduling and user demand side response.

(3) Smart Control Terminal: The smart control terminal is an essential part of the
home energy management system, optimizing the operation of the electric load and the
distribution of the energy supply side by analyzing and processing the electricity con-
sumption data and environmental information obtained from sensors, smart sockets and
other components.

(4) Smart Home Appliances: Smart home appliances have more advantages than tra-
ditional home appliances, which are mostly mechanical and simple execution processes.
Smart home appliances make comprehensive use of advanced computer technology, In-
ternet of Things technology, communication technology, etc., collecting and processing
information through sensors and control chips, both sensitive perception, automatic ad-
justment, interactive intelligent control, energy saving, etc., turning users from passive
adjustment to active control [21].

2.2. Analysis of Electricity Consumption Habits. With the diversification of so-
ciety and the diverse lifestyle of each household, users also have different usage habits
for different appliances, which may change from time to time. To reduce the discomfort
of users’ participation in optimal scheduling of devices and to maximize the satisfaction
of users’ daily usage habits, mining the usage habits of each appliance from the house-
hold electricity data set and defining the usage characteristics of that appliance are the
prerequisites of this study. The scheduling parameters of the appliance will be obtained
here, including the scheduling type of the appliance, the optimal start time, the optimal
shutdown time, the scheduling time range, and the operation duration. In this paper, we
will analyze the usage data of various appliances of users over one year, which include:

(1) Scheduling type of appliance. The household electricity use dataset is analyzed
to mine the working duration of the device each time and the Coefficient of Variation
(C.V ) is introduced to determine the degree of dispersion of the device duration. The
smaller the C.V indicates that the working duration is basically fixed for this device,
while interruptible devices can be temporarily interrupted resulting in variable continuous
working duration and relatively large C.V values, which are used to define whether the
device is a load for interruptible use. The C.V is calculated as in Equation 1.

C.V =

√
1
n

∑n
i=1(Xi−X̄)

2

X̄
(1)
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In Equation 1, Xi is the operating time of the i-th operation of the device; n is the
total number of operations of the device.

(2) Optimal start-end time. The Optimal start-end time is the most satisfactory start
time and shutdown time for the appliance, and as an important parameter to evaluate
user satisfaction, the frequency distribution of the users’ start time and shutdown time for
the appliance will be counted from a large amount of data, and the highest frequency-time
point will be taken as the best start time and shutdown time. In the process of scheduling
appliance, we will try to generate work schedules close to the Optimal start-end time to
minimize the discomfort caused to users by appliance scheduling.

(3) Scheduling time range and electricity consumption habits. The scheduling time
range is the usage time range limit that meets the user’s usage habits, and the appliance
scheduling is not allowed to exceed this range. In this paper, we will use the K-means
algorithm to cluster and analyze the turn-on moments of appliances within a year, then
use the elbow method to get the most suitable number of clusters, and consider that a
class cluster represents a kind of electricity usage behavior habit, and then extract the
corresponding scheduling time range.

The K-means clustering algorithm uses distance as the evaluation index of similarity,
and generally uses the Euclidean distance for the distance between two sample points to
measure the distance, which is calculated as shown in Equation 2. The data with similar
characteristics are classified in the same set by approximating the sum of the minimum
distance between each sample and the cluster center to which it belongs through multiple
iterations.

d (xi, xj) =
√
(xi − xj)

T (xi − xj) (2)

Where: xi denotes the i-th data point.

3. Construction of Energy Consumption Optimization Model.

3.1. Classification and Modeling of Household Load. The electricity load is an
indispensable part of the residence. In general, in addition to the necessary electricity
demand, the user hopes to transfer the load from the time period with higher electricity
price to the time period with lower electricity price as much as possible. Throughout
the device scheduling process, it is important to determine the demand information of
the load, and each device involved in the scheduling must be defined as a device type.
They can be divided into three categories: interruptible devices, non-interruptible devices,
and common devices. Ordinary devices are non-regulable devices such as lights and
refrigerators, which are not involved in energy optimization management.

In this paper, the optimization of the controllable power load takes the day as the
scheduling unit. Considering that most electrical equipment does not limit the working
time to a certain complete hour, and some electrical appliances work for a short time,
in order to reduce the error caused by the calculation, this paper divides a day into 120
hours each hour is divided into 5 equal time periods, and assuming that the minimum
running time of any household appliance load is 12 minutes, the excess of 12 minutes is
regarded as a multiple of 12, and the power of electrical equipment in each time period
remains unchanged.

The schematic diagram of interruptible appliance power consumption is shown in Figure
1, which can delay or interrupt the operation, its power consumption interval can be
segmented and discontinuous, Under the condition of ensuring the workload, it can be
temporarily interrupted in the operation state to achieve the scheduling strategy.

Constraints:
tstart ≥ αi (3)
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Figure 1. Interruptible appliance

tend ≤ βi (4)

βi − αi ≥ Ti (5)

xk
i =

{
0, if appliance is OFF
1, if appliance is ON

(6)∑βi

k=αi
xk
i = Ti (7)

The schematic diagram of non-interruptible load power consumption is shown in Figure
2. Only delayed operation is possible, and once the power-using appliance starts running,
it will keep running continuously until the power consumption task is completed.

Figure 2. Non-Interruptible appliance

Constraints:
tstart ≥ αi (8)

tend ≤ βi (9)

βi − αi ≥ Ti (10)

xk
i =

{
0, if appliance is OFF
1, if appliance is ON

(11)

Where, xi is the operation state of appliance i at time k ; tstart is the actual start time
of the appliance; tend is the actual end time of the appliance; βi is the latest end time
allowed; αi is the earliest allowed start time; Ti is the appliance running time.

3.2. Electricity Cost Function. The objective of the electricity cost function is to min-
imize the electricity expenditure without affecting the electricity demand, so the electricity
cost is used as the main objective for the optimal control of electricity consumption, and
the electricity cost of all devices in the household for one day is:

C =
∑t

k=1

∑n
i=1 x

k
i ∗ EP (k) ∗ P/5 (12)

Where: EP (k) is the electricity price in the k-th period; P is the rated power of the
appliance; n is the total number of appliances; t=120.
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3.3. Satisfaction Function. User satisfaction, also called comfort of use, refers to the
impact of changes in electricity plans or habits on the user, although the user sets an
effective working range time period for each electricity device, the user usually wants
these devices to complete their electricity use within their most satisfactory working time
period and with the minimal waiting time. The closer the scheduling strategy is to the
user’s habits, the higher the user’s satisfaction [22].

This paper proposes different satisfaction measures based on the power consump-
tion characteristics of two types of controllable power devices (interruptible and non-
interruptible appliance).

The satisfaction measure of non-interruptible appliance is defined as the relative dis-
tance between the actual start time of the appliance and the ideal start time set by the
customer, and customer satisfaction is highest if the task starts at the ideal time.

f1 =
|tstart −top |
βi−αi−Ti

(13)

Where: tstart is the actual start time of the appliance; top is the optimal start time of the
appliance; αi is the earliest allowable start time of appliance i; βi is the latest allowable
end time of appliance i; Ti is the operating time of appliance i.
The satisfaction measure of an interruptible appliance is defined as the time distance

between the actual running time of the interruptible appliance and the theoretical time
spent during the operation of the appliance without interruptions, taking into account the
relative distance between the actual end time of the electricity-using appliance and the
ideal end time set by the user. The user satisfaction is highest if there are no interruptions
and the task ends at the user’s ideal time.

f2 =
(tend −tstart −Ti)+|tend −topend |

βi−αi−Ti
(14)

where: tend is the actual end time of the appliance; topend is the optimal shutdown time
of the appliance.

Ultimately, the user satisfaction function F , whose expression is Equation 15.

F =
∑a

p=1 f
p
1 +

∑b
q=1 f

q
2 (15)

where:fp
1 is the satisfaction of non-interruptible load p, a is the total number of non-

interruptible loads, f q
2 is the satisfaction of interruptible load q, and b is the total number

of interruptible loads.

3.4. Electricity Use Strategy Objective Function. In this paper, while providing
users with energy optimization solutions, we fully consider users’ electricity consumption
habits, so we take into account two factors: minimizing electricity expenses and adjusting
appliance usage to the moment when real-time electricity prices are lower; ensuring user
satisfaction and scheduling without changing users’ original electricity consumption habits
as much as possible.

Obviously, these two factors are in conflict with each other, and one of them is often
sacrificed in the optimization process. Therefore, multiple objective function values are
normalized when establishing the objective function of the energy-saving strategy consid-
ering user habits, and the final objective function expression is Equation 16.

M = w1
C−Cmin

Cmax−Cmin
+ w2

F−Fmin

Fmax−Fmin
(16)

By setting different weighting factors to take the importance of electricity bills and
satisfaction with electricity consumption.
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4. Model Solution Based on Improved Artificial Bee Colony Algorithm. Op-
timization of the objective function for home energy consumption based on user habits
is a nonlinear 0-1 programming problem containing multiple constraints, and the result
of the optimization is to reduce the electricity bill as well as to ensure the satisfaction
of the users. To solve these problems, swarm intelligence algorithms such as genetic al-
gorithm (GA) [23], particle swarm optimization algorithm (PSO) [24], and artificial bee
colony algorithm (ABC) have been used for feature selection. Among them, the ABC is
an artificial intelligence algorithm proposed by Turkish scholar Karaboga [25] in 2005 to
search for optimal solutions by simulating the foraging behavior process of bees, and the
problem to be solved is transformed into individual bees with honey source information
by appropriate encoding, in which recruiting bees, sharing honey source information, and
abandoning honey sources constitute the optimal search operation of ABC algorithm. The
ABC algorithm has the advantages of parallel computing, strong search capability, and
few control parameters, which can effectively solve the multivariate function optimization
problem [26], but the ABC algorithm has the defect of converging on the local optimal so-
lution earlier, and although the algorithm has good search capability, it is under-exploited
and weak in local search capability. Therefore, in this paper, an improved artificial bee
colony algorithm is proposed for the constrained optimization problem, and the improved
artificial bee colony algorithm is used to solve the objective function. The specific idea
and process are as follows.

(1) Initialization of the bee colony. Like the classic ABC algorithm, the initial SN
populations are generated using the random initialization method, as follows:

Xd
i = Xd

min + rand(0, 1) ·
(
Xd

max −Xd
min

)
(17)

Where: i ∈ {1, . . . , SN}, d ∈ {1, . . . , D}, Xd
max and Xd

min are the upper and lower
bounds of the d-th dimension of the search space.

(2) Employed bee phase. Employ bees to search and generate a new honey source in a
given space according to Equation 18:

xi+1 = xi + φ (xi − xj) (18)

Where, xj represents a neighborhood honey source, which is a randomly selected honey
source that is not equal to i among the total honey sources, φ is a random number taking
values in [-1,1], and a greedy selection method is used after the new nectar source is
generated, and the nectar source with high adaptation will replace the old one.

(3) Onlooker bees phase. In classical ABC, the following bees are employed at this stage
to search for new nectar sources, and roulette is used according to the abundance of nectar
sources, with a higher probability that the nectar source with a large adaptation value
will be selected, and the following bees will harvest the nectar source after being selected.
However, when the number of populations reaches a large number, the probability of
belonging to each nectar source differs very little, and good nectar sources cannot be
effectively selected by the roulette method, and the effect is equivalent to random search,
which greatly reduces the exploitation ability of ABC. To further improve the exploitation
capability of ABC, some literature uses the global optimal solution to lead bees to search
for new nectar sources through an elite guidance mechanism [27], however, this strategy
is prone to fall into local optimal solutions when dealing with complex problems, leading
to poor final results.

In order to solve such problems, in this paper, we will command the following bees to
collect honey in the vicinity of the optimal honey source, introduce the concept of multi-
variate normal distribution, and randomly generate a cluster of honey sources conforming
to the multivariate normal distribution in the vicinity of the optimal honey source, the
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closer the location of the optimal honey source is generated, the more honey sources and
the higher the density, where the generated honey sources X = [x1, x2, . . . , xd] satisfy the
following conditions:

X ∼ N(µ,Σ) (19)

Where:

µ = E(X) = (µ1, µ2, . . . , µk) (20)

Σi,j = Cov (xi, xj) (21)

µ represents the mean value, and this study will take µ as the global optimal solution,
µ = xbest.

Σ is the covariance matrix, and this study will take Σ =

 0.3 · · · 0
...

. . .
...

0 · · · 0.3

.
Taking the 3-dimensional space as an example, the effect of the nectar cluster pro-

duced at [1,1,1] as the center of the nectar source conforming to the multivariate normal
distribution is shown in Figure 3.

Figure 3. Three-dimensional nectar cluster

Then, a nectar source was randomly selected as the target nectar source from the nectar
source group that met the normal distribution and the following bees are directed to collect
nectar here, making ABC retain the nature of elite guidance, enhancing local exploitation
while maintaining the diversity of the colony and preventing premature convergence. Next
the following bees use Equation 22 to find new nectar sources, where they are guided using
the optimal nectar source, and finally follow a greedy selection method to retain the high-
quality nectar source.

xi+1 = xi + φ · (xbest − xj) (22)

Where: xbest represents the global optimal solution
(4) Scout bee phase. When the number of counters is greater than a predetermined

number and no better nectar source is found, this nectar source is discarded and the
employed bee is transformed into a scout bee, and the scout bee in the original ABC
will re-initialize this source using Equation 17 to generate a new source at random. In
this paper, we adopt a different strategy to explore and exploit the search space, let the
scout bee absorb the information of multiple good bees in the colony, use Equation 23 to
re-initialize this honey source, guide the honey source to generate at a better position,
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and appropriately enlarge the perturbation magnitude, i.e., α value, to avoid falling into
a local optimum.

xi = xi + α · (xbest − α ·M) (23)

M = (x1+x2+x3)
3

(24)

Where: x1, x2, x3 are the top three nectar sources sorted by fitness optimum, and α is
taken as [0, 2] uniformly distributed random numbers.

5. Experiment and Analysis of Algorithms.

5.1. Analysis of Electricity Consumption Habits. Simulation experiments were
conducted using the UK Domestic Appliance Level Electricity (UK-DALE) dataset pub-
lished by the UKERC Energy Data Centre [28], an open access dataset from the UK
that records the electricity demand of each device and the whole household in a UK
household approximately every 6 seconds. In this calculation, several types of commonly
used appliances are selected for analysis, and six controllable appliances: vacuum cleaner,
toaster, dishwasher, washing machine, kettle and water pump are selected to analyze the
electricity consumption data over a year to derive the electricity consumption habits.

Taking the usage data of washing machines within one year from 2014-2015 as an
example, Figure 4 shows the graph of all daily load curves of washing machines during
one year.

Figure 4. Washing machine daily load curve

Figure 5 show the information of the time when the washing machine is turned on and
off in a year, from which we can learn that the user turns on the washing machine most
frequently in the 86th period, that is, from 17:12 to 17:24, and often turns off the washing
machine in the 94th period, that is, from 18:48 to 19:00. This is the optimal start-end
time for the washing machine.

In this paper, we use the elbow method to get the most suitable cluster number k and
define a class cluster to represent an electricity usage habit, as shown in Figure 6. When
k=3, the distortion of the cluster is greatly increased and the drop of SSE is sharply
decreased. Therefore, the optimal number of clusters k is set to 3, indicating that the
washing machine in this series has 3 intervals of usage habits, and the K-means clustering
algorithm is used to analyze the 3 usage time ranges of this appliance, as shown in Figure
7.

It can be seen from Figure 7 that after clustering, the usage habits of users are divided
into three categories, which are divided into: electricity usage habits 1 is [0, 60], that is,
00:00 to 12:00. Electricity usage habit 2 is [61, 84], that is, from 12:00 to 16:48. Electricity
usage habit 3 is [85 , 120], that is, from 16:48 to 24:00.
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(a) Open Frequency (b) Close Frequency

Figure 5. Running frequency

Figure 6. Clustering bias for different K values

Figure 7. Clustering Results

In addition, Count the continuous running time of the washing machine in this family
every time it is turned on in a year, and the results are shown in Figure 8 the C.V was
calculated for the continuous working time of the washing machine, and the C.V value
was found to be 0.1893, which means that the working duration of each time does not
fluctuate much, and it can be seen from Figure 8 that the continuous working time of the
washing machine is around 100 minutes each time, so the dispatching type of the washing
machine is judged to be a non-interruptible device, and the working duration of each time
is basically fixed, and the working interval can be shifted during the working process but



850 T.-W. Sung, Z.-M. Huang, Q.-X. Liang, T. Lin and L.-P. Kong

It cannot be temporarily interrupted. The C.V and scheduling types of the remaining
appliances are shown in Table 1. The scheduling parameters of each appliance analyzed
are shown in Table 2.

Figure 8. Washer Duration

Table 1. C.V-Value

Appliances Washer Dishwasher Toaster Kettle Water pump Vacuum

C.V 0.1893 0.1802 0.2279 0.4311 1.7929 0.8933

Type Non-interruptibleNon-interruptibleNon-interruptibleNon-interruptibleinterruptibleinterruptible

Table 2. Appliance scheduling parameters

Category Appliances Habit
Operation

Start-End Time
Optimal
start time

Optimal
closing time

Power
(kW)

Duration
(Minutes*Task)

Non-
interruptible

Washer
Habit 1 00:00-12:00 09:48 11:24

2 96*1Habit 2 12:00-16:48 13:48 15:24
Habit 3 16:48-24:00 20:00 21:36

Dishwasher
Habit 1 08:00-12:48 08:48 11:00

2.4 96*1Habit 2 10:48-19:12 13:12 15:00
Habit 3 19:12-24:00 21:48 23:24

Kettle
Habit 1 00:00-10:24 07:24 07:36

2.3 12*3Habit 2 10:24-15:36 12:12 12:24
Habit 3 15:36-24:00 17:36 17:48

Toaster
Habit 1 00:00-11:00 07:48 08:00

1.5 12*3Habit 2 11:00-18:48 12:36 12:48
Habit 3 18:48-24:00 19:36 19:48

Interruptible

Water pump
Habit 1 07:36-12:48 09:12 12:48

0.5 312*1Habit 2 12:48-15:00 13:24 14:12
Habit 3 15:00-20:24 18:36 19:12

Vacuum
Habit 1 00:00-13:12 10:24 11:36

2 48*1Habit 2 13:48-16:24 15:12 16:24
Habit 3 16:24-24:00 17:00 20:24
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5.2. Example Analysis of Optimization Model. The improved ABC algorithm for
solving the model is implemented based on MATLAB R2018b. The proposed improved
ABC algorithm and the GA, PSO, classical ABC, and QABC algorithm [29], are simul-
taneously set to run 10 consecutive cycles with a population size of 80 and an iteration
number of 150, and the final results are averaged and compared. In this case, the Real-
time electricity prices information is taken from the literature [30].

The evaluation of the convergence speed of each algorithm is shown in Figure 9.

Figure 9. Washer Duration

As can be seen from Figure 9, the simulation results show that the improved ABC al-
gorithm outperforms the GA, PSO, ABC and QABC algorithms in terms of optimization
performance: it improves the search capability of the algorithm, speeds up the conver-
gence speed and converges to a more accurate optimal solution. Among them, the user’s
electricity cost and electricity satisfaction results are shown in Figure 10 and Figure 11.

As can be seen in Figure 10 and Figure 11, the proposed strategy based on the Improved
ABC algorithm, which optimizes household electricity consumption while ensuring cus-
tomer satisfaction, outperforms energy management strategies based on other algorithms
in terms of electricity cost minimization and satisfaction with electricity consumption,
with a decrease in household electricity costs from 273.51 cents to 167.87 cents per day.
The percentage decreases in electricity expenses based on GA, PSO, ABC, QABC, and
Improved ABC algorithms were 35.6%, 36.4%, 36.9%, 38.1%, and 38.6%, respectively, and
in addition, the electricity arrangement derived based on the Improved ABC algorithm
was the most consistent with customer habits and optimal for customer comfort.

The distribution of the electrical load for the day before and after the scheduling of
each algorithm is shown in Figure 12. The original electricity consumption plans of six
representative controllable appliances in this household are optimally scheduled, and the
optimal operation time distribution based on the improved ABC algorithm is shown in
Figure 13.

From Figure 12 and Figure 13, it can be seen that after the optimization of scheduling
by the algorithm in this paper, all electrical appliances are arranged to operate in the
time period when the electricity price is lower as far as possible, and the usage habits of
customers are satisfied to the greatest extent.
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Figure 10. Washer Duration

Figure 11. Washer Duration

The experimental results validate the effectiveness of the proposed algorithm and the
new energy optimization model.

6. Conclusion. In this study, based on users’ electricity consumption habits in the envi-
ronment of real-time electricity tariff, a relevant numerical analysis was conducted using
real household electricity consumption data set. And the load data of several commonly
used appliances were analyzed using the K-means clustering algorithm to obtain the load
characteristics and usage preferences of different devices, and to give the constraints for
home appliance operation optimization, based on which, a household energy consumption
optimization model considering electricity consumption habits and minimizing electricity
expenses is proposed. In addition, an improved ABC algorithm is designed to solve the
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Figure 12. Washer Duration

Figure 13. Washer Duration

model and compared with GA, PSO, ABC, and QABC algorithms. Finally, it is veri-
fied by simulation that the proposed algorithm outperforms other algorithms in terms of
cost and user comfort. The new model of energy optimization based on user habits can
develop corresponding energy saving schemes according to different user groups, provide
personalized household load scheduling services, give reasonable power consumption ar-
rangements, guide equipment power consumption toward low tariff periods, and effectively
reduce power consumption costs while ensuring power consumption comfort.
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