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Abstract. In the crowded scenario, the pedestrians often gather together, which leads to
occluding between pedestrians. The occlusion affects the performance of detecting human.
Specifically, the predicted box of model may shift to surrounding objects or deleted by non-
maximum suppression accidentally. In the article, a regression loss function is proposed
for crowded scenarios, termed E-Reploss. In E-RepLoss, the repulsion loss function is
constructed entirely based on EIoU loss function. It not only fits better with the model
based on anchor, but also has all the properties of the repulsion loss function. It can both
enhance the localization of the bounding boxes and keep a distance between surrounding
object’s bounding boxes and ground-truth boxes. This paper experiments with CrowdHu-
man benchmark in order to verify performance of the proposed strategy. The results of
experiment indicate that this loss function reduces false positive and missed detection rate
effectively in crowded scenes. Meanwhile, it maintains the better generalization.
Keywords: Pedestrian detection, Crowded scenarios, EIoU, Regression loss function

1. Introduction. As an important part of object detection, human detection can provide
important technical support for application scenarios such as automatic driving, intelligent
surveillance, robot path planning and person re-identification [1, 2]. Moreover, it is widely
applied in multi-target tracking, human pose estimation and person search [3, 4, 5, 6, 7].
Therefore, human detection brought out extensive attention of scholars in the field of
industry and academia. However, there is a serious occlusion between pedestrians in the
crowded scenes such as subways, shopping malls and scenic spots [8]. The general lack
of features and high similarity between pedestrians cause the detector unable to extract
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the effective feature of pedestrians. The predicted box is unable to accurately fit each
pedestrian or is deleted by non-maximum suppression, resulting in missed detection and
false positive. As a consequence, it is the challenge for the current human detection
to decrease the rate of false positive and missed detection and enhance the precision of
human detection and location.

Recently, deep convolutional neural network [9, 10, 11, 12, 13, 14] has developed rapidly.
Using a single detector can achieve better effect and significantly improve human detec-
tion’s performance. As an important part of network model, loss function is utilized to
calculate error between real label and predicted output of model. It can be continuously
optimized with the help of optimization function. The value of loss function can be uti-
lized to judge the fitting of the model to data. If loss function is smaller, fitting degree
is better. Conversely, the fitting degree will be worse. The training process of convolu-
tional neural network is the process of continuously adjusting the weight and bias of the
model through the loss function and optimization algorithm. Some research works have
concentrated on the regression loss function of bounding box. Researches mainly focus
on how to make the predicted boxes of the target fit its ground-truth box as much as
possible and solve the problem of occlusion on human detection. Some classical approach
is available in the literature [15] and literature [16]. In literature [15], an aggregation loss
function (AggLoss) inspired by group behavior is introduced to strengthen the bound-
ing box’s location and reduce false detection. Meanwhile, a PORoI Pooling for partial
occlusion perception is proposed to replace ROI pooling in Fast RCNN. This model can
integrate the prior structure information and visibility prediction of human body into the
network to deal with occlusion. To describe the uncertain prediction of bounding box, the
bounding box and the ground-truth box are modeled as Gaussian distribution and Dirac
distribution in reference [16]. Then the regression loss of the bounding box is called as
KL divergence of predicted boxes distribution and ground-truth boxes distribution, and
KL loss is proposed. Although the above strategy can solve occlusion patterns, it does
not have a better breakthrough in convergence speed and precision of regression.

The predicted box cannot accurately fit each pedestrian or is deleted by non-maximum
suppression. A regression loss function E-RepLoss suitable for crowded scenes with more
serious occlusion is proposed to solve the problems. E-RepLoss not only makes the bound-
ing box better cover its targets, but also can make the predicted box far keep a distance
with the ground-truth boxes and adjacent pedestrians’ predicted boxes. While it is more
suitable for the CrowdDet based on anchor.

In this paper, the main contributions are summarized as follows:
(1) The reasons for high false positive and missed detection of human detection in

crowded scenes are analyzed;
(2) An improved regression loss function E-RepLoss is proposed from the perspective

of model loss function. E-RepLoss constructs each component of RepLoss loss function
based on EIoU loss function. This loss function can strengthen the location of bounding
box. Moreover, it maintains a distance from the ground-truth box and the bounding box
of other pedestrians. Generally, the loss function is more suitable to CrowdDet based on
anchor. The model’s detection effect is improved;

(3) Experiments are designed to prove effectiveness of E-RepLoss. Firstly, based on E-
RepLoss loss function, CrowdDet model is trained and tested on CrowdHuman dataset.
Secondly, the loss function of CrowdDet model is replaced by EIoU loss function, RepLoss
and other IoU variant loss construction RepLoss respectively. These loss functions are
utilized to compare the performance.

Other parts of the article are arranged as follows: Section 2 summarizes the relevant
work. The proposed method and common regression loss functions are introduced in
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section 3. In Section 4, the improved loss function is described in detail. Section 5
introduces the relevant details of the experiment. The experimental result is analyzed in
Section 6. Finally, in section 7, the paper makes conclusions and states the future work.

2. Related Work.

2.1. Pedestrian Detection. Pedestrian detection, as a domain-specific application of
target detection, can provide important technical support for some realistic scenarios.
Traditional pedestrian detection methods focus on improving the detection accuracy in
terms of feature extraction and classification. For example, ACF [17], LDCF [18], and
Checkerboard [19] use various filters and sliding window strategies on integral channel
features (IDF) [20] to localize each target. In recent years, with the advent of large-
scale datasets, deep learning, migration learning techniques, and the dramatic increase
in GPU hardware computing power, convolutional neural network-based target detection
methods have once again been rapidly developed, showing great potential for dominance
in the field of pedestrian detection. In the literature [21, 22], features from deep neu-
ral networks rather than hand-crafted features are fed into an enhanced decision forest.
The literature [23] proposed a network trained for multiple tasks to further improve the
detection performance. The introduction of convolutional neural networks has improved
the performance of pedestrian detection algorithms, but the occlusion problem is still a
major difficulty in pedestrian detection [24, 25, 26]. In literature [24], they discuss differ-
ent kinds of occlusions and propose an occluded scene text enhancing network to improve
recognition performance. The network is based on generative adversarial networks, and
they design accretion blocks to help the network generate the occluded image regions. In
literature [25], due to the disadvantages of feature point center weighting, multiparticle
template matching, and Kalman filter trajectory prediction algorithms in different cases,
some algorithms with higher robustness and stability are developed to solve the occlusion
problem. In literature [26], to handle the occlusion issue, they proposes a simple but
effective pedestrian detector who designs a novel bi-center prediction mechanism (namely
Bi-Center) based on the anchor-free network.

2.2. Regression loss functions. With the increasing representational power of convo-
lutional neural networks in recent years, good detection results can be achieved using a
single detector. Some research work has focused on the design of regression loss func-
tions for the bounding boxes of pedestrian detection models, and this type of research
is concerned with how to make the predicted bounding box of the target fit its corre-
sponding ground truth as closely as possible.The general regression loss functions L1, L2,
and SmoothL1 [27] based on IoU and its variants [28, 29, 30]. The SmoothL1 loss func-
tion first appeared in the Fast RCNN model of target detection. Then, a series of loss
functions GIoU [28], DIoU and CIoU [30] have been proposed to improve the regression
accuracy. They have made good contributions to improve model’s detection accuracy,
but the above loss functions still have the problems of low precision and slow convergence
in the crowded scenes. The Focal and Efficient IoU Loss proposed in the literature [29]
can accurately measure the differences of overlap area, centroid and edge length in the
bounding box regression. It further improves the network convergence speed and accu-
racy of target localization. A repulsion loss function (RepLoss) added the penalty term
is introduced in reference [31] to improve localization precision of pedestrians. The loss
function makes the predicted box as close to the ground-truth box as possible and keeps
away from ground-truth box and predicted box of other targets. This loss function is a
classical method to deal with occlusion in human detection.
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3. The common regression loss functions. The improved regression loss function E-
RepLoss is based on Reploss and EIoU loss functions. First of all, the common regression
loss functions are introduced.

The bounding box loss function used in CrowdDet model is calculated as follows:

SmoothL1 =

{
(βx)2

2
, |x| < 1

β2

|x| − 0.5
β2 , otherwise

(1)

Where β is smoothing coefficient. x represents input data. As can be seen from
Equation (1), the smaller the loss is, the smaller the gradient is. It is conducive to
convergence; When the loss is large, the gradient is 1. The model training is relatively
stable. However, when the SmoothL1 calculates the regression loss, the correlation of the
bounding box’s coordinates is ignored. It results in a variety of overlapping ways between
the bounding boxes which have the same value of loss. But the bounding box with the
highest degree of overlap is the most reasonable.

The EIoU loss function directly uses width and height to calculate the width and height
penalty term, which has faster convergence speed. The calculation method is shown in
Equation (2).

LEIoU = 1− IoU +
ρ2(b, bgt)

c2
+
ρ2(w,wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(2)

Where LEIoU represents EIoU loss function. bgt and b are ground-truth and box pre-
dicted box. Ch and are the height and width of the minimum outer rectangle of the two
bounding boxes with the same loss. c is the diagonal length of the smallest enclosing box
covering the two boxes. ρ(·) represents Euclidean distance. h, w, hgt and wgt represent
the height and width of the predicted box and ground-truth box.

Another loss function is Reploss. Reploss loss function is an effective method in dealing
with occlusion. The loss function is inspired by the attraction of dissimilar magnets
and the repulsion of same magnets. It requires that the predicted box needs to fit its
targets and be far away from predicted boxes of other surrounding targets. Moreover, the
predicted box should keep a distance with ground-truth box. The Reploss includes LAttr,
LRepGT and LRepBox The calculation method is shown in Equation (3).

L = LAttr + α · LRepGT + β · LRepBox (3)

Where α and β are equilibrium coefficient. LAttr is the attraction term which requires
a predicted box to approach its designated target. LRepBox and LRepGT represent the
repulsion term.
LAttr is the attraction term which requires a predicted box to approach its designated

target. The Equation is shown as follows:

LAttr =

∑
p∈p+ SmoothL1(B

p, GP
Attr)

|P+|
(4)

Where p is the proposal bounding box. |P+| is the set of these candidate boxes. Bp

and GP
Attr represent the predicted box and ground-truth box of a pedestrian respectively.

LRepGT represents that predicted box Bp of a pedestrian keeps a distance with the ground-
truth box of other pedestrians who are “closest” to the bounding box. It is calculated as
follows:
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LRepGT =

∑
p∈p+ SmoothLn(IoG(Bp, GP

Rep))

|P+|
(5)

Where SmoothLn is a smoothing function. The calculation method is shown in Equation
(6). represents the ratio of the intersection of Bp and GP

Rep to GP
Rep. Compared with

IoU, only molecules can be changed for IoG, which is more suitable for loss. Otherwise,
SmoothLn is used instead of SmoothL1 in LRepGT. The reason is that the punishment
is influenced by the intersection of Bp and GP

Rep. When the intersection is greater, the

punishment of is large. The definition of GP
Rep is shown in Equation (7).

SmoothLn =

− ln(1− x) x ≤ σ
x− σ
1− σ

− ln(1− σ) x > σ
(6)

Where σ is sensitivity hyperparameter of function.

GP
Rep = arg max

G∈ς\{GP
Attr}

IoU(G,P ) (7)

Where ς represents the set of ground-truth box of all pedestrian. G and P are ground-
truth box and predicted box. GP

Rep is the ground-truth box when the intersection ratio of
P with all ground-truth box is the second largest.
LRepBox represents that the predicted boxes of different pedestrians should keep as far

away as possible. The specific method is to divide the set of positive candidate boxes
P+ into mutually exclusive subsets according to the ground-truth box of each pedestrian.
Then the predicted boxes of each subset are randomly selected for loss calculation. The
formula of LRepBox is shown as follows:

LRepBox =

∑
i 6=j SmoothLn(IoU(BPi , BPj))∑
i 6=j g[IoU(BPi , BPj) > 0] + ε

(8)

Here, BPi and BPj represent the predicted box of different pedestrians. g(·) represents
identity function. ε is a constant and it is not 0. In LRepBox, the denominator indicates
that there must be overlap between predicted boxes involved in loss calculation.

4. The Improved Regression Loss Function Prepare.

4.1. Problems of human detection in crowded scenes. In crowded scenes, the occlu-
sion between pedestrians is more common. The serious occlusion can cause the following
problems.

(1) The serious occlusion leads to a high overlap between the optimal predicted box
of an occluded target and that of other targets. It leads to the deletion of the optimal
predicted box in the post-processing stage and results in missed detection.

(2) The occlusion between targets introduces a lot of interference information. And a
large offset exists between the predicted box with the target.

(3) The model will retain more bounding boxes because the large number of pedestrians
need to be identified in crowded scenes. Consequently, it is more dependent on the
calculation of intersection over union. The loss function SmoothL1 and intersection over
union calculation in CrowdDet method are not suitable, which will ignore the correlation
of four coordinates for the bounding box. It results in that regression direction of the
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bounding box is not unique. Thus, it is not conducive to the regression for bounding box,
resulting in the reduction of detection accuracy.

4.2. The improved regression loss function E-RepLoss. A new bounding box re-
gression loss function E-RepLoss is proposed to enhance performance of the model for
occluded objects.

The improved loss function E-RepLoss includes LE-Attr, LE-RepGT and LE-RepBox. The
calculation formula is shown in Equation (9). E-RepLoss is completely based on the EIoU
loss function to construct each component of loss function. It makes E-RepLoss have the
respective advantages of the two functions at the same time.

LRepLoss = LE-Attr − α · LE-RepGT − β · LE-RepBox (9)

Where LE-Attr is the attraction term. LE-RepGT and LE-RepBox represent the repulsion
term. α and β are the equilibrium coefficients.
(1) Attraction Term. The attraction term LE-Attr is to make the predicted boxes of
the target as close to its ground-truth box as possible. The loss function is also called
attraction loss of the ground-truth box to its predicted box. This function can optimize
and adjust the bounding box from three aspects: overlapping area, distance of center
point and the ratio of height and width. The calculation Equation of the attraction term
LE-Attr is as follows:

LE-Attr = 1− IOU +
ρ2(b, bgtAttr)

c2
+
ρ2(w,wgt

Attr)

C2
w

+
ρ2(h, hgtAttr)

C2
h

(10)

(2) Repulsion Term (E-RepGT).
For the repulsion term, bounding box’s center distance and the ratio of the width and

height are utilized to constrain the bounding box. Pedestrian’s predicted box and the
bounding box of the adjacent target are kept at a distance. The predicted box and the
ground-truth box of the adjacent target is shown in Equation (11). LE-RepGT is decreasing.
Therefore, the opposite number is taken in the overall loss.

LE-RepGT =
ρ2(b, bgtRep)

c2
+
ρ2(w,wgt

Rep)

C2
w

+
ρ2(h, hgtRep)

C2
h

(11)

Where bgtRep is the ground-truth box with which it has the largest IoU region except its

designated target. wgt
Rep and hgtRep are its corresponding width and height.

(3) Repulsion Term (E-RepBox).
LE-RepBox indicates that the predicted boxes of different pedestrians should be as far as

possible. The participation in the calculation is the predicted box of pedestrian and that
of adjacent pedestrian. The Equation is as follows:

LE-RepBox =
ρ2i 6=j(b

i, bj)

c2
+
ρ2i 6=j(w

i, wj)

C2
w

+
ρ2i 6=j(h

i, hj)

C2
h

(12)

Where wi and bj denote the predicted boxes of different pedestrians. h and w are the
height and width of the predicted boxes.

5. Experiment.
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5.1. Dataset.
(1) CrowdHuman Dataset.

In 2018, CrowdHuman dataset [32] was published to promote technological development
for human detection in crowded scenes. The images of the dataset are collected in a variety
of scenes. A total of 24370 images is divided into the training set, test set and validation
set. The number of these sets are 15000, 5000 and 4370 images respectively. Each image in
CrowdHuman contains about 23 pedestrians on average, and the number of pedestrians in
a single image is much more than that in other classic datasets of human detection. From
the statistics of occlusion, the targets with occlusion degree less than 30%, or between
30% and 70% constitute 29.89% and 32.13% of entire CrowdHuman dataset, while the
ratios for CityPersons which contains 6.47 pedestrians per image on average are 46.79%
and 24.19%. It can be seen that the occlusion in CrowdHuman is more serious, and all
kinds of occlusion are relatively balanced. The dataset has the characteristics of large
amount of data and rich annotations. It can better evaluate the detector’s performance
in crowded scenes.
(2) COCO Dataset.

We use COCO dataset to test the adaptability of proposed approach for general object
detection. For the large-scale dataset COCO, it has 80 categories. The validation set and
training set of COCO are the same as that of COCO 2017.

5.2. Evaluation Metrics. Average precision (AP), missed detection rate (MR−2) and
Jaccard index (JI) are used to evaluate the network model’s performance.
(1) Average Precision (AP).

AP is average precision, which refers to the area under the P-R curve formed by taking
the recall as abscissa and precision as ordinate. The Equation is as follows:

AP =

∫ 1

0

p(r)dr (13)

Where r is the independent variable which represents the recall. p(·) is the function to
represent the precision rate.
(2) Missed Detection Rate (MR−2).

The rate of missed detection MR−2 is an important indicator for evaluating detectors
of human detection. It represents false positives per image (FPPI). MR−2 only focuses on
the recall when FPPI is less. It is quite sensitive to false detection samples. For the false
detection with high confidence, it is more sensitive. When the value of MR−2 is smaller,
the performance of detector is better. FPPI is defines as:

FPPI =
FN

Number
(14)

Here, Number is the number of images in test set. FN(False Negatives) is false negative
sample.
(3) Jaccard Index (JI).

An index JI that measures the human detection model in crowded scenes is proposed,
when the CrowdHuman dataset is published. It is utilized to evaluate the degree of overlap
between ground-truth box and prediction set. The larger JI indicates better performance.
The definition Equation is as follows:

JI(D,G) =
|IoUMach(D,G)|

|D|+ |G| − |IoUMatch(D,G)|
(15)
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Where D is the set of detection box. G denotes the set of ground-truth box. IoUMatch
represents matching algorithm.

5.3. Implementation Details. The human detection method of CrowdDet [33] is used
as the benchmark model of the experiment. The model composition and parameter set-
tings refer to the relevant settings in CrowdDet. The backbone is ResNet-50 pretrained
on ImageNet. In the Region Proposal Networks (RPNs), the size of the anchor box should
be set from low to high as {32−2, 64−2, 128−2, 256−2, 512−2}, while the aspect ratios are
{1 : 1, 1 : 2, 1 : 3}. Therefore, there are 15 anchor boxes of different sizes and proportions
in the pyramid structure. To avoid the two quantization errors caused by the RoIPooling,
RoIPooling is replaced by ROI align.

The model is trained for 30 epochs in total. The training phase is carried out on 1080Ti
GPU. There are 2 images in the mini-batch. A total of 7500 iterations are included in
an epoch. In the Region Proposal Networks, the positive and negative ratio of anchor
used for training is 1:1, and the total number is 256; The positive and negative ratio
of regions of interest (ROIs) used for classification and regression is 1:1, with a total of
512. The optimization algorithm chooses the mini-batch gradient descent. The value
of momentum and weight decay are 0.9 and 0.0004. The initial learning rate is set to
0.00125. It decreased to 0.00025 and 0.00003 at the 24th and 27th epochs respectively.

In the initial experiment, equilibrium coefficient α and β in E-Reploss are 0.5 and 0.5.
In addition, when IOU variant loss function replaces the SmoothL1 loss function, there is a
equilibrium coefficient λ between classification and regression loss in the Region Proposal
Networks, as shown in Equation (16). In this experiment, the value of λ is set to 6.

L = Lcls + λ · Lreg (16)

Where Lcls and Lreg represents category loss and regression loss of bounding box re-
spectively.

6. Experiment and Analysis of Result.

6.1. Overall results. For the two-stage model, S1 and S2 in the table represent the first
stage and the second stage.

√
indicates that the method is used in this stage. A null

value (-) indicates that the regression loss function (SmoothL1) has not been changed in
the baseline.

Table 1, shows that when E-Reploss appears in both stages of the model or only in
the second stage, the test result MR−2 increases by 1.5% and 2.0% compared with the
baseline. The model’s performance is significantly lower than that of baseline. When
E-Reploss only appeared in the first stage of the baseline, the model achieved the best
test results which achieved 40.6%, 90.3% and 82.9% test results on MR−2, AP and JI. In
the results, MR−2 and JI were 0.8% and 0.2% higher than the baseline, and AP was at
the same level as the baseline. The above experimental results indicate that E-RepLoss
effectively reduces false detection and missed detection. Moreover, comparing (2) (3) and
(4) in Table 1, it can be concluded that E-RepLoss can enhance the performance of the
model in the first stage, while it will damage the performance in the second stage.

In order to look for the reasons of the above experimental results, this paper visualizes
the values of the regression loss function in Table 1 (1) and (4). The results are shown
in Figure 1, The ordinate represents loss function’s value, and the abscissa represents
iteration. Comparing the visualization results of the loss function in model’s different
stages, it indicates that E-RepLoss has a large loss compared with the loss function in the
baseline in the first phase. While in the second phase, the difference between two results
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Table 1. Comparison of experimental results between the baseline and
the baseline based on E-Reploss

Methods S1 S2 MR−2/% AP/% JI/% ∆MR−2/% ∆AP/% ∆JI/%
(1) Smooth l1

√ √
41.4 90.3 82.7 - - -

(2) E-RepLoss
√ √

42.9 89.2 80.9 −1.5 −1.1 −1.8

(3) E-RepLoss -
√

43.4 89.2 80.5 −2.0 −1.1 −2.2

(4) E-RepLoss
√

- 40.6 90.3 82.9 +0.8 0.0 +0.2

is not significant because both loss functions are SmoothL1 . From the above visualization
results, the larger value of loss function in E-RepLoss enables the model to update the
parameters with relatively large gradient in the process of back-propagation. It makes
the model have a strong learning ability. But the repulsion term may over-repel the
surrounding targets. Using the loss function SmoothL1 in the second stage can gradually
make the deviated bounding box return. However, if E-RepLoss is still used in the second
stage, the stability of the model will be destroyed.

SmoothL1 (S1) SmoothL1 (S2)

E-RepLoss (S1) SmoothL1 (S2)

Figure 1. Visual results of the benchmark model based on different loss functions

6.2. Ablation study. In order to explain the effects of EIoU loss function, RepLoss, and
each of the parameters involved in the E-RepLoss, separate experiments are conducted
for each component in this paper.

The performance of EIoU loss function and RepLoss in the first and second stages of
the model are shown in Table 2, The table indicates that the model’s performance is lower
than that of the baseline when EIoU loss function is used in any stage of the model. The
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indicator MR−2 of model is only lower than that of the baseline in the first stage. Due
to the different number of anchors, the loss function based on the IOU variant performs
better in the single-stage model than the two-stage model. This paper analyzes why the
effect of EIoU loss function is poor. The reason is that the increase in the number of
candidate boxes leads to the decline of performance.

Table 2. Comparison of experimental results between the baseline and
the baseline based

Methods S1 S2 MR−2/% AP/% JI/% ∆MR−2/% ∆AP/% ∆JI/%
Smooth l1

√ √
41.4 90.3 82.7 - - -

EIoU Loss
√ √

44.2 88.3 78.6 −2.8 −2.0 −4.1

EIoU Loss
√

- 43.8 89.9 79.4 −2.4 −0.4 −3.3

EIoU Loss -
√

44.4 88.2 78.7 −3.0 −2.1 −4.0

RepLoss
√ √

43.5 89.0 81.0 −2.1 −1.3 −1.6

RepLoss -
√

43.9 88.7 80.2 −2.5 −1.6 −2.5

RepLoss
√

- 41.1 90.1 82.8 +0.3 −0.2 +0.1

To study the impact of equilibrium coefficient α and β on the results, relevant experi-
ments have been done in this part. Table 3, shows experimental results of the equilibrium
coefficients α and β at different values in Equation (9). In standard RepLoss, the per-
formance of the model is the best when α and β are 0.5. Table 3 indicates that best
results are obtained when the values of equilibrium coefficients α and β are 0.3 and 0.7
in the E-RepLoss respectively. The values of β become larger as expected, because the
hyperparameter β corresponds to the loss LE-RepBox. The offset problem of the bounding
box is prevalent in the crowded scene.

Table 3. Impact of parameters α and β in E-Reploss for the model

α β MR−2/% AP/% JI/%
0.3 0.7 40.5 90.4 82.9
0.5 0.5 40.6 90.3 82.9
0.7 0.3 40.9 90.2 82.6

Relevant experiments are carried out to analyze the equilibrium problem of classification
and regression loss in Equation (12). Table 4, is the results of experiment. The value of
λ is 2.5. The value is taken in the standard EIoU loss function. Table 4, indicates that
the best performance of model is achieved when λ is 6.

Table 4. Impact of regression loss weight λ for the model

λ MR−2/% AP/% JI/%
1 40.9 90.2 82.5
2 40.8 90.2 82.7
6 40.5 90.4 82.9
12 41.1 90.2 82.6

In this paper, other common IoU variants loss is combined with RepLoss in addition
to the EIoU loss function. The relevant experiments are conducted for the combined loss
function. All experimental parameters have the same setting. Table 5, is the results of
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experiment. In Table 5, (3) to (6) indicate the loss functions in which GIoU, DIoU, CIoU
and EIoU loss functions are combined with RepLoss respectively. G-RepLoss is calculated
by replacing IoU in RepLoss by GIoU, while D-RepLoss and C-RepLoss are designed in
the way of E-RepLoss.

From Table 5, except for C-RepLoss, all indicators of this loss function have been
improved. G-RepLoss achieved the same results as RepLoss on the index MR−2. It is
analyzed that the reason for the degradation of GIoU to IoU is overlaps between bounding
boxes. Moreover, the performance of CIoU loss function is between DIoU and EIoU loss
function in the field of general target detection. This paper predicts that the result of
C-RepLoss should be between D-RepLoss and E-RepLoss, but the experimental results
do not meet the expectations.

Table 5. The improved RepLoss based on IOU and its variant loss func-
tion

Methods MR−2/% AP/% JI/%
(1) Baseline 41.4 90.3 82.7
(2) RepLoss 41.1 90.1 82.8
(3) G-RepLoss(GIoU) 41.1 90.3 82.8
(4) D-RepLoss(DIoU) 40.8 90.4 83.0
(5) C-RepLoss(CIoU) 43.4 89.6 79.4
(6) E-RepLoss 40.5 90.4 82.9

6.3. Generalization analysis. In order to study the generalization ability of E-RepLoss,
this paper carries out relevant experiments on the open source tools mmdetection (py-
torch1.7.1, cuda10.1). E-RepLoss is combined with general models of human detection.
The experiment is conducted on the conventional object detection dataset COCO2017.
Table 6, show the experiment results. The table indicate that the performance of the two-
stage object detection model Faster-RCNN combined with E-RepLoss and the single-stage
object detection model RetinaNet has been improved.

Table 6. The performance of E-RepLoss on COCO dataset

Methonds Backbone AP AP50 AP75 APS APM APL

Faster-RCNN Resnet-50 37.5 58.4 40.8 21.6 41.3 48.3
Faster-RCNN + E-RepLoss Resnet-50 38.1 59.1 41.4 22.4 42.1 49.0
RetinaNet Resnet-50 36.5 55.6 39.2 20.6 40.1 47.8
RetinaNet + E-RepLoss Resnet-50 37.2 56.1 40.0 21.5 40.8 48.4

The above experimental results show that the proposed method E-RepLoss has achieved
improvement of performance on various indicators. It comprehensively illustrates the
effectiveness of this method.

7. Conclusions. In crowded scenes, human detection has the problems of bounding box
offset, false deletion and the lack of adaptation between the loss function and the model
mechanism. An improved loss function E-Reploss is proposed from the perspective of
the model’s loss function to deal with the problems. The loss function is composed
of attraction loss function and repulsion loss function. It strengthens the learning of
the network model to the occluded target in the crowded scene, and improves model’s
recognition ability. The results of experiment indicate that the loss function has been
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improved on all the indicators. As for MR−2 and JI, they obtained a 0.8% improvement
and 0.2% improvement respectively. Secondly, in the ablation experiment, the effects of
various functions and parameters constituting the E-Reploss loss function were explored.
Except for the EIoU loss function, the loss of other IoU variants were combined with
RepLoss to analyze the results of each loss function.

In the next work, some research directions are worth to be concerned. For example, this
method is extended to other detection models and is used to solve the practical problem
that pedestrians occlude each other in the dense crowds.

Funding Statement: This work was supported by Jilin Science and Technology Inno-
vation Development Program Projects (No. 20190302202).

REFERENCES

[1] X. K. Xu, Y. Ma, X. Qian, “Scale-aware Efficient Det: real-time pedestrian detection algorithm for
automated driving,” Journal of Image and Graphics, vol. 26, no. 1, pp. 93-100, 2021.

[2] Q. Mou, L. Wei, C. Wang, D. Luo, and C. Gao, “Unsupervised Domain-adaptive Scene-specific
Pedestrian Detection for Static Video Surveillance,” Pattern Recognition, vol. 118, no. 9, 108038,
2021.

[3] X. Wu, D. Sahoo, and S. Hoi, “Recent Advances in Deep Learning for Object Detection,” Neuro-
computing, vol. 396, pp. 39-64, 2020.

[4] D.-T. Nguyen, W.-Q. Li., and P. O. Ogunbona, “Human detection from images and videos: a survey,”
Pattern Recognition, vol. 51, pp. 148-175, 2016.

[5] S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele, “How Far are We from Solving
Pedestrian Detection?” IEEE Conference on Computer Vision & Pattern Recognition IEEE, pp.
1259-1267, 2016.

[6] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, pp. 436-444, 2015.
[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate Object

Detection and Semantic Segmentation,” IEEE Computer Society IEEE Computer Society, 2013.
[Online]. Available: https://doc.taixueshu.com/foreign/arXiv13112524.html, 2013.

[8] C. Zhou, J. Yuan, “Learning to integrate occlusion-specific detectors for heavily occluded pedestrian
detection,” Asian Conference on Computer Vision. Springer, Cham, pp. 305-320, 2016.

[9] J. Li, X. Liang, S. Shen, T. Xu, J. Feng, and S. Yan, “Scale-Aware Fast R-CNN for Pedestrian
Detection,” IEEE Transactions on Multimedia, pp. 481-498, 2017.

[10] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detection,” IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10781-10790, 2020.

[11] A. Bochkovskiy, C. Y. Wang, and H. Liao, “YOLOv4: Optimal Speed and Accuracy of Object
Detection,” arXiv preprint arXiv: 2004.10934, 2020.

[12] Y. Tian, L. Ping, X. Wang, and X. Tang, “Deep Learning Strong Parts for Pedestrian Detection,”
IEEE International Conference on Computer Vision IEEE, pp.1904-1912, 2016.

[13] J. Redmon, A. Farhadi, “YOLO9000: better, faster, stronger,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6517-6525, 2017.

[14] C. Zhu, Y. He, M. Savvides, “Feature selective anchor-free module for single-shot object detection,”
IEEE Conference on Computer Vision and Pattern Recognition, pp. 840-849, 2019.

[15] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Occlusion-aware R-CNN: Detecting Pedestrians in
a Crowd,” European Conference on Computer Vision (ECCV), pp. 637-653, 2018.

[16] Y. He, C. Zhu, J. Wang, M. Savvides, and X. Zhang, “Bounding Box Regression With Uncertainty
for Accurate Object Detection,” 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) IEEE, pp. 2883-2892, 2019.

[17] P. Doll´ar, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids for object detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 8, pp. 1532-1545, 2014.

[18] W. Nam, P. Dollar, and J. H. Han, “Local decorrelation for improved detection,” arXiv preprint
arXiv: 1406.1134, 2014. 2

[19] S. Zhang, R. Benenson, and B. Schiele, “Filtered channel features for pedestrian detection,” 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1751-1760, 2015.

[20] P. Doll´ar, Z. Tu, P. Perona, and S. Belongie, “Integral channel features,” British Machine Vision
Conference, BMVC 2009, London, UK, September 7-10, 2009. Proceedings DBLP.



A New Regression Loss Function Based On Repulsion Loss For Crowded Pedestrian Detection 1061

[21] L. Zhang, L. Lin, X. Liang, and K. He, “Is faster r-cnn doing well for pedestrian detection?” European
Conference on Computer Vision, pp. 443-457, 2016.

[22] B. Yang, J. Yan, Z. Lei, and S. Z. Li, “Convolutional channel features,” In Proceedings of the IEEE
International Conference on Computer Vision, pp. 82–90, 2015.

[23] J. Mao, T. Xiao, Y. Jiang, and Z. Cao, “What can help pedestrian detection?” In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-7, 2017.

[24] Y.-X. Gong, Z.-Q. Zhang, G.-Z. Duan, Z. Ma, and M. Xie, “AccNet: occluded scene text enhancing
network with accretion blocks,” Machine Vision and Applications, vol. 34, 1, 2023.

[25] S.-L. Zhang, K.-X. Zheng, and H.-Y. Sun, “Analysis of the Occlusion Interference Problem in Target
Tracking,” Mathematical Problems in Engineering, vol. 2022, 4605111, 2022.

[26] Q. Li, Y.-Q. Bi, R.-S. Cai, and J. Li, “Occluded pedestrian detection through bi-center prediction
in anchor-free network,” Neurocomputing, vol. 507, pp. 199-207, 2022.

[27] R. Girshick, “Fast R-CNN,” IEEE International Conference on Computer Vision, pp. 1440-1448,
2015.

[28] H. Rezatofighi, N. Tsoi, J.-Y. Gwak, A. Sadeghian, I. Reid, and S. Savarese, “Generalized Intersection
Over Union: A Metric and a Loss for Bounding Box Regression,” 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) IEEE, pp. 658-666, 2019.

[29] Y.-F. Zhang, W.-Q. Ren, Z. Zhang, Z. Jia, L. Wang, and T.-N. Tan, “Focal and Efficient IOU Loss
for Accurate Bounding Box Regression,” arXiv preprint arXiv: 2101.08158, 2021.

[30] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye and D. Ren, “Distance-IoU Loss: Faster and Better
Learning for Bounding Box Regression,” AAAI Conference on Artificial Intelligence, vol. 34, no. 07,
pp. 12993-13000, 2020.

[31] X. Wang, T. Xiao, Y. Jiang, S. Shuai, and C. Shen, “Repulsion Loss: Detecting Pedestrians in a
Crowd,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) IEEE,
pp. 7774-7783, 2018.

[32] S. Shao, Z. Zhao, B. Li, T. Xiao, G. Yu, X. Zhang, and J. Sun, “CrowdHuman: A Benchmark for
Detecting Human in a Crowd,” arXiv preprint arXiv: 1805.00123, 2018.

[33] X. Chu, A. Zheng, X. Zhang, and J. Sun, “Detection in Crowded Scenes: One Proposal, Multiple
Predictions,” IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12211-12220,
2020.


