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Abstract. In the recommendation system, the accuracy of the recommendation results
may be reduced because the user has less historical operation data, which is the challenge
problem of data sparsity. The cross-domain recommendation system can effectively solve
the problem of data sparsity by supplying the target domain with data from other domains.
However, the issue is that there is noise in the information about how users and items
interact, such as user misoperations, etc., and these noises will affect the recommendation
results. Therefore, if the impact of these noises can be effectively reduced, the user
interactive information can be more fully utilized. In this study, we present a novel
algorithm for cross-domain recommendation based on graph optimization. The algorithm
optimizes the graph, deletes nodes with a high proportion of noise and less effective feature
information, thereby reducing the impact of noise on training. In addition, the algorithm
adds a feature transfer module to further increase the ability of the algorithm to capture
user preferences. Experiments on two pairs of datasets prove that our algorithm is more
effective than several current advanced algorithms.
Keywords: Reccommandation system, Data sparsity, Graph neural network, Graph
optimization

1. Introduction. In the recent, the fast-growing e-commerce industry has attracted a
large number of consumers with its advantages of convenience, speed and time saving.
On the e-commerce website, hundreds of millions of new goods, texts, and videos are
continually being released. Recommendation systems now play a crucial part in various
applications, such as social platforms, news platforms, and short video platforms. E-
commerce platforms introduce recommendation systems at the backend system to predict
the potential relationship between users and products, so as to realize the personalized
product recommendation process of users [1–5]. Therefore, a large number of user in-
teraction records and historical click information are necessary to fully exploit the high
performance of the recommendation system. This is because the historical interaction
information of users reflects their interest direction, which can be used to to predict what
a user is likely to purchase in the near future [6,7]. However, in reality, we often encounter
the problem of few user interaction records, which is not enough to forecast the interests
of users well. This is the issue of data sparsity [8–11].

Deep learning algorithms are generally successful in processing Euclidean spatial data [12–
14]. But due to the sparsity of data information, as well as the diversification, complex-
ity, and disorder of data forms, traditional deep learning recommendation algorithms and
collaborative filtering recommendation algorithms cannot solve the problem well [15–19].
Graph neural network can topologically represent information in non-Euclidean space, and
is often used to process complex graph data. In addition, as users use more platforms,
use the same account to browse different categories of products, and begin to interact in
multiple fields(e.g., music, TV shows, books and movies), so that the issue of sparse data
in the target field can be addressed using data gathered from other fields. Cross-domain
recommendation based on graph neural networks utilize these principles to help achieve
higher-performance personalized recommendations.

In order to enhance the efficacy of cross-domain recommendations in the target domain,
contemporary cross-domain recommendation systems make greater use of interactive in-
formation in the source domain. Nonetheless, the problem is that there is noise in the
interactive information, such as user misoperations, etc. Since these noises participate
in the training of the model, they will greatly bias the output of the recommendation
system. Therefore, if the weight of these noises can be reduced in model training, and
the importance of other data that can represent user preferences can be strengthened, the
recommended accuracy of the recommendation system could be greatly boosted [20].
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In this study, we present a noval algorithm based on graph optimization. This method
optimizes graphs, eliminates nodes that are not conducive to training, and impacts of
redundant data are diminished on recommendation results. In addition, feature transfer
is added to further improve the algorithm performance. Complete construction of the
method is shown in Figure 1. By applying the novel cross-domain recommendation algo-
rithm in this study, the influence of noise in the source domain can be minimized, and
the user interactive information can be utilized more adequately. First, we uses the users’
purchase history data in the source and target domain to initially construct the user-item
graph representation through the LightGCN [21] method, canonical correlation analysis
(CCA) is then used to project the source and target domain representations of the users
and items embedding features into the latent space. We compare the local densities of
items with the local densities of adjacent items. Then, an anomaly detection method,
the local outlier factor (LOF) method, is used to further identify outliers of the graph.
Finally, We add the feature transfer module in the BiTGCF [22] method to better cap-
ture user preferences and further increase the recommended accuracy of the algorithm.
The novel graph optimization method presented in this study can prominently reduce the
adverse impact of noise. In the third part of the paper, the effectiveness of our method is
verified through comparative experiments.
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Figure 1. Complete construction of the method

2. Presented Model. In this section, we present the noval algorithm for cross-domain
recommendation in detail. In Section 2.1, we first construct a preliminary graph to
represent user and item embedding features. Then project the graph representations to
the latent space. In Section 2.2, the graph optimization module is introduced, mainly
by deleting the source domain nodes with little correlation in the latent space, which
is the core innovation content in the article. Section 2.3 briefly describes the feature
transfer and recommendation network applied in this paper, which is the current advanced
recommendation algorithm based on bi-directional transfer graph collaborative filtering
networks (BiTGCF). Section 2.4 introduces the final output project recommendation
module.

2.1. Initialization of embedding features. In this module, we first perform a pre-
liminary construction and representation of graphs for each domain. We use LightGCN
method to initially construct the graph, which simplifies the feature propagation module
but is very efficient, the network model architecture of LightGCN method is shown in
Figure 2.

In the field of graph research, we often make the following definitions, user u ∈
{1, 2, . . . , U}, user’s embedding features is represented by eu ∈ Rd, item’s embedding
features is represented by ei ∈ Rd, and d represents the size of embedding features. Then
we use the LightGCN, which is currently an advanced and excellent graph neural network,
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Figure 2. Illustration of LightGCN model architecture

to initially construct graph embedding features. We represent the graph by fusing the
feature relationship of users and items, and add the embedded features of n-th neighbors
to the target node weightedly. The nodes of this graph carry the feature information
of nearby nodes, thus the model can strengthen the feature representation effect of the
graph. The feature propagation layer we use is as follows:

e(n+1)
u =

∑
i∈Nu

1√
|Nu| |Ni|

e
(n)
i , (1)

e
(n+1)
i =

∑
u∈Nu

1√
|Ni| |Nu|

e(n)u , (2)

where n represents the number of graph convolutional network layers. e
(n)
i and e

(n)
u repre-

sent the embedding features of user u and item i in the n-th propagation layer respectively.
The embedding features of user u and item i are obtained by the normalized sum of the
embedding features of their neighbors. The symmetric normalization term 1√

|Ni||Ni|
comes

from the standard graph convolutional neural network GCN, which prevents the graph
embedding representation from growing larger and larger as the graph convolution op-
eration proceeds. The graph convolution operation here only aggregates neighbor node
information without self-connection. Then the embedding features calculated by each
layer are linearly added to the target node:

eu =
N∑

n=0

αne
(n)
u , (3)

ei =
N∑

n=0

αne
(n)
i , (4)

αn represents the weight of the n-th layer of embedding features in the action of con-
structing the final embedding feature representation, where it is a hyperparameter. Here
we set αn to 1

n+1
to keep the algorithm with a good performance. In the action of our
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initial construction of the graph representation, the only trainable parameter matrix is
the embedded representation matrix E(0) ∈ R(U+I)×d. Here we use Bayesian Personalized
Ranking (BPR) loss that encourage the prediction of liked samples to be higher than its
disliked counterparts:

LBPR = −
U∑

u=1

∑
il∈Nu

∑
id /∈Nu

lnσ(y(u,il) − y(u,id)) + ε∥E(0)∥2F , (5)

where ε represents the hyperparameter of the L2 norm, and σ(·) is the sigmoid function,
a nonlinear activation function. We judge whether il and id are user u’s preference direc-
tion by estimating y(u,il)and y(u,il). We compute y(u,il) and y(u,id) by embedding feature
representations:

y(u,il) = e⊤u eil , (6)

y(u,id) = e⊤u eid , (7)

where id represents the items that user u does not like, and il represents the items that
user u likes. Then, we construct embedding feature representation by minimizing the
loss function LBPR. From this, we can obtain embedding features with high feature
representations in each domain.

2.2. Graph optimization in latent space. In Section 2.1, we used the method in
LightGCN to construct a preliminary graph of user u and item i in the source domain
and target domain. The graph representation contains information about its own nodes
and surrounding neighbors. Next, we project these graph feature representations into the
latent space. We consider two notations Ds and Dt representing source domain and target
domain respectively. According to the idea of the CCA algorithm, we need to determine
the projection vectors a ∈ Rds×dcca and b ∈ Rdt×dcca to compare the correlation between
the embedding features Eus = [e1s , e2s , ..., eUs ] ∈ Rdt×U and Eut = [e1t , e2t , ..., eUt ] ∈ Rdt×U

of users in Ds and Dt. We first need to maximize the correlation coefficient of Eus and
Eut :

argmax︸ ︷︷ ︸
a,b

a⊤SEusEut
b√

a⊤SEusEus
a
√

b⊤SEutEut
b
, (8)

where SEusEut
represents the covariance cov(Eus , Eut) of Eus and Eut . We need to maxi-

mize the optimized coherence coefficient to obtain the corresponding projection vectors a,
b, and the eigenvalue decomposition method is applied here. After we determine the val-
ues of the projection vectors a and b, we can acquire the projected feature representations
êis ∈ Rdcca and êit ∈ Rdcca of item i in Ds and Dt:

êis = a⊤eis , (9)

êit = b⊤eit . (10)

Next we perform elimination in the latent space on nodes considered to be outliers.
Nodes in Ds are first compared, and nodes that are closer in the latent space are more
correlated, whereas nodes that are farther away are less correlated. So, if a node in the
latent space is far away from its neighbor nodes, then this node is considered as an outlier
that should be eliminated. The reachable distance between is and o is defined as the
larger value of the k-th distance of is and the actual distance between is and o:

reach-distk(i
s, o) = max(k-dist(is), d(is, o)). (11)
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Local reachability density formula for an item in Ds is defined:

lrd(is) = 1/

(∑
o∈Nk(is)

reach-distk(i
s, o)

|Nk(is)|

)
. (12)

The formula represents the reciprocal of the average reachable distance of all points
in the k-th order neighborhood of the is node to is. The higher the value of the density
lrd(is), we think that is is more likely to be a cluster with the surrounding neighborhood
points, the lower the value of the density lrd(is), the more likely is is not a cluster with
the surrounding neighborhood points, and the more likely is is an outlier. Next, we use
the local outlier factor (LOF) to further determine whether is is a outlier:

lof(is) =

∑
o∈Nk(is)

lrd(o)
lrd(is)

|Nk(is)|
. (13)

The value of lof(is) represents the average of the ratio of the local reachability density
of the neighborhood point Nk(i

s) of the item node is to the local reachability density of
the point is. The closer the value of lof(is) is to 1, it indicates that lrd(is) is close to the
local reachability density of its neighborhood nodes. This indicates that node is and its
neighbors belong to the same cluster. The value of lof(is) is less than 1, indicating that
lrd(is) is higher, is is a dense point, and the greater the LOF is greater than 1, it indicates
that lrd(is) is smaller than the density of neighboring points. At this point we regard is

as an outlier and delete it as noise. The graph-optimized embedding features ê′is ∈ Rdcca

can achieve better feature representation, where is ∈ {1, 2, ..., Î}, Î is the number of
items in Ds after graph optimization. At this stage, graph optimization module based on
outlier detection has been completed. The implementation steps of the graph optimization
module is shown in Algorithm 1.

Algorithm 1 Graph optimization module based on outlier detection

Input: All samples of users in the source domain U ; all samples of items in the source
domain I; the interactive information between users and items R: U × I

Output: Embedding features representation of items in Ds after graph optimization ê′is .
1: Initially construct the graph representation G or the subgraph Gu,i;
2: Iteratively propagate the information of neighbors and update the node embedding;
3: for n in [1, . . . , N ] do (Take the item node as an example)

4: e
i(l)
s = Aggregator(e

(n)
is , e

(n)
is )

5: e
i(l+1)
s = Updater(e

i(l)
s , n

i(l)
s )

6: end for
7: // Get the overall item/user representation Eis = [e1s , e2s , ..., eIs ], Eus =

[e1s , e2s , ..., eUs ]
8: êsi ← Ψs

⊤eis
9: for i in [1, . . . , I] do
10: if lof(is) > 1 then
11: ê′is = Updater(êis)
12: is = is −−
13: end if
14: end for
15: Return: ê′is
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2.3. Feature transfer and training strategies. In this section, we apply the BiTGCF
method for feature transfer and item recommendation in Dt. We feed the user and item
embedding features representations ê

(n)
us , ê

(n)
ut , ê

(n)
it , ê

′(n)
is in Ds and Dt into an n-layer

graph convolution network. The feature transfer module includes two modules of feature
propagation and feature transfer, so as to update the embedding features. The formulas
to realize feature propagation and feature transfer are as follows:

ê
(n+1)
us = f s

T

(
f s
P(ê

(n)
us ), f t

P(ê
(n)
ut )
)
,

ê
(n+1)
ut = f t

T

(
f s
P(ê

(n)
us ), f t

P(ê
(n)
ut )
)
,

ê
′(n+1)
is = f s

P(ê
′(n)
is ),

ê
(n+1)
it = f t

P(ê
(n)
it ),

(14)

where ê
(n)
us and ê

′(n)
is represent the embedding features of user u and item i in Ds after

n-layer feature propagation. ê
(n)
ut and ê

(n)
it represent the embedding features of user u and

item i in Dt after n-layer feature propagation. f
s
P(·) and f t

P(·) denote feature propagation
functions in Ds and Dt respectively. f

s
T(·) and f t

T(·) denote the feature transfer functions
in Ds and Dt respectively. Connection structure for feature transfer module is shown in
Figure 3. is1 obtains part of the feature information from its first-order neighbor us

1 to
update its embedding features representation. Similarly, ut

1 obtains part of the feature
information from its first-order neighbor it1 to update its own embedding features repre-
sentation. Here we can get the is1 → us

1
→← ut

1 → it1 (or i
s
1 ← us

1
→← ut

1 ← it1) route to realize
feature propagation and feature transfer between nodes.

1
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Figure 3. Connection structure for feature transfer module

After n layers of graph convolutional network, we obtain multiple refined embedding
vectors of users and items. We bring more robust embeddings for users and items through
the concatenation of multiple feature vectors. We obtain the final embedding vectors of
the users and items in Ds and Dt by the following formulas:

êus = ê
(0)
us ∥· · · ∥ ê(n)us ,

êut = ê
(0)
ut ∥· · · ∥ ê(n)ut ,

ê′is = ê
′(0)
is ∥· · · ∥ ê

′(n)
is ,

êit = ê
(0)
it ∥· · · ∥ ê

(n)
it ,

(15)

where ∥ denotes a concatenation operation. Finally, we use the dot product to get the
predicted value of the interactive information between the users and the input items:

r̂sui = ŷ(us, is) = σ(ê⊤us ê′is), (16)
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r̂tui = ŷ(ut, it) = σ(ê⊤ut êit), (17)

where σ(·) is the sigmoid activation function that maps the actual value to the probability
value, and r̂ui is the outcome prediction. We apply the binary cross-entropy function
commonly used in recommendation systems as the loss function:

L(r̂ui) = −
∑

(u,i)∈R+∪R−

rui log r̂ui + (1− rui log(1− r̂ui)) + λ ∥Θ∥22 . (18)

Among them, R+ is the historical data of user-item interaction known to exist in the
dataset, and R− is a random sample set without user-item interaction. λ is the parameter
of L2 regularization. Θ is all trainable graph representation matrices as input. In addition,
we use mini-batch Adam [23] to speed up the process of iterating the model and updating
the parameter matrix. Finally, to boost the recommended accuracy of the algorithm in
Ds and Dt simultaneously, we apply the joint loss function, which is defined:

Ljoin = min
fs
T,f

s
P,f

t
T,f

t
P

L(r̂tui, rtui) + L(r̂sui, rsui). (19)

2.4. Item recommendation. We determine item recommendation results using the
BiTGCF model trained. We apply the result value r̂tui as the possibility of interactive
information between user u and item i, and apply this as the ranking score in the recom-
mendation system to rank the input items. The formula is defined as follows:

r̂tui = σ(ê⊤ut êit), (20)

where item i with higher preference gets higher result value r̂tui for user u. Then, we rank
the user’s preference items and output the results in order.

3. Experiment. In this subsection, we first provide a detailed explanation of the datasets
utilised in the performance testing, performance verification protocol, and custom settings
in Section 3.1. We then analyze the performance of methods in Section 3.2. Finally,
experiments are designed to analyze the relationship between the different values of the
parameter k and the recommended accuracy of the algorithm in Section 3.3.

3.1. Experiment setting. A real dataset, the Amazon-5cores dataset [24], is employed
in our experiments, which is collected in Amazon e-commerce platform. Each user and
item in this dataset has at least five evaluation records, from which we select two pairs of
fields for experimentation. The first pair of datasets is ”Books” and ”Movies and TV”.
The second pair of datasets is ”CDs and Vinyl” and ”Digital Music”. We need to filter
out overlapping users in each pair of domains, and the details of the filtered datasets are
listed in Table 1.

We use the leave-one-out method commonly used to train and test the model of rec-
ommendation algorithms. We set up the test dataset to randomly pick a sample from
each user’s interactive information data, and set up the training dataset to the remaining
interactive information data specifically. Then 99 items are chosen at random as nega-
tive samples from the items that user unpurchased. We use Hit Ratio (HR), Normalized
Discounted Cumulative Gain (NDCG), and Mean Reciprocal Rank (MRR) in our experi-
ments,which are commonly used as performance verification indicators in recommendation
algorithms. For each measure, we weaned the ranking list to 10. We also visualize the
output results of our method and the baseline method LightGCN, which can intuitively
compare the relationship between the recommendation results of the two methods and
the training input items in source domain. In the comparison experiment, the parameter
k of the algorithm in this study is set to 5, which is the parameter value for the best
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performance of the algorithm. The experiment of the relationship between the specific
parameter value k and the algorithm is in Section 3.3.

Table 1. Details of the two couple experimental datasets

Domain #Users #Items #Interactions Density
CDs and Vinyl 5,328 55,682 375,823 0.126%
Digital Music 5,328 3,543 63,051 0.334%

Books 37,376 269,283 1,253,568 0.012%
Movies and TV 37,376 49,267 791,072 0.043%

We use the algorithm Our Method (OM) presented in this study to compare with differ-
ent recommendation algorithms, LightGCN [21], an effective method to remove nonlinear
activation and simplify feature propagation; CDFM [25], an algorithm that uses factor-
ization machines to generate recommendation results based on source domain context;
CoNet [26], a cross-domain deep model that passes messages across domains across un-
derlying networks. PPGN [16], a cross-domain recommendation system based on user
preference propagation; BiTGCF [22], a bidirectional transitive graph collaborative fil-
tering network; CATN [27], an aspect transfer network with an attention module. In
addition, a performance comparison was made with the method Our Method without
graph optimization (OM-W), which does not include the graph optimization module, to
evaluate the graph optimization module’s performance in boosting the algorithm’s pre-
dictive accuracy.

3.2. Comparison of Experimental Results. The full results of our experiments on
two pairs of datasets are shown in Table 2, the evaluation indicators are HR@10, MRR@10
and NDCG@10. The analysis of the results in the table shows that OM performs better
than the majority of the baseline methods, which shows that OM based on the graph
optimization has higher performance. However, in the domains of ”Books” and ”Movies
and TV”, the value of OM is not as high as the value of CATN for the indicator of
NDCG@10. After analysis, the reason is probably that in the domains of ”Books” and
”Movies and TV” with relatively low density, CATNmethod of extracting multiple aspects
and learn aspect correlations can better capture user’s preferences than OM. Therefore,
the NDCG@10 value of CATN in the experimental results is higher than that of OM, but
CATN is not as good as OM in other evaluation indicators. In addition, by comparing
the experimental results of the two methods of OM-W and OM, we can clearly see that
all the evaluation indicators of OM in the two pairs of data sets are better than OM-W,
which shows that the presented graph optimization module in this study can significantly
enhance the predictive accuracy of recommendation algorithms.

In order to show that the recommended items of OM are strongly correlated with the
source domain items input during training, we compare OM with one of the baseline
methods LightGCN. The domain selected in this experiment are ”Books” and ”Movies
and TV ”. The visualization output of the two algorithms are shown in Figure 4. The
input items of the experiment are nine books, all of which are about mystery. The five
films output by OM are all about action and mystery, which can match the genre of the
input projects. In addition, the content of (b) and (h) in the input book is about personal
fate and life, and the output result of OM, (s) is also a movie about personal fate. In the
input item, (e) is a mystery literary work including love and family, in the output item of
OM, (p) is a mystery movie about love, and (q) is a mystery movie including family and
love. In comparison, the output of LightGCN is also five action and mystery movies, but
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Table 2. Details of the experimental results

Metrics Datesets LightGCNCDFM CoNet PPGN BiTGCF CATN OM-W OM

HR@10

CDs and Vinyl 0.0100 0.6935 0.7539 0.7842 0.7815 0.7918 0.7726 0.7982
Digital music 0.0100 0.6345 0.7179 0.7783 0.7872 0.7860 0.7903 0.7958

Books 0.0100 0.4753 0.5223 0.5785 0.5862 0.5787 0.5756 0.6016
Movies and TV 0.0100 0.6284 0.6460 0.7230 0.7304 0.7357 0.7274 0.7493

MRR@10

CDs and Vinyl 0.0200 0.4289 0.4735 0.5024 0.5147 0.5182 0.5128 0.5235
Digital Music 0.0200 0.3295 0.3855 0.4452 0.4483 0.4574 0.4392 0.4587

Books 0.0200 0.2943 0.3237 0.3268 0.3449 0.3457 0.3372 0.3489
Movies and TV 0.0200 0.3376 0.3651 0.3869 0.3992 0.4023 0.3880 0.4087

NDCG@10

CDs and Vinyl 0.0232 0.4966 0.5227 0.5693 0.5683 0.5702 0.5718 0.5727
Digital Music 0.0215 0.3628 0.4436 0.5148 0.5259 0.5348 0.5327 0.5442

Books 0.0153 0.3052 0.3396 0.3569 0.3496 0.3664 0.3572 0.3602
Movies and TV 0.0186 0.3896 0.4060 0.4552 0.4682 0.4852 0.4615 0.4796

no movies or TV shows related to book content are output. This shows that LightGCN
can only roughly capture the item attributes that users prefer, while our method can
more accurately and comprehensively capture item information in the source domain,
and through this method, recommend items for users that they may be interested in.

(h)

(b) (c)

(i)(g)(f)

(d)(a)

Training Input (Books) Recommended Output (Movies and TV)

L
ig

h
tG

C
N

O
M

(o) (p) (r) (s)(q)

(n)(m)(l)(k)(j)(e)

Figure 4. The items (Books) used as training input and the recommen-
dation results (Movies and TV)

3.3. Influence of parameter k on the performance of the algorithm. The graph
optimization module in our method optimizes the graph by detecting and deleting out-
liers, where the parameter k indicates that the detection and removal of outliers is carried
out in the k-th neighborhood of the central node. In the four data domains, the rela-
tionship between the value of the parameter k and the number of detected outliers and
the proportion of outliers are shown in Table 3. Analyzing the data in the table, we can
conclude that no matter which data domain is in, as the assignment of k increases, the
number of outliers and the proportion of outliers decreases. This is because when the
value of k increases, the calculation range of the average density increases. During the
calculation of the average density, as the number of participating nodes increases, the
number of calculated outliers decreases accordingly.
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Table 3. Number of outliers removed and their ratios

k
Books Movies and TV CDs and Vinyl Digital Music

outliers ratio outliers ratio outliers ratio outliers ratio
3 13,061 4.87% 2,261 4.59% 2,658 4.76% 157 4.42%
5 9,560 3.58% 1,704 3.46% 2061 3.69% 116 3.28%
20 4497 1.68% 807 1.64% 904 1.62% 54 1.54%
100 3,096 1.17% 551 1.12% 692 1.24% 36 1.02%
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Figure 5. Algorithm performance under different values of parameter k

Figure 5 illustrates the performance comparison results of our method for various values
of the parameter k. Analyzing the data in the figure, we can conclude that when the value
of k is 3, the performance of the algorithm is poor. The reason is that the number of
deleted nodes is too large, and too many nodes including features of users and items
are lost, resulting in insufficient input data features during the training process. When
the value of k is 20 and 100, the performance of the algorithm is also poor, because the
number of deleted outliers is too small, too much redundant information is retained, and
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some nodes with poor representation of embedded features are also retained, so it is not
conducive to recommending training. When the assignment of k is 5, the performance of
the algorithm is the best. At this time, the number of deleted nodes and the number of
retained nodes are balanced to achieve the best algorithm effect.

4. Conclusion. In this study, we presented a noval algorithm for cross-domain recom-
mendation by performing outlier removal on the graph in the latent space. The algorithm
can efficiently remove negative nodes in the graph, and remove nodes that cannot ad-
equatly represent users’embedding features and items’embedding features in the graph,
thereby boosting recommended accuracy of the algorithm. In addition, the bi-directional
feature transfer module is applied, which enables the algorithm to better capture user
preference attributes, thereby further improving the performance of the algorithm. On
numerous datasets, efficacy of our method is demonstrated when compared to the most
cutting-edge approaches currently available.
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