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Abstract. The Vehicle Routing Problem (VRP) is a key aspect of logistics network
routing, and an excellent routing optimization strategy can effectively improve the ser-
vice experience of users and reduce transportation costs. With the explosive growth of
e-commerce, the logistics network routing system is faced with a huge number of demand
points and customer-specified receiving time slots, which poses a huge challenge for rout-
ing optimization of large-scale delivery. To address the problems of high total cost and low
effective vehicle utilisation in the logistics network routing system, this work introduces
a new swarm intelligence method, the pigeon-inspired optimization (PIO), and improves
it. Two improvement strategies are proposed to address the strengths and weaknesses
of the PIO algorithm. Firstly, by combining the high swarm dispersion of the quantum
evolutionary algorithm and the fast convergence of the PIO , the PIO method is upgraded
by mixing the algorithms to achieve the effect of complementing each other’s strengths
and improving the global exploration ability of the PIO algorithm; secondly, a Gaussian
variation operator is added to the PIO algorithm to enhance its local exploitation capa-
bility and prevent prematurity in order to retain the variety in future iterations. Each
individual contains information on both client points and routes. The effectiveness of the
improved pigeon flock intelligence optimisation algorithm is verified through test function
simulations. The effectiveness and rationality of the improved PIO algorithm is verified
in a case study based on the Solmon arithmetic example, which has some engineering
application value.
Keywords: Routing optimization; Swarm intelligence algorithms; Pigeon-inspired op-
timization; Time windows
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1. Introduction. The Vehicle Routing Problem (VRP) [1,2,3] provides important fun-
damental theoretical support for practical applications in logistics and transportation,
public transportation, etc. The basic problem of the VRP is how to plan the routing of
vehicles given a set of customer demands and available vehicles The basic problem is how
to plan the routing of vehicles given a set of customer demands and available vehicles so
that each customer’s demand is met and the total cost of the routing (usually the distance
or travel time of the vehicle) is minimised.

After many years of development, VRP has become a very active research direction in
the field of combinatorial optimisation [4,5]. Nowadays, VRP research involves a vari-
ety of different problem types and algorithmic approaches. For example, for basic VRP
problems, there are already very mature algorithms such as heuristic search algorithms
based on forbidden search, genetic algorithms, simulated annealing, etc., as well as ex-
act algorithms such as branch delimitations and branching limits [6,7]. Besides, there are
many extended VRP problems, such as VRP with time windows, multi-vehicle VRP, VRP
with capacity constraints, etc., which have also attracted a large number of researchers to
conduct in-depth research. In addition, VRP-related research involves some cutting-edge
technologies such as artificial intelligence, machine learning, and metaheuristics [8,9]. Ar-
tificial intelligence and machine learning methods, such as deep reinforcement learning,
have gained wide application in VRP problems, and can improve solution efficiency and
solution quality by learning the process and patterns of optimisation algorithms. Meta-
heuristics methods, on the other hand, are a class of general ideas based on optimisation
algorithms, such as multi-objective optimisation and fitness function design, which can
achieve good performance on various VRP problems [10,11]. In conclusion, VRP is a very
important problem in logistics network routing research, and its research status is very
rich and diverse, and more researchers will definitely devote themselves to the in-depth
research and innovation of VRP problems in the future.

The ultimate goal of a logistics network routing system is to minimise the loss of goods
during vehicle transport and to minimise transport costs, thereby maximising the benefits
of distribution [12]. How to minimise the total cost of logistics and maximise the benefits
depends on ensuring that the right quality and right quantity of produce is delivered to
the customer at the right price, at the right time and using the right route(Right quality
and Right quantity of produce is delivered to the customer at the Right price, at the Right
time and using the Right route). This is the so-called 5R principle [13,14]. In this paper,
we argue that if a logistics network routing system is able to execute the transportation
of goods according to the 5R principle, then in principle the total cost of logistics and
distribution can be minimised and the benefits maximised.

Group intelligence algorithms are a class of optimisation algorithms inspired by the
behaviour of biological groups, which have good performance in solving optimisation
problems by modelling the collaboration and competition between individuals in a group.
Currently, swarm intelligence algorithms have been used in a wide range of fields, such
as engineering, medicine and finance [15,16]. The Pigeon-Inspired Optimisation (PIO)
algorithm is an emerging swarm intelligence algorithm [17], which is based on the un-
derstanding and application of pigeon and human intelligence. Pigeons exhibit strong
perception, memory and the ability to cooperate effectively when searching for food and
planning their course, and these characteristics have been applied to the PIO algorithm,
which not only retains the advantages of traditional genetic algorithms and particle swarm
optimisation algorithms, but also improves on the disadvantages of these algorithms. In
fact, the PIO algorithm has been widely used in many complex optimisation problems
and has achieved good results.
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The aim of this work is to optimise the VRP problem in logistics network routing
using the PIO algorithm, so as to satisfy the 5R principle and minimise the total cost of
logistics distribution. Therefore, a new swarm intelligence method, the pigeon-inspired
optimization (PIO), is introduced and improved to address the problems of high total
cost and low effective vehicle utilisation. Each individual contains both customer point
and routing information. The effectiveness of the improved pigeon-inspired optimisation
algorithm was verified through test function simulations. The effectiveness and rationality
of the improved PIO is verified in a case study based on the Solmon arithmetic example,
which has some engineering application value.

1.1. Related Work. The VRP optimisation problem is one of the very classical combi-
natorial optimisation problems. It is a mathematical model to determine the least costly
vehicle routing when the geographical coordinates and the customer demand at each point
are known. Typically, each vehicle is required to visit each customer only once, and the
capacity limit is the same for each vehicle. For VRP optimisation, in addition to the
constraints inherent in the problem, many types of goods are also perishable and difficult
to preserve, such as agricultural products. For these problems, a large range of logis-
tics network routing optimisation also requires a combination of time, space and other
influencing factors.

Since the VRP is an NP-hard (non-deterministic polynomial) problem, efficient and
accurate algorithms for solving it are almost non-existent, and the most reliable way of
solving it is now heuristic algorithms. Baker and Ayechew [18] proposed an improved
genetic algorithm and solved the VRP problem, which also yielded more realistic results.
Yusuf et al. [19] proposed an approach to improve the traditional genetic algorithm and
applied it to optimize the vehicle routing problem so that the convergence of the optimal
solution is accelerated but does not fall into local convergence, ultimately making the
optimal solution better than the result of the ordinary algorithm. Fu et al. [20] proposed
a hybrid simulated annealing forbidden algorithm and investigated different search strate-
gies that resulted in a significant reduction of more than 50% in computational time for
solving the vehicle routing problem. Theurich et al. [21] argue that the vehicle routing
problem with capacity constraints remains central to logistics planning, and they propose
two new integer planning models using the tree structure of the problem. Nguyen et al.
[22] et al. proposed two new vehicle routing problems with distance constraints and ca-
pacity constraints and investigated the potential benefits of flexible allocation of start and
end depots and found that flexible allocation can reduce the cost by 49.1 %. Zhang et al.
[23] proposed a green vehicle routing problem (G-VRP) and formulated a heuristic algo-
rithm, and the experimental data obtained illustrated the good results of this algorithm.
Olgun et al. [24] et al. proposed a multi-trip green vehicle routing problem and proposed
a heuristic algorithm by combining a genetic algorithm with a local search process.

Although heuristic algorithms and swarm intelligence algorithms have different ideolog-
ical foundations and implementations, the two share similar ideas in solving optimisation
problems. Also, the two types of algorithms can be used in combination to obtain better
performance in practical problems. Among the many optimisation algorithms, the Pi-
geon Inspired Optimisation (PIO) algorithm, a new type of heuristic swarm intelligence
optimisation algorithm [25], has been shown to have good optimisation capabilities. in-
spired by the principle of autonomous guidance of pigeons, the map compass operator and
landmark operator are used by the PIO to conduct optimization searches and address op-
timization issues. Similar to other swarm intelligence algorithms, the PIO algorithm uses
the sharing of information in the swarm and the competition between individuals to find
the optimum, and has a fast convergence capability. the PIO algorithm also adopts a
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two-stage optimisation approach, using the map compass operator and the landmark op-
erator respectively, which makes the algorithm have a strong local exploration capability
and higher optimisation accuracy, and can solve complex multi-dimensional optimisation
problems.

In recent years, pigeon flock intelligence algorithms have been widely used in engineer-
ing, validating the algorithm’s superior optimisation capabilities. Zhao and Zhou [26]
applied the PIO algorithm to glide track trace optimisation. In addition, PIO algorithms
have also been applied to control system design, for example, Dou and Duan [27] used
the PIO algorithm for model prediction controller parameter tuning. Although PIO algo-
rithms can have fast convergence, they tend to be less accurate for complex optimisation
problems and tend to fall into local optima overall. In global optimisation problems, espe-
cially for multi-peak problems, the PIO algorithm tends to converge prematurely and thus
fall into the local optimum trap when it fails to generate new children. Low variability
and low variety are the major reasons of prematurity.

1.2. Motivation and contribution. To address the problems of high total cost and
low effective vehicle utilisation in logistics network routing systems, this work introduces
an improved PIO algorithm to achieve VRP optimisation in logistics network routing
systems.

The main innovations and contributions of this study are shown below:
(1) A VRP-based routing model for logistics networks is established, providing a specific

optimisation object for subsequent optimisation applications of the PIO algorithm. The
proposed model includes a description of the problem, the basic constraints of the model,
the definition of the symbols of the variables involved in the model, etc. This work also
adds the element of a time window to the basic constraints, making this model more
relevant to reality and thus making the resulting conclusions more realistic.

(2) In order to improve the variability and variety of the standard PIO, two improvement
strategies are proposed in this work. First, to combine the high swarm dispersion of the
quantum evolutionary algorithm and the fast convergence of the pigeon flock optimization
algorithm, the algorithm is improved by mixing the algorithms to achieve the effect of
complementing each other’s strengths and improving the global exploration ability of the
algorithm; second, to maintain the diversity of the algorithm at a later stage, a Gaussian
variation operator is introduced into the pigeon flock intelligence algorithm to improve
the local exploitation ability and avoid prematurity.

2. VRP-based routing model for logistics networks.

2.1. Basic description of VRP. The logistics distribution routing problem can be
reduced to a vehicle routing problem with a time window.

There is only one distribution centre in the distribution system and the coordinates
are known. a schematic diagram of the distribution route for the VRP problem is shown
in Figure 1. The main components of the VRP problem are the transport vehicle, the
transported goods, the distribution centre, the customer, the constraints, the transport
network and the objective function. The distribution centre is the location of the main
work in the logistics transport process. VRP should satisfy the following basic constraints:
a) satisfy all customer restrictions on the quantity, quality and variety of goods; b) satisfy
customer restrictions on the arrival time of goods; c) satisfy that the actual load of the
vehicle cannot exceed the rated load limit of the vehicle.
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Figure 1. VRP Distribution Roadmap

2.2. Problem description. When building a logistics distribution model, time costs
need to be added to the traditional VRP model, with waiting costs added to the total
costs if the transport vehicle arrives early within the time requested by the customer, or
penalty costs added to the total costs if the transport vehicle arrives late within the time
requested by the customer.
For the above reasons, this paper needs to include a time window in the model to refine
it. The following is a specific description of the time window.

(1) Hard time window.
The hard time window requires the vehicle to reach at the demand point and deliver

the goods to the customer within the time frame required by the customer. According to
Figure 2, the customer has the right to refuse the delivery if the vehicle does not finish
the delivery procedure in the amount of time requested by the customer and this causes
the customer to incur a loss. This circumstance is described by the following penalty
function.

σik =

{
MI, Tik < T1(i) orTik > T2(i)
0, T1(i) ≤ Tik ≤ T2(i)

(1)

where σik denotes the loss of vehicle k due to the time window constraint when serving
customer i. MI denotes a very large number, Tik denotes the point in time when vehicle
k arrives at customer i, and [T1(i), T2(i)] denotes the time window at demand point i. (2)
Soft time windows.

Compared to a hard time window, a soft time window is less time demanding and less
demanding. As shown in Figure 3, the soft time window allows transport vehicles to
arrive outside the time window, although there is a waiting cost for early arrival and a
penalty cost for late arrival, as shown in the cost function below.

σik =


η1

n∑
i=1

sik [T1(i)− Tik] , Tik < T1(i)

0, T1(i) ≤ Tik ≤ T2(i)

η2
n∑

i=1

sik [Tik − T2(i)] , Tik > T2(i)

(2)

where η1 denotes the value of unit waiting cost to be paid if the vehicle arrives early, η2
denotes the value of unit penalty cost to be paid if the vehicle arrives late. sik= 0,1, if



1082 X. Zhang, Y.-Q. Wei and Z. Hashim

Figure 2. Hard time window

sik is 1, it means that vehicle k provides delivery transport service to customer i ; if sik is
0, it means that vehicle k does not provide delivery service to customer i.

Figure 3. Soft time window

As it is more in line with a more realistic situation, this work investigates the VRP
problem with a soft time window. There is only one distribution centre in the distribution
area and the coordinate locations are known. The distribution centre has a number
of delivery vehicles with the same rated load. There are several customers within the
distribution area of the vehicles and each customer has a different quantity of goods
required. Each vehicle is loaded with a certain weight of goods and delivers the goods
within a soft time window requested by each customer. Ultimately the vehicle has to
return to the distribution location. The task is to optimise the routing and sequencing of
deliveries in a scientific way to minimise the costs incurred.

2.3. Definition of the basic constraints and variable signs of the model. The
factors affecting the quality and total cost of products should be fully considered before
building the model, and a series of assumptions should be made on the model in order to
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simplify the number of constraints in the model and thus improve the speed of solution
operations.

The assumptions of the logistics network routing model are shown below.
(1) The model has and has only one distribution or warehousing centre and the distri-

bution centre is adequately stocked.
(2) The coordinates of the distribution points and the location of each customer point

are known.
(3) The needs of each customer point and its required soft time window are known.
(4) The amount of goods loaded on individual vehicles departing from the logistics

centre must not exceed the rated capacity of the vehicle.
(5) Each customer point has and can have only one vehicle to meet its needs.
(6) The load of the transport vehicle must be less than the maximum load limit of the

vehicle itself.
(7) Each vehicle will depart from the distribution centre and will return to the distri-

bution centre after transporting the goods.
The more involved variables and symbols in the process of building the model are shown

in Table 1.

Table 1. Variable Symbol Definition.

Variable symbols Definition

P = {i|i = 1, 2 . . . n} The set of customer points. When i is 1, the place is
a distribution centre

K = {k|k = 0, 1, 2 . . .m} Collection of all vehicles
n Number of clients
m Number of transport vehicles
C1 Transport costs during transportation
α Unit distance cost of distribution vehicles
β Unit activation cost of distribution vehicles
M Maximum load capacity of distribution vehicles
d1 Volume of goods required by customer i
cij Distance from customer i to customer j
Tik Point in time when vehicle k arrives at customer i
ti Service hours at client i

2.4. Modeling. The objective function of the logistics network routing model requires
the lowest total transportation cost. The total cost includes the transportation cost of
the vehicles and the time cost. The transportation cost includes the activation cost of all
vehicles and the travel cost, while the time cost includes the waiting cost for early arrival
of the vehicles and the penalty cost for late arrival of the vehicles.

The objective function of the proposed model is as follows:

minC = α

n∑
i=1

n∑
j=1

m∑
k=0

cijxijk + β

m∑
k=0

n∑
j=0

x0jk +
n∑

k=0

σik (3)

The objective function requires the lowest total cost, which includes the cost of trans-
porting the vehicle as well as the cost of time. xijk = 1 for vehicle k serving customer i
and customer j and xijk = 0 for vehicle k not serving customer i and customer j.
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The model requires that the number of vehicles departing from a distribution centre
must not exceed the number of vehicles owned by that centre.

m∑
k=1

n∑
j=1

xijk ≤ m, i = 1 (4)

The total demand on the transport route must not exceed the maximum load of the
vehicle.

n∑
i=1

disik ≤ M,k = 0, 1, ...,m (5)

Equation (6) and Equation (7) represent constraints on routing:
n∑

i=1,i ̸=j

xijk = sjk, j = 1, 2, ..., n, ∀k (6)

n∑
j=1,i ̸=j

xijk = sik, i = 1, 2, ..., n, ∀k (7)

The model requires that only one vehicle is serviced per customer and that each customer
is served.

m∑
k=1

sik = 1, i = 1, 2, ..., n (8)

n∑
i=1

m∑
k=1

sik = n, xijk = {0, 1},∀i, j ∈ P, sik = {0, 1},∀i ∈ P, ∀k ∈ K (9)

3. Improved PIO algorithm and its application in logistics network routing.

3.1. Standard PIO algorithm. Pigeons are among the most common birds in the entire
globe, yet they have an odd kind of autoguiding. They have been used in the past to send
letters. By investigating the ability of pigeons to sense magnetic fields, researchers have
found that this excellent autoguiding ability of pigeons relies mainly on tiny magnetically
induced particles on their beaks, and that these iron crystal particles have the property
of pointing north [28].

According to research, pigeons could have a unique mechanism that uses the trigeminal
nerve to send geomagnetic signals detected by magnetosensitive granules in the beak to
the head. By separating the various solar altitude data from their beginning position and
present position, they may simultaneously give navigational information.

In the standard pigeon flock intelligence algorithm, N represent the number of swarms,
n represent the dimension. By generating beginning values for optimization iterations at
random, every individual in the swarm symbolizes one potential solution with a certain
fitness value

X(k) = [x1(k), x2(k), . . . , xn(k)] , (k = 1, 2, . . . , N) (10)

V(k) = [v1(k), v2(k), . . . , vn(k)] , (k = 1, 2, . . . , N) (11)

where X(k) is the location of pigeon k and V(k) is the velocity of pigeon k. The refresh
procedure for location and velocity is the basis of the PIO method. The PIO method
has a two-stage optimisation framework, with the map compass operator used in the first
stage to refresh location and velocity while the landmark operator in the second.

(1) Map compass calculator.
Suppose Xg is the global optimal solution in the current swarm[29]. Pigeons create

mental maps by detecting the geomagnetic field while in flight, and they utilize data
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about the solar height as a compass to change the direction of their flight. Their reliance
on geomagnetic and solar information decreases as they approach their target position.

V(t)(k) = V(t−1)(k) · e−Rt + rand ·
(
Xg −X(t−1)(k)

)
(12)

X(t)(k) = X(t−1)(k) +V(t)(k) (13)

where R is the map compass factor.
(2) Landmark operator.
As the pigeons approach the target location, they will rely more on information about

the typical landmarks in the vicinity. In the landmark operator, the better adapted part
of the individuals is treated as pigeons familiar with the landmarks and the remaining
pigeons are assumed to follow the better individuals. In each iteration, the flocks are
ranked according to the better or worse fitness, and the less well adapted half of the flock
is omitted, leaving the better individuals [30].

C(t) =

∑
NP

X(t)(k) · fitness
(
X(t)(k)

)
∑

fitness (X(t)(k))
(14)

X(t)(k) = X(t−1)(k) + rand ·
(
C(t) −X(t−1)(k)

)
(15)

where C (t) is centre of the swarm, NP is the current swarm size.

3.2. Quantum PIO improvement algorithm. The Quantum Evolutionary Algorithm
(QEA) is a commonly used intelligent optimisation algorithm. The algorithm introduces
the concept of random encoding for quantum computing and is able to represent multiple
solutions to a problem with a smaller swarm size, making the algorithm characterised by
high swarm dispersion, strong global search capability and fast convergence.

The Quantum Evolutionary Algorithm differs from other intelligent algorithms in that
there are no factors such as selection and crossover, making it easy to integrate with
other optimisation algorithms. Therefore, this work combines the Quantum Evolution-
ary Algorithm and the PIO algorithm to propose the Quantum-Pigeonholing Inspired
Optimisation (QPIO) algorithm.

The quantum evolutionary algorithm uses quantum bit encoding, and the quantum bit
chromosome can be represented as a string of m quantum bits.

q =

⌊
α1 . . . αi . . . αm

β1 . . . βi . . . βm

⌋
(16)

where |αi|2 + |βi|2=1, i=1,...,m, m is the chromosome length. |αi|2 and |βi|2 denote the
magnitude of the probability that the state of the quantum bit is at 0 and 1. The linear
superposition of possible solutions can be achieved by combining different quantum bits
in the chromosome, thus the diversity of quantum evolutionary algorithms is superior to
that of classical evolutionary algorithms.

Traditional mutation operations occur randomly and without direction, and therefore
converge slowly. In quantum evolutionary algorithms, quantum bit states can be seen
as mutation operators, and quantum bit states [αi, βi]

T are updated through a revolving
gate. ⌊

α′
i

β′
i

⌋
=

[
cos θi sin θi
sin θi sin θi

] [
αi

βi

]
(17)

The positive and negative of variation angle θi can be obtained from Table 2
In Table 2, xi is the i -th location of the present chromosome, besti is the i -th location of

the present optimal chromosome, ∆θi is the size of the rotation angle (which controls the
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Table 2. Selection of variation angle θi.

xi besti ∆θi
s (αiβi)

αiβi > 0 αiβi < 0 αi = 0 βi = 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0.01π -1 +1 +1 0
1 0 0.01π -1 +1 +1 0
1 0 0.01π +1 -1 0 ±1
1 0 0.01π +1 -1 0 ±1
1 0 0.01π +1 -1 0 ±1

speed of convergence), and s (αiβi) is the direction of the rotation angle (which ensures
convergence).

A schematic diagram of the quantum revolving gate polar coordinates is shown in Figure
4. Taking advantage of the good swarm dispersion of the quantum evolutionary algorithm,

Figure 4. Schematic of a quantum revolving gate in polar coordinates

the quantum mutation operation is introduced into the map compass operator update
phase of the PIO algorithm in order to avoid premature convergence of the algorithm
into a local optimum. Similar to the standard PIO algorithm, the QPIO algorithm also
consists of two components: the map compass operator and the landmark operator.

(1) Map compass calculator.
In quantum space, the probability density function of a particle appearing at a specific

place is expressed by the Schrödinger equation solution in the QPIO technique, which
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then utilizes a Monte Carlo stochastic simulator to determine the position state.

Xi(t) = PiPg(t)±
L

2
ln

(
1

u

)
(18)

PiPg(t) = f(t)×Pi(t) + (1− f(t))×Pg(t) (19)

L = 2ω(t) |mbest (t)−Xi(t)| (20)

where u, f is a random number that follows a uniform distribution on [0,1], Pi(t) is the
historical best position of the particle at the tth iteration, Pg(t) is the global best position
of the swarm at the tth iteration, ω(t) is the inertia weight, and mbest (t) is the average
best position of all individual particles in the swarm at the t-th iteration.

ω(t) = ωmax − (ωmax − ωmin)×
t

tmax

(21)

mbest (t) =
1

NP

NP∑
i=1

Pi(t) (22)

The QPIO algorithm position update rules are

Xi(t+ 1) =

{
PiPg(t) + ω(t)× |mbest (t)−Xi(t)| × ln 1

f(t)
, f(t) ≥ 0.5

PiPg(t)− ω(t)× |mbest (t)−Xi(t)| × ln 1
u(t)

, f(t) < 0.5
(23)

(2) Landmark operator.
The landmark operator of the QPIO algorithm is consistent with the standard PIO

algorithm, where the swarm size is halved at each iteration, the swarm centre position is
obtained according to Equation (14), and the position is updated using Equation (15).

3.3. Gaussian variational PIO improvement algorithm. Like most classical swarm
intelligence algorithms, the PIO algorithm converges on the positions of individuals in the
swarm late in the iteration and is prone to fall into local optima. Drawing on the ideas of
genetic algorithms, a variation operation is added to the QPIO algorithm to ensure the
diversity of the algorithm, namely the Gaussian variation QPIO (GM-QPIO) algorithm.

In a swarm, ”diversity” refers to the degree of variance among individuals as measured
by their Euclidean distance from one another. There are three forms of swarm diversity:
diversity of design variables Dv,t , diversity of individuals Dp,t and diversity of swarms
Ds,t. Individual diversity and swarm diversity are usually considered primarily, and the
diversity of individuals in a swarm is calculated for each iteration as follows:

Dp,t =

[
d∑

j=1

(xi,j(t)− x̄j(t))
2

] 1
2

, p = 1, 2, . . . , s; t = 1, 2, . . . , T (24)

x̄j(t) =
1

s

s∑
i=1

xi,j(t) (25)

The location of each individual in respect to the average individual may be used to
determine the swarm diversity.

Ds,t =
1

s

s∑
i=1

[
d∑

j=1

(xi,j(t)− x̄j(t))
2

] 1
2

(26)

This work uses a Gaussian variation operator to improve the standard pigeon flock intel-
ligence algorithm by avoiding information becoming identical across individuals through
the variation operation in order to increase the swarm diversity in the later stages of
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the algorithm and to avoid falling into local optima. In order to produce mutation, an
algebraic operation was applied to the produced random quantity and the gene value of
the previous chromosome. The random number was created using a Gaussian funiton
Grand within a self-defined region. The fluctuation value is then subject to saturation
limit based on the self-defined value region.

Based on the average position information and the present position information, the
group diversity is determined. If the population diversity d falls below a predetermined
threshold dlow , the mutation operator is engaged after updating the individual’s speed
and position in accordance with Equations (12) to (15). Variation is carried out according
to the following rules.

if d < dlow then xi,j(t) = xi,j(t− 1) + ξ ·Grand (27)

Where ξ is the weight.

3.4. Implementation steps of the GM-QPIO based logistics network routing
model. This work improves the standard PIO algorithm and applies it to the VRP
problem in the logistics network routing model with the following execution steps:

(1) Quantum bit coding was chosen as the coding method for the parameters of the
PIO algorithm according to the requirements of the logistics network routing model.

(2) Generate an initial swarm of possible solution sets by combining the priority levels
of customer services and other influencing factors.

(3) Depending on the objective function of the problem, choose an adaptation function
that corresponds to it.

(4) After the fitness of each individual has been calculated, the selection operation is
then performed;

(5) After the selection operation is completed, the crossover operation is performed on
the individuals with adaptive probability. In this paper, we consider that the crossover
of close relatives will have serious impact on the result and process of the algorithm, so
in this paper, before the crossover operation, we first judge whether the two sides of the
crossover are close relatives or not, if not, then the crossover operation will be performed.

(6) Gaussian variation was performed on individuals after the crossover was completed
in order to facilitate the increase in swarm diversity.

(7) Iterate and mutate continuously until the set maximum number of iterations is
reached or the stopping condition is met, or vice versa, and return to the third step to
continue iteration.

4. Simulation results and analysis.

4.1. Validity analysis of the GM-QPIO algorithm. In order to verify the effec-
tiveness of the proposed GM-QPIO, comparative simulation experiments were conducted
using benchmark optimisation test functions to compare and analyse the standard PIO
algorithm, GM-QPIO and the commonly used particle swarm (PSO) algorithm. For
fairness of the comparison and to exclude the influence of individual special results, all
experimental data are averaged over 40 independent runs of each algorithm.

Two common benchmark optimisation test functions were used in the simulation ex-
periments: Ackley function and Rastrigin function. The Ackley functiona is a non-linear
multi-peak function with the following functional expression.

if(X) = −20 exp

−0.2

√√√√ n∑
i=1

x2
i /n

− exp

(
n∑

i=1

cos (2πxi) /n

)
+20+ e, |xi| ≤ 32 (28)
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The Rastrigin function is a non-linear multi-peak function with the following functional
expression.

if(X) =
D−1∑
i=1

[
x2
i − 10 cos (2πxi) + 10

]
(29)

Schematic diagrams of the two benchmark function are shown in Figure 5 and Figure 6
respectively.

Figure 5. Ackley functions

Figure 6. Rastrigin functions

The swarm size M = 20, the variable dimension D = 3 and the number of iterations N
= 50. The geomagnetic factor was set to r = 0.5 for both the PIO algorithm and the GM-
QPIO algorithm. The PSO algorithm parameters were set to [w, c1, c2] = [0.6,2,2]. The
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optimal adaptation values for the various algorithms are given in Table 3. the convergence
curves for Ackley and for Rastrigin are shown in Figures 7 and 8 respectively.

Table 3. Optimal adaptation values for the three algorithms.

Algorithms
Average adaptation value

Ackley functions Rastrigin function
PIO 0.0014 8.29E-19
PSO 0.00018 6.50E-7

GM-QPIO 3.61E-8 8.35E-21

Figure 7. Ackley’s convergence curve

The convergence speed of the PIO algorithm and the GM-QPIO algorithm is signifi-
cantly better than that of the PSO algorithm, which verifies the fast convergence capability
of the PIO algorithm. According to the simulation results, the convergence speed and
optimisation accuracy of the GM-QPIO algorithm are higher than those of the standard
PIO algorithm. This is because the GM-QPIO algorithm can guarantee the diversity
of the swarm to a certain extent during the iterative process. At the same time, due
to the increased randomness in the late stages of the whole algorithm iteration after
the introduction of quantum bits, the GM-QPIO algorithm can effectively improve the
late local optimisation-seeking ability of the algorithm, which verifies its feasibility and
effectiveness.

4.2. Solmon’s example-based case analysis. The data source used for the real case
analysis is the Solomon algorithm proposed for the study of VRP problems with time
window constraints.
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Figure 8. Rastrigin’s convergence curve

The Solomon example consists of three parts, the C, R and RC datasets, the only difference
between the three datasets is that the coordinates of the client points and the time window
parameters are set differently. The C dataset sets the coordinates of the client points in
a structured way, the R dataset sets the coordinates of the client points in a uniformly
distributed way, and the RC dataset sets the coordinates of the client points by combining
the characteristics of both. The RC type combines the characteristics of both.

Simulation tests were carried out in MATLAB R2016a software using the data from
the R130 part of the algorithm of the GM-QPIO algorithm. The simulation results
for the R130 arithmetic example using the GM-QPIO algorithm are shown in Table 4.
The optimal solution is 15214.7, with a total of eight vehicles involved in the transport,
implying a total of eight optimal distribution routes. It was verified that all routes satisfy
the constraints and limitations of the logistics distribution model and are valid results.

The standard PIO algorithm and the GM-QPIO algorithm were used to simulate and
compare some of the data from different datasets in the Solmon database respectively, and
the results are shown in Table 5. Compared to standard PIO, the GM-QPIO algorithm
proposed in this work shows better optimisation results in the VRP problem of the logistics
network routing model. the GM-QPIO algorithm reduces the optimal cost value and
accelerates convergence without falling into a local optimum solution.

5. Conclusion. This work investigates the logistics network routing optimization prob-
lem based on the GM-QPIO algorithm. The integration of the VRP problem with real-life
practical problems is one of the key reasons that promote the VRP problem to be widely
studied and discussed. Firstly, this work constructs a VRP-based routing model for logis-
tics networks. Secondly, the standard PIO algorithm is improved in two aspects in order
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Table 4. Results of the R130 partial arithmetic example.

Calculation
results

Optimum
solution

Number
of vehicles

Algebra for reaching
the optimal solution

15214.7 8 321
Routing
number

Routing details

1 1->39->26->1
2 1->31->8->45->17->30->1
3 1->47->15->49->41->27->1
4 1->24->28->34->4->33->11->1
5 1->16->44->6->7->14->40->5->38->2->1
6 1->19->32->9->48->46->1
7 1->22->13->50->37->20->21->36->35->25->1
8 1->42->10->29->23->3->43->1

Table 5. Comparison of different data sets.

Example
Standard PIO GM-QPIO

Results
convergent
algebra

Optimal
cost

convergent
algebra

Optimal
cost

R130 369 16132.3 321 15129.5 Effective
R131 356 12152.4 303 11633.8 Effective
C130 347 17570.3 314 15381.2 Effective
C131 347 13082.5 301 12241.7 Effective
RC130 351 14623.4 332 13715.2 Effective
RC131 342 13445.9 327 12405.2 Effective

to improve the global exploration capability and diversity of the PIO algorithm.The sim-
ulation results of the data of the R130 partial arithmetic example show that the optimal
solution obtained by the GM-QPIO algorithm at 321 iterations is 15214.7.This indicates
that using the GM-QPIO algorithm to solve the VRP optimisation in the logistics network
routing model The convergence speed of the optimal solution can be effectively improved
by using the GM-QPIO algorithm to solve the VRP optimization problem in the logistics
network routing model, and better results can be obtained compared with the standard
PIO algorithm. The generalisation and complexity of the GM-QPIO algorithm will be
investigated in order to enhance its overall applicability and use less computer resources.
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