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Abstract. Healthcare fraud is a major problem that affects the quality of healthcare ser-
vices. Traditional machine learning methods to address healthcare fraud typically focus
on only characteristic patient attributes and ignore the underlying behavioral patterns
implicit in a patient’s treatment history. To mine behavioral information implied by
healthcare fraudsters, we propose a multibehavioral pattern-based graph neural network
(MBGNN) to detect healthcare fraud. The proposed MBGNN first mines behavioral at-
tributes in healthcare heterogeneous graphs by multibehavior pattern decomposition. Here,
three sampling strategies are employed to capture groups with the same behavioral pat-
terns. Then, a two-step attention mechanism is employed to aggregate the compound
semantic information of patients with different behavior patterns. Finally, the learned
embeddings by combining semantic information with topological information are used to
detect patients with abnormal behaviors. Extensive experiments were conducted on two
real-world datasets, and the proposed MBGNN exhibited superior performance compared
to state-of-the-art baseline methods. In the anomaly detection task, the proposed MBGNN
scored high on F1 and precision metrics. We found that the proposed MBGNN outper-
formed existing methods in terms of accuracy. The multiple sampling strategies employed
in the proposed method reveal the hidden behavior patterns of healthcare fraudsters. The
results obtained by the proposed method are effective and explainable; thus, we believe the
proposed can be used to detect healthcare fraud in practical applications.
Keywords: Healthcare, Fraud detection, Graph neural network

1. Introduction.
Healthcare is an important part of the daily life, and due to the COVID-19 pandemic,

many countries with universal coverage under a public healthcare system have suffered
significant economic losses. In addition, the loss of healthcare due to fraud can increase
the burden of an already fragile healthcare system. Healthcare fraud causes huge financial
losses and puts patients at risk because it indirectly damages the healthcare system [1].

The National Health Care Anti-Fraud Association in Washington, D.C. states that
”healthcare fraud refers to intentional deception or false statements by an individual or
entity, knowing that false statements may lead to unauthorized benefit for the individual,
entity, or other party” [2, 3]. According to data published by the World Health Orga-
nization, losses from healthcare fraud have been increasing steadily [4]. The Center for
Medicare and Medicaid Services reported that national health expenditure reached 3.5
trillion USD in 2017, accounting for 17.9% of the US GDP [5], and the National Health
Care Anti-Fraud Association estimates that approximately 3% of annual health care ex-
penditures are the result of fraud [6]. To reduce the loss of health care funds, the Office
of Inspector General created the healthcare fraud Strike Force [7] to detect and prosecute
fraudulent physicians. As of 2017, the Strike Force has recovered $2.52 billion through
1,791 criminal prosecutions and 2,326 indictments. In China, the National Health Insur-
ance Administration recovered $3.23 billion in health insurance funds in 2021 alone [8].
In 2022, 1 USD = 7.24 RMB [9]; therefore, guaranteeing health insurance is essential to
protect public health and promote and protect economic development [10].

The high level of confidentiality in the healthcare industry and the uniqueness of each
medical record make it difficult to detect healthcare fraud. Previous detection methods
have relied on manual reviews. However, having experienced industry personnel review
medical records manually is inefficient and labor intensive. Subsequent studies have em-
ployed a knowledge engineering approach to analyze the healthcare fraud problem and
construct knowledge models. This method learns certain detection rules that can reduce
labor and time costs significantly [11]. Inspired by data mining, some researchers have
considered health insurance fraud to be a claim classification problem. Here, statistical
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methods are used to construct fraud identification models to detect fraud cases automat-
ically [14]. This approach requires the selection of appropriate fraud assessment metrics;
however, common healthcare fraud [12, 13] assessment metrics may pose personal privacy
concerns and do not consider the potential patterns of behavior implicit in a patient’s
treatment history. Behavior is a critical aspect of healthcare fraud that is recorded as
medical data. Many healthcare fraud cases tend to be gang fraud, where members of
the same group behave fraudulently in a similar manner. For example, they will go to
the same doctor at the same hospital to receive prescription medications. In such cases,
the fraudster will typically have more medical data than the ordinary patient. Thus, the
probability of finding the fraudster may be improved if such behavioral characteristics are
considered.

Medical data are intricate [15], consisting of tables of personal information, medical
information, prescription information, etc. Statistical-based methods make it difficult to
mine behavioral characteristics from medical data, which is why few studies have inves-
tigated the behavioral characteristics of people who have committed fraud in the past.
Emerging graph network technologies have achieved good results in various areas, e.g.,
citation network analysis [16, 17], social networks [18], and e-commerce [19]. Graph net-
works provide a new direction for mining behavioral attributes. Graph structures are
also widely available in medical data. A medical dataset can be viewed as a heteroge-
neous graph comprising patients, hospital departments, medications, and visit dates. The
connections between these entities constitute both the edges between the nodes in the het-
erogeneous graph and the behavioral trajectories of the patients. The patient’s behavior
patterns in medical data are transformed into topological information in the medical het-
erogeneous graph. The topological structure information of heterogeneous graphs can be
mined easily using graph neural network (GNN)-based techniques. Then, the patient’s
characteristic attributes and graph-specific topological information are fused to detect
anomalies.

However, there are some challenges to solve the healthcare fraud detection problem
using GNN techniques. First, due to the complexity of healthcare data, there is a large
number of noisy nodes in the network formed by healthcare data. Healthcare fraud
detection can be considered a classification task, and a large number of noisy nodes can
impact the performance of the learning graph network model, which increases the difficulty
of the classification task. Second, distinguishing fraudulent and normal patients in the
medical heterogeneous graph is a challenging process. Third, the detection results must
be interpretable, and we must distinguish which behavioral features are more important
to analyze healthcare fraud.

In this paper, we proposed the multibehavioral pattern-based GNN (MBGNN) to mine
the behavioral information hidden by healthcare fraudsters. For the first two challenges,
to realize fraud detection on heterogeneous graphs, where each patient node is marked
as fraudulent or normal, the proposed MBGNN implements three unique strategies on
sample patient nodes with the same behavioral trajectory in the medical heterogeneous
graph. The sampling process can significantly reduce the number of noisy nodes in the
graph. After sampling, some structural information in the graph may be lost; thus, the
proposed MBGNN includes a topology-aware module to learn the structural semantic
information of the graph. Finally, the proposed MBGNN employs an alternating two-
step attention aggregation mechanism to learn multiple embeddings of behaviors for each
target node. This attention mechanism provides some interpretability for the analysis of
the importance of different behavioral patterns. An comparison of the proposed method
with several baseline approaches on two real-world medicare datasets demonstrates the
effectiveness of the proposed MBGNN.
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Our primary contributions are summarized as follows.
(1) We propose the MBGNN for healthcare fraud. To the best of our knowledge, the

proposed MBGNN is the first method to employ multiple sampling strategies to mine
patients’ behavioral patterns.

(2) We present a topology-aware module. This module learns the global topological
information of medical heterogeneous graphs to guide the merging of information between
different behavioral patterns.

(3) Extensive experiments on two real-world datasets demonstrate that the proposed
MBGNN outperforms existing graph representation learning methods.

2. Related Work.

2.1. Healthcare Fraud.
Fraud has a significant impact on health care and daily life. Hall [20] employed fuzzy

logic and neural network-based induction algorithms to detect the abnormal behavior of
fraudsters. However, this approach required the assistance of medical experts to achieve
good results and did not allow for effective automatic detection. Subsequent research has
shifted toward automating fraud detection. Healthcare fraud detection models are based
on supervised learning techniques, e.g., k-nearest neighbors, decision trees, and support
vector machines. He et al. [21] proposed neural networks with an error backpropagation
algorithm using 28 relevant features to analyze fraudsters. In addition, Yang and Hwang
[3] used logistic regression, neural networks, and classification trees to detect fraud among
health care providers in the Taiwanese health insurance system. Bauder and Khoshgoftaar
[22] employed a random forest technique to classify the imbalanced data. Supervised
methods require large amount of labeled data. However, the development of supervised
learning for fraud detection is limited due to the diversity of healthcare data and the
difficulty obtaining labeled data from related fields in the healthcare domain.

One of the most common unsupervised methods used to find fraudulent records is
outlier detection. Anbarasi and Dhivya [23] employed an outlier detection-based approach
to identify fraud in health care records. They identified outliers by evaluating health
care provider information and claims management data. Yamanishi et al. [24] proposed
the SmartSifter algorithm to process and detect medical data. This algorithm evaluates
scores based on the similarity between variables in medical data and identifies medical
records with high scores as outliers. However, healthcare-related businesses are becoming
increasingly granular, and fraud patterns becoming increasingly complex. Gupta et al.
[25] proposed an implementation of correlation and regression models to investigate new
fraud patterns in response to the emerging fraud challenges facing healthcare systems
under COVID-19.

Intelligence and information technologies have help realize significant improvements in
terms of the efficiency and accuracy of healthcare fraud detection. However, automated
fraud detection is not sufficient to guarantee healthy operation of a healthcare system.
Most existing technologies rely on the statistical characteristics of patients, e.g., age,
gender, and the amount of money involved. Limited research has been done on patient
behavior; however, behavior is one of the most critical aspects of health insurance fraud.
Thus, we must understand the behavioral characteristics of fraudsters, and the goal of
this study is to identify fraudsters with abnormal behaviors by mining the behavioral
patterns of patients.

2.2. Graph-based Approach.
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Many GNN methods have been used in the anomaly detection field. For example, Belle
et al. [26] applied inductive graph representation learning to credit card fraud detec-
tion. Here, they used two node embedding frameworks, i.e., GraphSage and FI-GRL,
to mine anomalous transaction behavior, and they conducted extensive experiments on
financial transaction datasets and achieved good results. Yoo et al. [27] transformed
medical datasets into heterogeneous graphs and improved the GraphSage model in the
medical industry context. They used the optimized GraphSage model to capture the
graph structure to enhance the accuracy of detecting abnormal medical events. Chen et
al. [28] proposed the StGNN algorithm for the abnormal behavior trajectory of healthcare
fraudsters. This algorithm constructs a graph network comprising hospitals, drugs, and
patients, and it employs spatial constraints to find groups with similar behavioral tra-
jectories. In addition, the StGNN algorithm implements a time constraint to determine
whether the patient demonstrates abnormal medical behavior. Zhang et al. [29] developed
a longitudinal and multimodal data fraud detector based on GNN. They believed that
the interval and frequency of medical records are beneficial in identifying fraudsters with
abnormal behaviors. Therefore, the idea of this method is to model the electronic medi-
cal record in the form of dynamic graphs. They proposed a novel HMF-GNN algorithm
that fuses the unique temporal information of dynamic graphs with medical multimodal
information to identify abnormal medical behaviors.

A medical heterogeneous graph is a form of medical dataset mapping in which the nodes
and edges in the graph are the connections of different entities in a medical scenario. It can
be used to analyze the complex relationships between entities and effectively mine medical
data for abnormal medical visit behaviors. Learning the embedding representation of
nodes in heterogeneous graphs using GNN [30] techniques enables the use of feature
information and the mining of patient behavior patterns, i.e., the topological information
in the graph. The GNN techniques can also improve the robustness of downstream tasks
compared to statistical-based approaches that use feature information.

Figure 1. Medical heterogeneous graph (node types and sampling strate-
gies) and the graph structure after applying a sampling strategy



900 J.-T. Lu, K.-B. Lin, X. Chen and J.-P. Chen

3. Preliminaries.

3.1. Heterogeneous Graph.
A heterogeneous graph can be defined as G = {vh, εh, φ, δ}, where vh is the set of

vertices in the graph, and εh is the set of edges. δ : εh → R are mapping functions
that assign vertices and edges with type information. Here, A and R denote the set of
predefined object types and link types, respectively, where |A|+ |R| > 2.

Example 3.1. As shown in Figure 1(a), we construct a heterogeneous graph to model
a medical dataset. The dataset includes multiple types of objects (patients (P), hospital
departments (D), time (T), and medications (M)) and relationships (visit relationship
between patients and hospital departments, purchase relationship between patients and
medications, etc.).

3.2. Metapath [31].
A metapath is formed by transforms of a graph schema and can capture rich semantic

information preserved in heterogeneous graphs. As an abstract sequence of node types

connected by link types, a metapath is denoted as a path in the form of A1
R1→ A2

R2→
A3

R3→ · · · Rl→ Al+1(abbreviated as A1A2A3 · · ·Al+1) that describes a composite relation
R = R1

◦R2
◦ · · · ◦Rl between node types A1 and Al, where ◦ denotes the composition

operator on relations.

3.3. Metagraph [32].

Ametagraph can be defined as a special kind of path, i.e., A1
E1→ A2

E2→ A3
E3→ · · · E4→ Al+1

(abbreviated as A1A2A3 · · ·Al+1 ). where E is the set of edges, represents the semantic
relationship between two nodes, and |E| > 2.

3.4. Fraud Detection on Heterogeneous Graph.
Fraud detection on heterogeneous graphs, where each patient node is marked as fraud

or normal node. The goal of the proposed method is to identify anomalous nodes demon-
strating fraudulent behavior.

4. Methods.
To mine the implicit behavioral information of healthcare fraudsters, we propose a

healthcare fraud detection method based on a MBGNN. In this section, we describe the
architecture of the proposed MBGNN. Its basic components are multibehavior pattern
decomposition and multipattern fusion. Multibehavior pattern decomposition is a pre-
processing stage that finds nodes with similar behavioral patterns. Multipattern fusion
comprises two aggregated modules, i.e., the intrapattern fusion and interpattern merg-
ing modules. The embedding of nodes with multiple behavioral patterns is learned via
continuous iteration. In addition, global topological information is introduced to guide
the aggregation process and maintain the quality of embeddings with multiple behavioral
patterns. Figure 2 illustrates the overall flow of the proposed MBGNN.

4.1. Multibehavior Pattern Decomposition.
Our medical heterogeneous graph contains different types of nodes, e.g., patients, drugs,

and hospital departments. Different types of nodes have different feature vector dimen-
sions, and they are in different feature spaces. However, it is difficult to deal with feature
vectors of different dimensions in a uniform framework. Thus, we consider a type-specific
transformation matrixMA to project different types of features into the same latent vector
space. As shown in Equation (1), for nodes u ∈ VA of type A ∈ A, we have:

Wu = MA ·Xu (1)
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Figure 2. Overall framework of the proposed MBGNN

where Xu ∈ RdA is the original feature vector, and Wu ∈ Rd′ is the projected feature
vector of node u. Here, MA ∈ Rd′×dA is the parameter weight matrix of nodes of type A.

Different behavioral patterns of healthcare fraudsters have different meanings; thus, to
mine potential behavioral patterns in a heterogeneous graph, we perform multibehavioral
pattern-based decomposition of the medical heterogeneous graph. Given nodes with mul-
tiple behavioral patterns in the medical heterogeneous graph, we must first sample the
nodes in different ways. The proposed MBGNN employs three sampling strategies, i.e., the
one-hop neighbor-based metapath, two-neighbor-based metapath, and metagraph-based
sampling strategies, to focus on patient nodes that contain multiple behavior patterns,
which typically provide more useful information to detect fraud. The processes of these
sampling strategies are shown in Figure 1. Through the multibehavior pattern decompo-
sition, nodes with similar trajectories under different behavior patterns can be obtained.
In addition, fraudsters tend to have more medical records; thus, they are represented as
nodes that are more closely connected in the heterogeneous graph. The feature vectors
of the nodes are preprocessed according to this property, and Equation (2) shows the
process. After preprocessing, the proposed MBGNN can focus on this type of nodes when
learning node embeddings.

hu = Wu · λ
du
n

(2)

Here, Wu is the projected feature vector of the node, du is the degree of node u, n is the
number of nodes, and λ is a hyperparameter. After applying the preprocessing operation,
the more densely connected nodes are able to get higher attention in the next model.

4.2. Multipattern Fusion.
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The multipattern fusion module is the core component of the proposed MBGNN and
follows a hierarchical fusion structure, i.e., intrapattern fusion, topology-aware module,
and interpattern merging.

4.3. Intrapattern Fusion.
In a certain behavioral pattern, neighboring nodes have different degrees, which may be

due to the different types of nodes or their different local topologies. This means that each
neighbor node plays a different role in the intrapattern fusion process and has different
importance. Previous studies that used an underlying GNN directly for aggregation could
not capture the importance of different neighboring nodes. Thus, the proposed MBGNN
employs an attention mechanism to perform aggregation in the intrapattern fusion process.
Here, based on a node pair (u, v) under some behavior pattern ρ, the attention mechanism
can learn the importance eρiuv, which represents the contribution of node v to node u. The
importance of node v is calculated as follows.

eρiuv = attintra ([hu∥hv] , ρi) (3)

where hu and hv are the projection feature vectors of nodes u and v after processing,
respectively, and || denotes the vector connectivity operator. Here, attintra (·) denotes
the deep neural network performing the attention mechanism. From the node pair im-
portance calculation, the weights between node pairs are entirely dependent on their
projection features. Thus, different neighboring nodes of node u can be assigned different
contributions.

After obtaining the importance eρiuv between node pairs, we use the Softmax function to
obtain the normalized weighting coefficients aρiuv, which represents the weight of neighbor
node v among all neighbors of node u. aρiuv is calculated as follows.

aρiuv = softmaxv (e
ρi
uv) =

exp (LeakyReLU (eρiuv))∑
k∈Nρ

u
exp (LeakyReLU (eρiuk))

(4)

The proposed MBGNN can perform aggregation within the behavior pattern of node
u based on the weight coefficients aρiuv obtained above. Then, the output is performed by
the activation function σ(·) as follows.

hρi
u = σ

∑
v∈Nρ

u

aρiuv · hv

 (5)

Note that the weight coefficient aρiuv is produced in a certain behavioral pattern; thus, the
specific semantic information of different behavioral patterns can be mined. Considering
the high variance of the training process for heterogeneous graph data, we employ a
multiheaded attention mechanism to solve this problem. Here, we execute k independent
attention mechanisms that connect their outputs. This process is described in Equation
(6), and this method can stabilize the entire training learning process effectively.

hρi
u =

K

∥
k=1

σ

∑
v∈Nρ

u

aρiuv · hv

 (6)

Thus, hρi
u can be interpreted as a summary of the target patient node u under behav-

ioral model ρi. This shows one aspect of the semantic information contained in node u.
Here, assume there are behavioral patterns ρ0, ρ1, . . . , ρm. After performing the interpat-
tern fusion process, we obtain a sequence {hρ0

u , hρ1
u , . . . , hρm

u } represented by m behavioral
pattern-specific vectors.
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4.4. Topology-aware Module.
A decomposition of multiple behavioral patterns has been performed previously to study

the complex and different behavioral trajectories of healthcare fraudsters. However, after
three sampling strategies, although groups with similar behaviors can be found, some
topological structure information in the graph will be lost to some extent [33, 34]. These
missing topologies are the links between different behavioral patterns. The nature of the
multibehavior pattern decomposition step is similar to local clustering; thus, it is difficult
to obtain global knowledge in the learning of behavior pattern merging. Therefore, the
proposed MBGNN employs the topology-aware module to guide interpattern merging and
mine the structure between behavioral patterns more deeply. As shown in process (c) of
Figure 2, inspired by node sampling in graph pooling, this process employs a GNN to
learn the global topological structure information. The global topological embedding Ht

is calculated as follows.

Ht = GNN(A, x) (7)

Note that the dimension of Ht is kept consistent with the dimension of the embedding
hρi
u learned under a single behavioral pattern. Then, the global topological embeddings

and the embeddings under individual behavioral patterns are input together to the inter-
pattern merging module for fusion learning.

4.5. Interpattern Merging.
Nodes learn different information in different behavior patterns; thus, the information

must be merged in this module. Specifically, the proposed MBGNN uses a multimodal
focus to assess the importance of different behavioral patterns in the final task. According
to the importance, each behavioral pattern is assigned a different weight. The embed-
dings learned under each behavior pattern are then weighted and summed to obtain the
final embedding, as shown in Figure 1(b). To learn the importance of different behav-
ioral patterns, a weight matrix Wρ is used to transform the specific representation under
each behavioral pattern. We then average all transformed embedding representations to
summarize the importance of each behavior pattern as follows.

Sρi =
1

|G|
∑
i∈G

qT tanh (Wρ · hρi
u + bρ) (8)

where bρ and qT are the learnable bias vector and parameterized attention vector, re-
spectively. The topology-aware module was implemented to guide the intermodal merging;
thus, the importance of the global topology information in the aggregation process must
also be evaluated. Equation (9) describes the evaluation process.

St = qT tanh (Wt ·Ht + bt) (9)

Here, Wt is the weight matrix, and bt is the bias vector. Then, the contribution of each
behavior pattern and the global topology are obtained by normalizing it with the Softmax
function using Equations (10) and (11).

βρi =
exp (Sρi)∑m

i=1 exp (S
ρi) + exp (St)

(10)

βt =
exp (St)∑m

i=1 exp (S
ρi) + exp (St)

(11)

This can be interpreted as the contribution of each behavior pattern ρi to the fraud
detection, where a higher βρi value indicates that behavior pattern ρi has higher impor-
tance. Finally, all behavior patterns are merged, and the global topology information is
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used to guide the fusion to obtain the final embedding H, which is formulated as follows.

H =
m∑
i=1

βρi · hρi
u + βt ·Ht (12)

Here, the proposed MBGNN employs cross-entropy as the loss function and optimizes
the model via backpropagation. The cross-entropy is expressed as follows:

L = −
∑
l∈yL

Y l ln
(
M ·H l

)
(13)

where Y l and H l are the labels of the labeled patient nodes and learned embeddings,
respectively and M represents the classifier’s parameters.

5. Experimental and Result.

5.1. Datasets.
Healthcare-1 and Healthcare-2 are desensitized health insurance datasets from a health

insurance management system from a city in China. The Healthcare-1 dataset con-
tains 440 patients, 2,328 drugs, 708 hospital departments, and 351 timestamps after
data preprocessing. The ratio of positive to negative samples is approximately 1:2. The
Healthcare-2 dataset contains 10,647 patients, 4,718 drugs, 2,751 hospital departments,
and 364 timestamps. Of these, 1.5% of the patients were fraudsters. Each dataset was
divided randomly into a training set (60%), a validation set (20%), and a test set (20%).

5.2. Baselines.
Isomorphic graph embedding methods: GCN [35], and GAT [36]. We generate iso-

morphic graphs from medical datasets by leaving patient type nodes and show the best
results.

Heterogeneous graph embedding methods: Metapath2Vec [37], HAN [38], and StGNN
[28]. These methods were experimented on constructed medical heterogeneous graphs.

All methods were implemented in Pytorch 1.4.0 [39] and Python 3.6.2. The Metap-
ath2Vec, GCN, and GAT methods were implemented based on DGL 0.6.1 [40]. The HAN
and StGNN methods were implemented using official source code. All methods were set
to run for 300 epochs on the training set. Optimization was performed using the Adam
optimizer, and the cross-entropy loss function was employed. We then used the best model
on the validation set.

5.3. Node Classification.
We employed an end-to-end training approach for all models; thus, all models were

optimized by connecting an MLP layer at the end of each model. In addition, the cross-
entropy loss function was employed. The embeddings of the labeled nodes generated by
each model were input to a linear support vector machine classifier for node classification.
The variance of graph structure data can be quite high. Thus, to avoid chance, the
process was repeated 10 times. In this study, we considered two metrics, i.e., Micro-f1
and Macro-f1, to evaluate the node classification effectiveness of each model. The results
are shown in Table 1.

As shown in Table 1, the proposed MBGNN obtained the best performance on differ-
ent training ratios. The peak performance was obtained at training set ratios of 40%
and 60%. For the GCN and GAT methods, we found that the homogeneous graph-based
embedding approach cannot learn the semantic information between different entities in
the medical heterogeneous graph well. This resulted in better quality embeddings learned
by the heterogeneous graph-based methods and better classification results. The GCN
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method aggregates neighbor information by simple averaging, and the GAT and HAN
methods employ an attention mechanism to aggregate neighbor information. The atten-
tion mechanism correctly weighted the importance of neighbor node information; thus, the
GAT and HAN methods could learn better embeddings. Compared to GAT, the HAN
method was superior due to its ability to learn semantic information in heterogeneous
graphs using a metapath approach. For medical datasets, the StGNN method adds ad-
ditional time constraints to HAN, which learns more complete timestamp information in
medical heterogeneous graphs and demonstrated better classification results. In contrast,
the proposed MBGNN found patients with the same behavioral trajectory using multiple
strategies and adding global topological embedding to guide the learning of structural
information from the medical heterogeneous graphs. The final results are all about a 5%
improvement on average compared to StGNN, which has the best results in the baseline
model.

These results demonstrate that learning information in the graph using only the meta-
path approach is insufficient and that the global topology is also important for learning
the graph structure.

Table 1. Results (%) of node classification on the Healthcare-1 dataset

Dataset Metrics Training Metapath2Vec GCN GAT HAN StGNN MBGNN

Healthcare-1

Macro-f1

20% 63.81 77.67 79.79 81.11 83.15 88.33
40% 65.91 77.43 80.03 83.27 84.74 89.23
60% 68.97 78.24 81.15 83.92 85.27 90.17
80% 68.25 78.96 81.21 84.86 85.94 89.17

Micro-f1

20% 69.82 78.45 80.61 82.45 84.61 89.43
40% 71.36 79.24 80.84 84.27 85.13 90.12
60% 74.03 79.68 81.26 84.71 85.88 91.03
80% 73.29 80.19 81.14 85.47 86.52 90.01

5.4. Node Clustering.
We also performed a clustering task on the Healthcare-1 dataset to evaluate the em-

beddings learned by the different models from the medical heterogeneous graph. Here,
the embedding of the labeled nodes generated by each model was input to the K-Means
algorithm for node clustering. Since the clustering results of the K-Means algorithm are
influenced by the initial center of mass, this process was repeated 10 times, and the aver-
age results are reported in Table 2. We used normalized mutual information (NMI) and
the adjusted Rand index (ARI) as evaluation metrics.

As shown in Table 2, the proposed MBGNN consistently performed better than other
baselines. In addition, Metapath2Vec performed better in clustering compared to the
traditional isomorphic graph embedding methods, i.e., GCN and GAT. Metapath2Vec is
a random wandering method based on metapaths, and the sequence nodes obtained are
close to the graph and projected to the embedding space. Thus, the embedding learned
by Metapath2Vec fits better with the idea that K-means clusters nodes based on the
Euclidean distance between embeddings. However, Metapath2Vec cannot distinguish the
importance of metapaths; thus, it was outperformed significantly by the HAN method.
StGNN also sampled nodes with the same trajectory through metapaths. However, the
proposed MBGNN samples nodes with a more comprehensive strategy; thus, it obtained
the best node clustering performance.
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Table 2. Results (%) of node clustering on Healthcare-1 dataset

Dataset Metrics Metapath2Vec GCN GAT HAN StGNN MBGNN

Healthcare-1
NMI 17.19 14.36 15.31 27.58 31.98 38.22
ARI 15.42 13.21 14.47 20.45 30.24 39.02

5.5. Anomaly Detection.
In subsequent experiments, we validated the performance of different models on the

node anomaly detection task on the Healthcare-2 dataset. Approximately 1.5% of the
patients in the Healthcare-2 dataset are fraudsters, which accurately simulates real-world
medical scenarios. As shown in Table 3, the effect of the isomorphic graph embedding-
based method is significantly reduced on the unbalanced sample dataset due to the large
proportion of ordinary patients and the noise of isomorphic graph embedding in the neigh-
bor node aggregation process. In contrast, the HAN and StGNN methods selected nodes
with similar action patterns based on metapaths. In addition, these methods employ an
attention mechanism to distinguish the importance of paths and nodes, which greatly
mitigated the impact of data imbalance. The proposed MBGNN captured more com-
prehensive structural information in the medical graph by mining the behavior patterns
among fraudsters using multiple strategies. The embeddings of the proposed MBGNN
integrate more comprehensive structural information and incorporate feature information.
Compared to the StGNN method, which was the best performing heterogeneous graph
embedding model, the proposed MBGNN method improves the average F1 score by 2%.

Table 3. Results (%) of anomaly detection on the Healthcare-2 dataset

Dataset Training Size Metrics Metapath2Vec GCN GAT HAN StGNN MBGNN

Healthcare-2

20%
F1 71.03 60.67 75.51 77.58 85.19 87.21
Precision 79.5 62.96 71.15 80.41 88.73 89.17

40%
F1 71.66 57.37 72.13 75.63 83.19 85.29
Precision 80.03 58.94 69.84 79.81 89.1 90.03

60%
F1 73.21 60.36 71.28 78.46 87.5 89.14
Precision 80.96 61.21 75.86 81.16 89.98 90.57

5.6. Ablation Study.
To validate the effectiveness of each component of our model, we evaluated several

variant models of the proposed MBGNN: MBGNNone , MBGNNtwo , MBGNNgraph ,
and MBGNNtop . Table 4 shows the results of these experiments for the clustering
classification task on the Healthcare-1 dataset. The MBGNNone , MBGNNtwo , and
MBGNNgraph variants are models without the one-hop neighbor path sampling based
strategy, without the two-hop neighbor path sampling based strategy, and without the
metagraph sampling based strategy, respectively. The MBGNNtop variant does not in-
clude the topology-aware module. To demonstrate the effect of the comparison more
intuitively, the Micro-f1, Macro-f1, and Weight-f1 results are visualized using bar charts
in Figure 3. The performance of the learned embedding representations of several variants
of the proposed MBGNN under node classification is shown in Figure 3. As can be seen,
the overall effect of MBGNNone decreased more significantly compared to MBGNNtwo

and MBGNNgraph . This indicates that the one-hop neighbor sampling strategy is more
important for the overall model to learn the complete result information and feature in-
formation. The MBGNNtop variant without the topology-aware module also exhibited a
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gap in performance compared to the proposed MBGNN, which highlights the effectiveness
of the topology-aware module.

Figure 3. Results of MBGNN and its variant models for node classification
on the Healthcare-1 dataset

Table 4. Quantitative results (%) for ablation study

Dataset Metrics Training Size MBGNNone MBGNNtwo MBGNNgraph MBGNNtop MBGNN

Healthcare-1

Macro-f1

20% 83.06 86.51 83.39 85.13 88.33
40% 83.39 86.61 84.59 85.17 89.23
60% 83.54 86.93 85.01 85.91 90.18
80% 82.91 85.94 84.64 85.01 89.17

Micro-f1

20% 85.37 87.87 84.57 86.17 89.43
40% 85.34 87.73 85.59 86.16 90.12
60% 85.28 88.01 85.94 86.79 91.03
80% 84.52 86.76 85.28 85.66 90.01
NMI 31.21 35.11 34.81 33.61 38.22
ARI 33.66 34.23 31.51 28.98 39.02

5.7. Visualization.
In this section, we visually compare the learned embedding representation capabilities

of different GNN models. Here, we learned the node embeddings of the appeal meth-
ods (i.e., GCN, GAT, Metapath2Vec, HAN, StGNN, and MBGNN) on the Healthcare-2
dataset and projected the embeddings into two-dimensional space. We then used t-SNE to
visualize the embeddings in Healthcare-2 (Figure 4). As can be seen, the GCN, GAT, and
Metapath2Vec methods did not perform very well because positive and negative sample
nodes are mixed together. In contrast, the HAN and StGNN methods separated positive
and negative sample nodes effectively by selecting groups with the same action trajectory
through metapaths; however, the boundary is still somewhat fuzzy. Compared to the HAN
and StGNN methods, the proposed MBGNN found groups with the same behavioral pat-
tern using multiple sampling strategies at a finer granularity. The topology-aware module
guides the learning of node embedding representations to distinguish different classes in
the visualization. The proposed MBGNN exhibits clearer boundaries and denser cluster
distribution, which further highlights the effectiveness of the global topology awareness
and multiple sampling strategies.

5.8. Analysis of Model and Parameters.
A remarkable feature of the proposed MBGNN is that the importance of different sam-

pling strategies and global topologies is considered in interpath merging using an attention
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Figure 4. Visualization of the learned node embeddings on the
Healthcare-2 dataset

mechanism. Thus, we analyzed the attention mechanism to better understand the im-
portance of the different strategies. Table 5 shows the results of attention mechanism.
As can be seen, the metagraph sampling strategy has the greatest impact during model
training. This means that the characteristics of neighbor nodes selected by metagraph
sampling strategy are similar to each other and highly correlated. The level of attention
shown in Figure 5 also reflects the interpretability of the model to some degree. Each
strategy contributes to the learning of the proposed model, and the global topological
information plays a role in the fusion process.

Figure 5. Attention contribution values for different strategies and global
topology information

We also investigated the sensitivity of the parameters. Here, the node clustering scores
(i.e., NMI and ARI) obtained on the Healthcare-1 dataset are reported using the di-
mensionality of the final embedding Z in the proposed MBGNN, the number of heads
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Table 5. Attention result in Healthcare-1

Different strategies one-hop two-hop metagraph topology
Attention value for different strategies 0.162 0.334 0.372 0.132

k of attention, and the weighting factor λ of the preprocessing. Note that the reported
scores are the average of the scores for different training scales (see Section 5.4 for an
explanation). The results are shown as a line graph in Figure 6.

First, the effect of the dimensionality of the final embedding Z was tested experimen-
tally, and the results are shown in Figure 6(a). As can be seen, with increasing dimension,
the performance shows a trend of initially increasing rising and then slowly decreasing.
The reason for this is that the proposed MBGNN selects patient group nodes with the
same behavior trajectory using multiple sampling strategies, and it requires an appro-
priate dimension to encode behavior information. A smaller dimension cannot encode
behavior information effectively, which may lead to missing semantic information. In
addition, an overly dimension may cause additional redundancy, which leads to further
degradation of performance.

We then investigate the performance of the model under different k values by varying
the value of attention head number k. The results are shown in Figure 6(b), where the
model clustering scores increase gradually when the k value increases gradually. This
is due to the high variance of the heterogeneous map. When the value of k is 1, the
multiheaded attention is removed, which makes training possible by chance and makes
clustering less effective. In addition, when the value of k is increased, the multiheaded
attention improves the stability of the training process.

Finally, to obtain the best model performance, we tested the effect of weighting factor
λ on the model. The results are shown in Figure 6(c), where the performance shows a
trend of increasing and then slowly decreasing as the weighting factor λ increases. It is
reasonable that when the weighting factor is too small, the target node is not as sensitive
to more similar neighbor nodes in the neighborhood and only evaluates the importance
of the neighbor nodes by the initial feature vector. When the weighting factor is too
large, the target node spends most of its attention on aggregating the information of such
neighbor nodes. However, such nodes only account for a small fraction of the neighbor
nodes and cannot learn the information in the complete neighborhood. Thus, a suitable
weighting factor is more beneficial for the model’s performance.

Figure 6. Parameter sensitivity of proposed MBGNN: (a) dimension of
the final embedding Z; (b) number of attention heads k; (c) weighting factor λ

6. Conclusion.
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In this paper, we have proposed the MBGNN model to mine behavioral attributes in
medical heterogeneous graphs through multibehavior pattern decomposition. The pro-
posed MBGNN employs three unique sampling strategies to capture groups with the
same behavioral patterns. In addition, the semantic information of nodes in different
behavior patterns is aggregated using an attention mechanism, and the semantic informa-
tion contained in different behavior patterns is fused under the guidance of the proposed
topology-aware module.

The learned final embeddings were employed in different downstream tasks to evaluate
the performance of the model. Clustering, classification, and anomaly detection experi-
ments were conducted on two real-world datasets to verify the performance of the proposed
MBGNN compared to existing methods. Visualizations and analysis of the model’s at-
tention mechanism were found to be interpretable. The proposed MBGNN can effectively
mine implicit behavioral patterns in historical healthcare data, which is beneficial relative
to detecting healthcare fraudsters.

In future, we plan to address two primary limitations. (1) The topology-aware module.
The proposed method employs the most basic GNN model to learn global topological
information. However, there are better models to realize structure learning of graphs.
(2) Time is very important factor, and we currently only use a timestamp as an entity
in medical heterogeneous graphs. However, from the perspective of dynamic graphs, it
possible to capture information about the structural changes of the graph.
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