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ABSTRACT. A classification method based on enhanced whale optimization algorithm
(EWOA) and deep learning model is proposed to solve severe class imbalance issue in
large-scale dataset classification. The method consists of three stages: feature selection,
preprocessing, and classification. To improve classification accuracy, EWOA is designed
to search for optimal feature subset in the imbalanced data, removing redundant and
uncorrelated features. The dataset is processed with modified Synthetic Minority Over-
sampling Technique (SMOTE) in which the data is projected onto the kernel space using
Support Vector Machine (SVM) to recognize support vectors of boundary sample points.
Then, on account of kernel distances, neighbors of support vectors of samples from the
minority class are calculated and new samples are adaptively synthesized by selecting
either interpolation or extrapolation according to distribution of the neighboring sample
classes. Finally, preprocessed dataset is classified using a quasi-recurrent neural network
(QRNN). Experiment results validate that the proposed QRNN model combined with im-
proved resampling algorithm is beneficial to alleviate the impact of data imbalance, and
the proposed method precedes comparison methods in classifying severely imbalanced data
sets, proving the superiority and efficacy of the proposed method.

Keywords: Unbalanced Big Data Classification; Enhanced Whale Optimization Algo-
rithm; Deep Learning; Quasi-Recurrent Neural Network; Synthetic Minority Oversam-
pling Technique; Support Vector Machine.

1. Introduction. Unbalanced data refers to a dataset where the quantity of samples
in some classes are much fewer than quantity of samples in other classes, classes with
fewer samples are often regarded as positive classes, while classes with more samples are
regarded as the negative classes [1]. The issue of unbalanced data resides in many fields,
such as fraud detection, medical diagnosis, industrial fault detection, and so on [2,3].
Traditional classification algorithms generally assume that the class distribution is
roughly balanced. Therefore, when the class distribution in a dataset is imbalanced, the
decisional boundaries of classifiers may be shifted, resulting in misclassification, where
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positive class samples are misclassified as negative class samples [4]. In practical applica-
tions, misclassification of positive class samples often leads to more serious consequences,
such as misclassifying industrial failures as normal or diagnosing illnesses as normal in
medical diagnosis. Therefore, it is vital to improve the classification performance of im-
balanced data, especially to improve the recognition accuracy of positive class samples
[5, 6]. Galar et al. [7] pointed out that traditional undersampling methods, such as Ran-
dom Undersampling (RAMU), randomly delete majority class samples in the dataset to
realize data balancing effect. However, importance of majority samples may not be the
same, and this deletion method is prone to drop unique information in majority sam-
ples, exacerbate intra-class imbalance, and reduce the generalization of the model, thus
causing negative impacts on the performance of the classification model. In contrast,
traditional oversampling methods, such as Random Oversampling (RAMO) [8], randomly
select minority class samples in the dataset and duplicate them to achieve a balance in dif-
ferent categories of samples. However, the generated data may not be representative and
may excessively strengthen some minority class samples, leading to the model overfitting
problem [9]. Therefore, researchers have conducted in-depth research on the problems
caused by traditional resampling techniques and proposed undersampling and synthetic
oversampling methods. Blaszcezynski et al. [10] proposed distance-based undersampling
methods, which preserve representative majority class samples by calculating distance of
samples from majority and minority classes. However, distance calculation often takes
more time. Based on the synthetic oversampling theory, Synthetic Minority Oversam-
pling Technology (SMOTE) [11] focuses on minority class samples to generate new data
between minority class sample points to achieve sample expansion. On this basis, the
density-based SMOTE (DBSMOTE) method [12] used reachable distance and kernel dis-
tance as standards to determine the quantity of generated samples for minority classes
with different attributes. In addition to adding constraints to SMOTE when generating
minority samples, SMOTE-IPF [13] method performed denoising processing on the data
generated by SMOTE through iterative partition filters. The SMOTE for multi-class
classification (SMOM) algorithm [14] addresseed the over-generalization problem by as-
signing different weights to negative class samples. The geometric SMOTE (G-SMOTE)
algorithm [15] generated synthetic samples in the geometric are in vicinity of each selected
minority sample to enhance data generation mechanism.

Improving existing algorithms to achieve better performance in imbalanced classifica-
tion problems is a common solution. Representative methods in this category mainly
include feature selection (FS) and cost-sensitive (CS) methods [16]. The basic criterion
of FS techniques is to pick out a more representative feature subset, enabling model to
effectively distinguish between different types of samples and improve classification per-
formance [17]. Viegas et al. [18] brought out concept of genetic programming to wrapper
FS algorithms to extract more effective features. Moayedikia [19] used symmetric un-
certainty to measure the relevance from selected features to actual classes, and selected
the most relevant subset to realize better effect for high-dimensional unbalanced data.
The fundamental design of CS learning technology is to import cost-aware coefficients in
the model’s training process, and to consider minority class samples more by selecting,
transforming, or bringing in cost-sensitivity to the features. Teisseyre et al. [20] proposed
an adaptive weight cost-sensitive classification method for multi-label classification tasks.
Zhang et al. [21] proposed a cost-aware dictionary-based method, which separately took
into account misclassification price during different stages to obtain minimum loss.

Deep learning can automatically extract more discriminative deep-level feature rep-
resentations without the need for manual feature design. Over recent decades, many
deep learning (DL) models have been designed, including Convolutional Neural Networks
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(CNNs), Deep Belief Neural Networks (DBNs), et al. These models have been imple-
mented in various classification or pattern recognition tasks, achieving better effect than
traditional techniques [22, 23]. Ando et al. [24] presented a DL-based oversampling
method, which first uses CNN to learn deep space mapping, then maps each original
sample to a multi-dimensional deep space through CNN. Then, artificial samples are syn-
thesized within linear subspace of the nearest-neighbors of minorities in embedded space,
achieving better sampling performance. Khan et al. [25] designed a feature learning
scheme on basis of cost-aware learning, which synchronously optimizes learning proce-
dures of features and classifier during CNN modeling, making the learned features more
robust and discriminative. Douzas et al. [26] utilized conditional Generative Adversarial
Networks (CGAN) to synthesize minority class samples, effectively improving quality of
synthetic samples. Shen et al. [27] proposed a deep undersampling technique that utilizes
DL model to select a smaller, sensitive, representative subset of samples from multiple
classes, reducing the influences of data unbalancing issue.

Based on investigation of existing big data classification methods, we propose an scheme
to perform classification of severely-imbalanced dataset based on Quasi-Recurrent Neural
Network (QRNN) and enhanced Whale Optimization Algorithm (EWOA). The algorithm
consists of three stages: FS, preprocessing, and classification. In FS stage, the EWOA
algorithm is used to eliminate irrelevant and redundant features to improve classification
accuracy. In the preprocessing stage, the SMOTE-SVM method is used to find the support
vectors of the training set using SVM and adaptively interpolate them both internally
and externally in the kernel space to address the class imbalance problem and achieve
balance between different classes in the dataset. During classification, the QRNN-based
DL method is used to classify the preprocessed dataset.

The remaining sections of this paper are organized as follows. Chapter II presents the
proposed method in detail, which includes an IWOA algorithm for feature selection, the
SMOTE-SVM algorithm for data preprocessing, and an imbalanced big data classification
model based on QRNN. Chapter III gives the experiment results and analysis. Finally,
Chapter IV provides a summary of the entire paper.

2. Unbalanced dataset classification based on EWOA and QRNN. A classifica-
tion scheme for severely-unbalanced big dataset is proposed based on EWOA and QRNN
. The algorithm consists of three stages: FS, preprocessing, and classification. Figure 1
illustrates the proposed method’s flowchart. In the FS stage, an improved WOA algo-
rithm is used to optimize the original features by redundant and impertinent features to
boost classification accuracy. In preprocessing stage, the SMOTE algorithm is incorpo-
rated with support vector machine (SVM) to identify boundary samples of training set,
i.e., support vectors, and adaptively interpolate them both internally and externally in
the kernel space to solve class unbalancing issue. During classification, QRNN model is
used to classify the preprocessed dataset.

2.1. Feature Selection. Impertinent or redundant features can significantly affect clas-
sification effect. The major objective of FS stage is to obtain optimal feature subset to
improve classification accuracy. At this stage, each subset of features is considered as a
whale’s location in EWOA algorithm. Random subsets of features will be generated, with
each subset containing a varying number of features that is less than or equal to the total
number of features in original dataset. The optimal solutions will be identified as whales
that exhibit both high classification accuracy and a minimal number of features.

The WOA algorithm is inspired by the hunting behavior of whale populations. Com-
pared to other traditional algorithms, WOA has received attention and recognition from
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Figure 1. Flowchart of the Proposed Method

scholars in various fields due to its high efficiency, simplicity, and fewer parameters [28].
However, as a relatively new swarm intelligence algorithm, WOA has demonstrated its
effectiveness in solving optimization problems, it still faces common challenges such as
being prone to getting trapped in local optima, low optimization accuracy, and slow con-
vergence speed. In this regard, this paper proposes an improved algorithm called EWOA
that incorporates quadratic interpolation. Specifically, in EWOA, adaptive weights are
designed to optimize the convergence speed of the population and balance the global
search and local development capabilities. Furthermore, by combining quadratic inter-
polation and greedy selection strategies, new optimal solutions are generated using the
extreme points of quadratic functions, which boosts computational accuracy and avoids
the population getting trapped in local optima.

In the proposed EWOA, an inertia weight parameter is designed to adjust global search-
ing and local developing capabilities, which is applied in prey encircling and attacking
stages. To account for the role of the best whale during initial hunting process in original
WOA, a weight w is added to the target prey position.

Assuming that N whales distributing in a d-dimensional space, location of the i-th
whale in the at iteration 7' is denoted as X! = (X;1, Xi2, Xi3, ..., X;a) , where i =
1,2,3,...N ;T =1,2,3,..., Tarax. Taax is the highest number of repetitions, and X
represents position of the best whale individual (position of target prey) when searching
up to the T-th generation of the population. Then the updates of whale positions are
calculated as:

{XiTJrl:w-XbT—AxDl p<0.5 O

X' =w- X+ Dy e cos(wrM)  p>0.5

Where A is a coefficient variable, D; represents the encircling step size during the prey
encircling stage, Do represents the distance between the current prey and the whale, Z
depends on the spiral shape, M is a arbitrary numerical value within [-1, 1], and p is
a uniform probability factor between [0, 1]. If p > 0.5 , the algorithm comes in spiral
updating phase; If p < 0.5 , it comes in prey encircling phase. The magnitude of the
whale’s positional changes is controlled by adjusting the weight w:

L 2)

MAX
Where w; is the initial weight value, ws is the final weight value, T is the current itera-
tion, and Ty ax is the largest allowable count of iterations. It has been verified that the

2
w=wy + (wy — w2)% - arccos(
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algorithm’s optimization performance is best when w; = 0.8 and wy = 0.3 . Therefore,
the designed adaptive nonlinear inertia weight utilizes the monotonically decreasing char-
acteristic of the inverse cosine function on (—oo, 00) to make the weight of the EWOA
algorithm nonlinearly decrease with the increase of iteration number. When the weight
coefficient is relatively large at the beginning of the algorithm, the larger weight will
enable the algorithm to quickly reach the vicinity of the optimal position, and the popu-
lation will have good global exploration ability. Corresponding to the growth of iterations,
the weighting coefficient gradually decreases, and the smaller weight causes the whale to
move towards the vicinity of optimal location, and influence of the optimal whale loca-
tion gradually increases. This makes each iteration closer to hypothetical best possible
result, thereby improving the convergence speed of the population and having good local
development ability, avoiding falling into local optima.

2.1.1. Quadratic Interpolation Strategy. In EWOA algorithm, the quadratic interpolation
[30] is applied to further refine local search competence and convergence. After using
quadratic interpolation, the population is updated to a new population. In the process
of generating a new population at each iteration, the whales are re-ranked in descending
order according to their fitness in the population, and three individuals x; , x4, , and 49
,7=1,2,3,..., N—2, are selected from the population in turn for quadratic interpolation
to obtain a new individual Z; . The fitness greedy strategy is then applied to evaluate
fitness of z; and Z; :

. { 7(3) < 1) 5

T e f(@) = fla)

As it can be seen that by applying quadratic interpolation to three individuals that come
close to the finest resolution, the searching ability and speed of the algorithm have been
enhanced. When the three individuals remain distant from the most favorable result,
quadratic interpolation increases the variety within community, broadens searching range
for solutions, and enhances ability for breaking free from confines of near-best solution.
Therefore, applying quadratic interpolation as a local search operator in the WOA can
optimize convergence and precision of the population comprehensively, and enhance its
local search ability.

2.2. Preprocessing Stage. The core notion underlying SMOTE is to address attribute
level rather than case level by fabricating instances of the under-represented class, thereby
manufacturing artificial examples of minority class. Synthetic instances are fabricated
by taking k nearest-neighbors of each minority instance and fabricating new examples
in proportion to the linear distances between those neighbors. However, the reliability
of the generated samples using linear interpolation method may not be sufficient when
applied to solve nonlinear classification problems. Therefore, the SMOTE-SVM algorithm
is adopted for new sample generation. Figure 2 depicts the algorithm procedure. Based
on the distribution of the nearest-neighbor samples of support vectors of marginalized
group sample set under the kernel distance, interpolation or extrapolation methods are
designed to generate new samples. Assuming there is a training sample set S, where set
of positive samples Sy, € S and set of negative samples Sy.x € S . The algorithm takes
the following steps:

Utilize an SVM classifier to obtain the support vectors SV, of Syin.

Searching for £ nearest-neighbors of SV, in S based on kernel distance. The kernel
distance is calculated as:

d?(xy, 15)% = ||o(xi) — p(a)IP = K, ;) — 2K (23, 25) + K (25, 7;) (4)
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Figure 2. Flowchart of the SMOTE-SVM algorithm

Where x; and z; are any two points in SV,,. The kernel function K (z;,x;) = p(z;)To(z;)
is the dot product of x; and z; when expressed in terms of their feature vectors.

According to group attribute of k£ nearest-neighbors of z; in SV, | the approach used
for fabricating novel instance, either interpolation or extrapolation, is determined. Let m
be the count of instances from the over-represented class within the nearest &k instances to
x;. lf m =k | x; is considered as a noise sample and re-labeled. If m > k/2 | interpolation
is performed on x; . If m >< k/2 | extrapolation is performed on x;. This strategy is
essentially based on oversampling using support vectors as the classification boundary. It
generates minority class samples based on a decision mechanism, eliminates noise points,
and helps the positive class expand into areas of low density of negative class samples,
thereby improving the accuracy of classification.

Search for N nearest-neighbors of x; in S,,;, , where N is the multiple of the number of
SV, , and perform interpolation or extrapolation to generate new samples. Assuming x;
is one of the neighbors, the newly generated point % in the feature space is represented
as:

o = plw) + 5 (p(a) — () o)
Where 6% is a random number. When the new sample is generated by interpolation, the
newly generated point is located on the line segment between z; and z;, and 6% takes a
value between 0 and 1. Otherwise, the newly generated point is on the extension of the
line segment between z; and x; , and 6" takes a value between -1 and 0.

SMOTE-SVM improves the decision boundary by generating new samples in differ-
ent ways based on distribution of different instances. Within the shared space between
positive and negative samples, the sample distribution in this area can cause the decision
boundary to tilt toward the positive class. This algorithm selects interpolation to increase
the number of positive samples in this area, which moves the decision boundary toward
the negative class. In the area where positive and negative instances are far apart, the
algorithm performs extrapolation to expand the positive boundary outward and obtain
more distribution space for positive samples. The entire process is performed in the kernel
space. When negative samples dominate among the nearest-neighbors of the boundary
sample, the boundary sample is in the overlapping area between positive and negative
classes in the kernel space, so the interpolation is performed on the boundary sample.
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If positive samples dominate among the nearest-neighbors of the boundary sample, the
boundary sample is in the area where the two classes are far apart, so extrapolation is
performed on the boundary sample.

2.3. QRNN-Based Classification Model. In the classification stage, QRNN serves
to categorize the preprocessed dataset. The commonly used long short-term memory
(LSTM) network relies on the output of previous time step when computing each time
step, which makes it difficult to perform efficient computing when dealing with large-scale
data, further reducing the modeling capacity of the data. QRNN, conversely, uses a neu-
ral sequence modeling method with alternating convolutional layers to fully utilize the
sequential details of the input series at output stage, enabling parallel processing of data
across time steps. In addition, QRNN simplifies the LSTM structure by only computing
the forget gate and output gate, lessening the calculations required by the system. Con-
volutional layers and pooling layers are main components of QRNN, and Figure 3 depicts
the network architecture. The convolutional layers are used to extract feature information
of input data and convolve it with the gate function, while pooling layers extract feature
information of convolutional layer output to reduce feature dimensionality. Assuming

Convolution
fo-poolingf======————————~——~——— »]
Convolution
fo-pooling f====—=————————————— »]
Convolution
fo-pooling f==—=—=——=————————————— »|

Figure 3. Tlustration of the QRNN network.

sequence X = (x1,Za,...,xr) of length T is the input sequence of QRNN convolutional
layer, feature information of input sequence is first convolved with filters of quantity w
and width r in the time dimension in a convolutional manner, so that current and past
time information are input to the QRNN unit. The QRNN unit structure is given in

Figure 4. Let the input sequence at time ¢ be X = (2(—r11), ..., 2¢) , then the calculation
process for the output sequence z; , forget gate f; , and output gate o; is as follows:

2 = tanh(Wzlx(t,rH) + fo(t,wrg) + W) (6)

fi = Sigmoid(W}x(t_TH) + W]?x(t_T+2) + Wixy) (7)

oy = Sigmoid(Wy i1y + Wow(ry2) + W,ay) (8)

Where W,, W , and W, represent weight matrices, and sigmoid and tanh are activation
functions. When the filter width increases, the model can compute more features.
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Figure 4. Unit structure of the QRNN

The pooling layer updates the memory cell state ¢; at time ¢ using the fo-pooling pooling
method [31]:

a=fioaa(l-fi))Oxn (9)

where ® represents element-wise multiplication, ct-1 represents the previous memory cell

state. Finally, the output h; of the QRNN unit at time ¢ is determined from output gate

o; and memory cell state ¢; :
ht =0t O (10)

3. Experiment and Analysis. The experiment was conducted on a PC with an Intel
Core i5-10400F 2.90 GHz processor and an NVIDIA GeForce RTX 2070 SUPER envi-
ronment, implemented using the PyTorch framework. The experiment was effectively
evaluated through 5-fold cross-validation. Therefore, the dataset was randomly divided
into 5 equal parts, where 4 parts were selected as the training set and 1 part was selected
as the test set for each experiment. This process was repeated 5 times, and the average
value of each experiment was used as the final evaluation result.

3.1. Datasets. To thoroughly validate the effectiveness of the proposed method, we se-
lected six severely imbalanced datasets from different fields [32]. These datasets include
the Pageblocks and Kddcup datasets in the text classification domain, the Yeast and
Abalonel9 datasets in the bioinformatics domain, and the Thyroid and Contraceptive
datasets in the disease prevention and diagnosis domain. Among them, Kddcup and
Abalonel9 are binary classification datasets, while Pageblocks, Yeast, Thyroid, and Con-
traceptive are multi-class datasets. Table 1 provides details of the datasets, where Imbal-
ance Ratios (IRs) represent the quotient of the amount of examples relative to the fewest
instances among all classes.

Table 1. Statistics of the experiment datasets.

Feature

Dataset Samples # Class # dimension IRs
Pageblocks 5472 5 10 175.46: 11.75: 4.11: 3.14: 1

Kddcup 2233 2 41 73.4: 1

Yeast 1484 5 8 92.6: 85.8: 48.8: 32.6:1
Abalonel9 4177 2 8 129.5:1

Thyroid 720 3 21 39.18: 2.18: 1

Contraceptive 1473 3 9 1.89: 1.53: 1
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3.2. Evaluation Metrics. To assess the predictive ability for unbalanced datasets, two
commonly used evaluation metrics are G-mean and F-value, both of which are drawing
from confusion matrix shown in Table 2. In confusion matrix, TP represents number of
true positive samples classified properly, TN represents number of true negative samples
classified properly, and FP and FN represent number of false positive samples classified
incorrectly and number of false negative samples classified erroneously, respectively.

Table 2. Confusion Matrix

Classification Positive Negative
Classified Positive TP FP
Classified Negative FN TN

G-mean represents geometric mean of the classification accuracy for both the positive
and negative categories, and requires that both values are high for G-mean to be high. A
higher G-mean indicates a more robust model. Its definition is as follows:

. _\/ P TN 1)
M =A\'rp Y FN " TN+ FP

F-value means weighted average of precision and recall, where precision and recall rep-
resent the sample’s ability to correctly predict the positive class and the share of actual
positive instances that are accurately forecasted, respectively. P = TP/(TP + FP),
R=TP/(TP+ FN). F-value is given as:

(1+p*)xPxR
B2x P+ R
In the experiment, [ is set to 1, indicating that both P and R matter equally. A higher

F-value indicates that fewer positive samples are misclassified, and the cost of misclassi-
fication is smaller.

F —value = (12)

3.3. Results and Analysis. Firstly, the performance differences of using SMOTE-SVM
versus original SMOTE, DBSMOTE [12], SMOTE-IPF [13], and G-SMOTE [15] were
analyzed in the data pre-processing stage when using the proposed scheme. Table 3 lists
G-means on different datasets. Baseline indicates directly using the imbalanced dataset
for classification. From the results, it can be observed that all the resampling methods
improve the performance to some extent compared to the baseline method directly using
the original imbalanced data for classification. This indicates that data balancing is ben-
eficial for alleviating the negative impact of class imbalance and improving classification
performance. When using the SMOTE algorithm for sampling, since no specific distinc-
tion was made among the positive class samples, the odds of misclassifying the samples at
the boundary was relatively high. SMOTE-IPF and G-SMOTE enhanced the boundary
to a certain extent by removing noise points, which works beneficially for classification
performance. SMOTE-SVM achieved the best performance by not only enhancing the
decision boundary but also taking into account the possibility of poor points when pro-
jecting samples into the feature space. In SMOTE-SVM, the oversampling ratio pertains
to the multiple of the count of positive support vectors that need to be interpolated, and
it is an important parameter that affects the final classification results. In this study, we
conducted experiments with different oversampling ratios for the SMOTE-SVM method,
where N = 1 means generating new samples equal to quantity of support vectors in the
current positive class samples. During the experiment, N was increased from 1 until the
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Table 3. G-means results with different preprocessing techniques. (%)

Methods Pageblocks Kddcup Yeast Abalonel9 Thyroid Contraceptive
baseline 65.29 72.38 51.33 57.05 73.61 49.98
SMOTE 89.88 94.22 68.41 72.39 87.11 58.20
DBSMOTE 90.07 94.19 68.70 73.14 88.09 60.08
SMOTE-IPF 93.08 95.44 69.88 75.26 90.01 61.89
G-SMOTE 92.77 96.49 72.85 77.30 91.94 62.17
SMOTE-SVM 94.40 99.13 74.76 78.25 94.37 65.82

dataset was roughly balanced. The outcomes demonstrated that the best classification
performance was not achieved when the dataset was perfectly balanced.

Taking the Yeast dataset as an example, when the oversampling ratios were set to
1, 5, 10, 15, 20, 25, 30, and 35, the F-value results obtained for each classification are
given in Figure 5. The best classification performance was achieved when N = 23 . It
should be noted that the dataset was perfectly balanced when N takes value of 26. The
oversampling ratio directly affects the number of newly generated samples, where too
many new samples can cause data redundancy and too few new samples may not improve
the classification accuracy. Both of these scenarios are not conducive to improving the
classification performance. Therefore, the specific oversampling ratio for each dataset
needs to be further determined through experiments based on the actual situation. The
oversampling ratio for other datasets in this study was determined using the same method.

70% I
69% [ ——

68% | N

F-value

67%

66%

65% 1 1 1 L L L 1 1 1 L L L 1 J
0 5 10 15 20 25 30 35

N

Figure 5. The impact of N on the F-measure of the proposed method on Yeast
dataset.

Table 4 and Table 5 present the G-means and F-value results of proposed and other
advanced methods on six experimental datasets, where best performance is highlighted in
bold. Among them, the method proposed in [20] is a traditional FS method, and its per-
formance is not ideal in all indicators. DL methods significantly improve the classification
performance on severely imbalanced large datasets. Ando et al. [24] used CNN to map
the original samples to a multi-dimensional space, which can generate synthetic samples
in the linear subspace of the closest instances of the underrepresented class, improving
the sampling performance. However, the computational complexity is high and it is not
suitable for datasets with numerous attributes. Khan et al. [25] conducted attribute
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inference utilizing cost-aware training, optimizing both feature and classifier learning,
making the learned features more robust and discriminative. However, the method is
too sensitive to the choice of hyperparameters. Douzas et al. [26] used CGAN to create
minority class samples, effectively improving the quality of synthetic samples, but it is
not suitable for extremely imbalanced datasets. Shen et al. [27] used a DL model to
select a smaller, sensitive, and typical subset of samples from multiple classes, reducing
the impact of class imbalance. However, the method performs poorly on datasets with
numerous categories. In comparison, the proposed method uses EWOA for optimal FS,
preprocesses data with SMOTE-SVM, and finally uses QRNN for classification. While
improving the efficiency of processing large datasets, the proposed method can effectively
solve the classification problem of datasets with multiple classes, large feature dimensions,
and severe class imbalance, outperforming other traditional and DL methods.

Table 4. G-means result comparison with different methods (%).

Methods Pageblocks Kddcup Yeast Abalonel9 Thyroid Contraceptive
[20] 76.54 87.44 55.33 58.22 71.43 51.08
[24] 89.88 95.50 68.05 69.30 88.70 58.77
[25] 90.49 97.52 68.72 71.45 91.85 60.94
[26] 92.85 96.73 70.43 70.32 92.99 61.85
[27] 94.02 98.94 72.09 76.64 94.41 63.77
Proposed 94.40 99.13 74.76 78.25 94.37 65.82

Table 5. F-value results comparison with different methods.

Methods Pageblocks Kddcup Yeast Abalonel9 Thyroid Contraceptive
[20] 59.88 81.54 50.88 57.05 60.33 42.17
[24] 64.57 92.37 58.45 66.24 79.41 46.08
[25] 66.35 96.88 61.08 68.93 83.09 46.25
[26] 68.12 96.49 63.72 70.17 87.54 48.73
[27] 69.47 97.02 65.14 70.38 89.47 50.03
Proposed 71.85 97.62 68.92 72.63 90.99 54.78

To evaluate the impact of imbalanced ratios on the performance of different algorithms,
Figure 6 analyzes the variations in F-value results of different methods when adjusting
the IR values on the experimental dataset. From the figure, it can be observed that when
the IR value is 1, i.e., the large dataset does not exhibit any imbalanced phenomenon, the
performance differences among different methods are relatively small. However, when the
IR value increases to 40, the F-value of the methods in [20], [24], [25], and [26] begin to
decrease significantly, indicating that these methods cannot handle severely imbalanced
large datasets well. The proposed method and the method in [27] both ensure stable
performance at different IR values. When the IR value exceeds 110, the proposed method’s
performance is significantly better than that of [27], demonstrating the effectiveness of
the proposed method in tackling the classification task of severely imbalanced large-scale
datasets.

To analyze the impact of different components in the proposed method on the clas-
sification performance of large datasets, Table 6 shows the G-mean and F-value results
obtained using different components on the Yeast dataset. The first row represents the
performance when only using the LSTM network without any optimization algorithms
or preprocessing methods. The last row represents the classification result when using
the complete proposed method. The results show that the improved WOA algorithm can
significantly improve the performance of feature selection and neural network parameter
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Figure 6. Performance comparison under different IR, values.

optimization. Compared with LSTM, the QRNN network can improve the processing
capability for large-scale data while reducing computational costs.

Table 6. Ablation study results on Yeast dataset (%)

Improved

WOA WOA SMOTE SMOTE-SVM LSTM QRNN G-MEANS F-value
X X X X v X 55.87 50.03
X X X X X v 57.94 52.45
v X v X X v 65.92 58.37
X v v X X v 68.41 62.75
X v X v X v 74.76 68.92

4. Conclusion. A novel scheme for unbalanced big data classification combining EWOA
and DL model is proposed to address the issues of low classification accuracy and prone
to fall to local optima in most existing imbalanced data classification algorithms. The
EWOA algorithm is utilized to optimize features of imbalanced data, eliminating redun-
dant features and finding the optimal feature subset. A kernel-based nonlinear interpola-
tion method is proposed to effectively solve the problem of inconsistency between sample
generation and classification space. T'wo interpolation methods are used to adjust the clas-
sification boundary, ensuring diversity and reliability of sample generation. Finally, the
QRNN network is adopted to perform classification on the preprocessed dataset. Findings
from testing indicate that the suggested approach can handle extremely unbalanced large
datasets and achieve high accuracy in classification. It should be noted that the proposed
method may have a long processing time. Therefore, how to enhance the practicality and
speed of the algorithm is a problem that needs to be further addressed.
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