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Abstract. Track planning technology, as a key technology for UAV mission planning,
has always been a major research hotspot in the field of UAVs. In real-life applications,
due to the complex and constrained UAV flight environment, how to establish an accu-
rate environment model and how to select an efficient planning algorithm become the
elements to solve the trajectory planning problem. In this work, after studying existing
trajectory planning algorithms, a method using a combination of improved A* algorithm
and differential evolution algorithm is proposed for 3D trajectory planning in complex
environments. Firstly, the mathematical modelling of the UAV track planning related
problems, including the UAV model, manoeuvrability constraints and equivalent digital
maps, is carried out. Secondly, an improved sparse A* algorithm is proposed for solving
the winding path problem of the sparse A* algorithm, which reduces the winding path of
the trajectory by extracting path feature points and quadratic optimisation. Finally, the
improved sparse A* algorithm is combined with the differential evolutionary algorithm
and applied to the UAV real-time trajectory planning, where the improved sparse A*
algorithm is used for the UAV global trajectory planning and the differential evolution-
ary algorithm is applied to the emergent threat avoidance, i.e. local trajectory planning.
The results of MATLAB simulations show that the proposed method can solve the path-
around problem of the sparse A* algorithm and can be flexible in complex environments
to achieve dynamic trajectory planning, thus effectively guaranteeing the flight safety of
UAVs in practical environments.
Keywords: Unmanned aircraft; Real-time track planning; 3D maps; A* algorithm;
Differential evolution
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1. Introduction. With the rapid development of modern technology, the technological
progress in the field of modern aviation has been strongly advanced. Unmanned Aerial
Vehicle (UAV) [1,2,3] is a kind of unmanned aerial vehicle with autonomous control and
power drive. The improvement of aerial vehicle technology has led to the gradual appli-
cation of UAVs.

Drones have the advantages of being small, simple, inexpensive to use, easy to ma-
noeuvre and can work in dangerous environments [4]. UAVs have shown extremely high
military value on the battlefield, and thus they will certainly become the main force on
the international battlefield in the future. In addition, UAVs are also widely used in civil
fields such as disaster prevention and relief, resource and weather detection, and forest
fire prevention [5].

However, as the complexity and duration of missions continue to increase, manual
handling is no longer sufficient for complex missions. How to make the vehicle with
autonomous flight capability is a meaningful research direction. Trajectory planning is
the core technology of the UAVMission Planning System (MPS) [6,7,8]. A good trajectory
planning method can help UAVs avoid threats in the battlefield, reduce range and fuel
consumption, and improve their survivability and mission success. Trajectory planning
techniques can also be used in path planning for civil aviation, cruise missiles, robotics,
etc. In addition, as the price of UAVs decreases, more and more companies are using
them innovatively in their business to improve their services, such as aerial photography
and couriers [9,10]. The application of drones is very promising. Therefore, it is of great
practical importance to further study the trajectory planning technology and improve the
safety and stability of UAV flight, both from the perspective of military needs and from
the perspective of commercial and civil needs.

Because of the many uncertainties in the flight environment, making it difficult to
obtain the exact parameters of the global environment, traditional static track planning
methods are unable to meet the requirements of the current flight requirements of UAVs
[11,12,13]. In contrast, static planning methods achieve the best trajectory, but have the
disadvantage of long planning times and the inability to avoid emergent threats in a timely
manner [14,15]; dynamic planning methods have high real-time performance, but have the
disadvantage of prioritising feasible trajectories before considering the optimal trajectory
[16,17]. Therefore, in this work, the statically planned trajectory is first used as a reference
in the UAV mission planning system, and the trajectory is dynamically modified according
to the situation in the actual process to finally achieve efficient avoidance of emergent
threats in the flight environment.

1.1. Related Work. Route planning is an important branch of research in the field
of artificial intelligence, which involves searching for an optimal route from a starting
point to a goal point by satisfying some or other optimisation criterion (e.g. least fuel
consumption, shortest route, shortest time, safest route, etc.).

Guerrero et al. [18] used a three-dimensional geometric approach to solve the problem
of minimum turn radius and target entry direction in path planning, but ignored the
threats in the environment and did not apply to threatening environments. However,
the threats present in the environment are ignored and are not applicable to threatening
environments.

Finding a general algorithm that solves all problems is extremely challenging due to
the complexity of the UAV flight environment and the many manoeuvrability constraints.
Therefore, the key to trajectory planning under different environments and constraints
is to find trajectory planning algorithms with shorter convergence times and more accu-
rate planning results. Arantes et al. [19] used an improved genetic algorithm to achieve



1152 L. Yang, L. Tan and F.-Q. Zhang

smooth trajectory planning for multiple UAVs, which can be used for forest fire preven-
tion, surveillance, and cruising. Huang et al. [20] used a particle swarm optimisation
algorithm to realise track planning. Majeed et al. [21] introduced a variable-step sparse
A* algorithm. When a complex environment is encountered, the search step length of the
algorithm can be reduced to allow the UAV to pass safely, while improving the search
accuracy and robustness. However, under special circumstances, the algorithm may also
miss the optimal path and go around, leading to search failure. Chen et al. [22] used an
improved artificial potential field method to plan an optimal trajectory for the UAV in a
real-time environment, but did not consider the UAV’s manoeuvrability constraints and
was not suitable for realistic applications.

Due to the large area involved in UAV trajectory planning, traditional search algorithms
take a long time to plan an optimal trajectory and have high memory space requirements.
In order to increase the search speed and reduce the memory space requirements, the
traditional solution is to project the flight environment and reduce it to a 2D flat spatial
environment at a certain altitude. The disadvantage of this processing is that it does not
fully contain the original terrain information and does not allow for good terrain following
and threat avoidance. Based on this factor, this work is a study of UAV trajectory
planning in a 3D environment. The study of the trajectory planning problem can generally
be divided into two categories [23,24]: one type is static trajectory planning, which refers
to the problem where the threats and constraints are all known prior to the trajectory
planning, under which the planning is carried out to obtain an optimal trajectory as the
UAV reference trajectory. This type of problem does not require high real-time algorithms
and has high requirements on the accuracy of the trajectory, which is generally done in
advance using ground computers; the other type is real-time trajectory planning, which
can also be called dynamic trajectory planning, refers to the threat conditions are partially
unknown, and the changes in environmental information are obtained through on-board
sensors during the flight, according to which planning is carried out to avoid sudden
threats. Dynamic planning requires a high level of real time and does not require high
accuracy of the trajectory. The focus of the research in this work is on dynamic planning.

1.2. Motivation and contribution. This work proposes a method using an improved
A* algorithm combined with a differential evolutionary algorithm for 3D dynamic trajec-
tory planning in complex environments, following a study of existing trajectory planning
algorithms.

The main innovations and contributions of this study are shown as follow:
(1) Mathematical modelling of problems related to UAV trajectory planning, including

UAV models, manoeuvrability constraints and equivalent digital maps.
(2) An improved sparse A* algorithm is proposed for solving the winding path problem

of the sparse A* algorithm, which reduces the winding path of the trajectory by extracting
path feature points and quadratic optimization.

(3) The improved sparse A* and Differential Evolutionary(DE) algorithms are combined
and applied to UAV 3D dynamic trajectory planning, where the improved sparse A*
algorithm is used for UAV global trajectory planning, while the differential evolutionary
algorithm is applied to emergent threat avoidance, i.e. local trajectory planning.

2. UAV trajectory planning modelling.

2.1. UAV models and manoeuvrability constraints. In order to be able to accu-
rately describe the UAV dynamic system, two basic coordinate systems need to be involved
namely the Earth inertial coordinate system, and the airframe axis coordinate system [25].
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The Earth’s inertial coordinate system is dependent on the Earth being constant with
respect to the ground. The OX, OY and OZ axes form a right-handed coordinate system,
with the Z axis being the altitude axis. The origin of the coordinate system, O, is the
centre of mass of the vehicle.

UAV attitude is often expressed in terms of Euler angles, i.e. yaw angle θ, pitch angle
and roll angle γ . In the earth inertial coordinate system, the yaw angle represents the
angle between the projection of the longitudinal axis of the body in the OXY plane and
the positive direction of the OX axis, the pitch angle represents the angle between the
longitudinal axis of the body and the horizontal plane OXY, and the roll angle represents
the angle between the number axis of the body and the plumb plane passing through the
longitudinal axis OZ of the vehicle.

In solving the route planning problem, the UAV is considered as a mass point and the
motion of the UAV at time t can be represented as a vector quantity.

X(t) = [x(t), y(t), z(t), θ(t), φ(t)]T (1)

where x(t), y(t), z(t) are the coordinates of the UAV position in the inertial coordinate
system, θ(t) is the UAV yaw angle and φ(t) is the UAV pitch angle. For the sake of
simplicity, the roll angle is not considered in this paper.

Combined with the kinematics of the mass, the following relationships are available in
the Earth’s inertial system.

x
.

(t) = V cos θ(t) cosφ(t), y
.

(t) = V sin θ(t) cosφ(t)

z
.

(t) = V sinφ(t), θ(̇t) = η, φ(̇t) = µ
(2)

where η is the control input for the yaw angle of the UAV, µ is the control input for the
pitch angle of the UAV and V is the speed of the UAV.

Planning an optimal flightable route for an UAV in a 3D environment must not only
satisfy the mission requirements, but also its manoeuvrability performance constraints at
the same time. These manoeuvring performance metric constraints need to be combined
in the route planning algorithm. The main performance metric constraints that need to
be met for the UAV trajectory in the route planning task are the minimum track segment
constraint, the maximum range constraint, the minimum flight altitude, the maximum
yaw angle and the maximum pitch angle. Let pi denote the i -th flight track point of
the UAV, li denote the i -th flight track segment length of the UAV and lmin denote the
minimum track segment length. The constraint can therefore be expressed as

li > lmin , i = 1, 2, . . . , n (3)

The maximum range constraint is caused by the problem of limiting the amount of fuel
or the length of flight required by the UAV for the mission. This paper assumes that the
UAV flies at a constant speed throughout, so to satisfy the time minimum this translates
into a requirement that the length of the trajectory must be less than or equal to the
maximum range. The total maximum trajectory length is the sum of the length of each
trajectory segment and the maximum range is denoted by lmax . The maximum range
constraint can be expressed as

n∑
i−1

∥li∥ ≤ lmax, i = 1, 2, . . . , n (4)

Using hmin to denote the minimum flight altitude constraint throughout the UAV flight
and hi to denote the flight altitude of the i -th segment of the trajectory, the constraint
can be expressed as:

hi ≥ hmin, i = 1, 2, . . . , n (5)
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The yaw angle limit is also effectively a minimum turn radius limit. The smaller the turn
angle the smoother the UAV can fly. Let the maximum yaw angle allowed for the UAV
be θ and the maximum pitch angle be φ ,then these two constraints can be expressed as
follows respectively.

cos θ ≤ aTi ai+1

∥ai∥ ∥ai+1∥
, i = 2, . . . , n− 1 (6)

tanφ ≥ |zi − zi−1|
|ai|

, i = 2, . . . , n− 1 (7)

The maximum yaw angle constraint is shown in Figure 1. The constraints that are
typically used on UAVs are not set in stone, and the UAV will focus on the appropriate
constraints for different missions or at different stages of the mission.

Figure 1. Schematic diagram of the maximum yaw angle constraint

2.2. Construction of equivalent digital maps. A safe UAV flight trajectory requires
the UAV to satisfy two conditions when performing its mission, namely terrain following
and threat avoidance.

During the flight of the UAV, onboard detection equipment is used to collect and model
threat information in the UAV’s surroundings in real time. The new threat information
is then fused into an equivalent digital map that is loaded onto a storage device prior
to take-off, generating the digital map needed for real-time trajectory planning. This
allows for fast access to information for online track planning while transforming threat
avoidance into terrain avoidance, thereby simplifying the algorithm’s search processing of
map information.

This work uses a functional simulation method to simulate the generation of real terrain.

z1(x, y) = sin(y + a) + b · sin(x) + c · cos
(
d ·

√
x2 + y2

)
+ e · cos(y) + f · sin

(
g ·

√
x2 + y2

) (8)

where x and y are the coordinates of the points projected on the horizontal plane by the
model, z1 represents the height value corresponding to the horizontal plane points and
a, b, c, d, e, f, g represents the coefficients (which control the base terrain undulations
in the digital map).
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By determining different constant coefficients to simulate different baseline terrain fea-
tures as the baseline terrain for the UAV flight environmentThe mathematical model for
the higher natural hills in the flight environment is described by an exponential function,
which can be expressed as

z2(x, y) =
n∑

i=1

hi exp

[
−
(
x− xi

xsi

)2

−
(
y − yi
ysi

)2
]

(9)

where (xi, yi) is the centre of the ith peak, hi is the topographic parameter and n is the
total number of peaks. xsi and ysi are the attenuation of the ith peak along the x-axis
and y-axis, respectively.

The handling of threats is critical in track planning and if not handled correctly the
planned track may have safety issues. The coordinates of the threat centre are assumed
to be (xi, yi) and the spatial distribution of threat levels is fi (x, y). A smooth threat
distribution model is used in this work.

z3(x, y) = fi(x, y) =
αi(

bi + ci(x− xi)
2 + di(y − yi)

2)n (10)

The distribution of general static threats [26] can be expressed as

f(x, y) =
M∑
i=1

fi(x, y) (11)

For the UAV flight space, the environment was modelled using the methods described
above and then converted into data that could be processed by a computer, and then
an information fusion strategy was used to create an equivalent digital map. The height
information of terrain, peaks and threats were fused to obtain an information fusion model
z(x, y) .

z(x, y) = max (z1(x, y), z2(x, y), z3(x, y)) (12)

3. 3D dynamic trajectory planning based on improved A* algorithm and dif-
ferential evolution.

3.1. Track cost evaluation function. The primary role of the track cost evaluation
function is to find the track with the lowest total cost by guiding the track planning
algorithm to balance the threat cost and the range cost.

Often in track planning track length and threat cost are in conflict with each other.
Since this paper uses a full probability equivalent digital map, the equation for the cost
of the trajectory evaluation function in this paper is

J =
∑

(w1 ∗ Li + w2 ∗ Pi) (13)

where Pi is the probability of threat to the i -th track, Li is the length of the ith track,
and w1 and w2 are the corresponding weighting factors.

3.2. Improved A* algorithm design. After establishing a fully probabilistic integrated
digital map and a track cost evaluation function, this work uses the improved A* algorithm
for global track planning design.

A* algorithm is a classical heuristic search algorithm, which is suitable for solving the
minimum cost path between two points in the state space and is widely used in path
planning [27]. A* algorithm usually searches for the minimum cost track through the
set cost function on the basis of gridding the planning environment, and its track cost
evaluation function is as follows:

f(n) = g(n) + h(n) (14)



1156 L. Yang, L. Tan and F.-Q. Zhang

Where g(n) is the actual cost from the starting point to the current node n, and h(n) is
the heuristic function, indicating the cost estimation from the current node to the target
point.

A* algorithm adds heuristic function to the flight path cost evaluation function, and
does not need to traverse all nodes, which makes the search move faster along the target
direction and improves the search efficiency. Firstly, the environment space is divided
into a grid space composed of points and edges, and then nodes are expanded from the
starting point according to the cost function. Every time the current point is expanded,
eight nodes around the current point are taken as sub-nodes to be expanded, and the cost
evaluation function value of each sub-node to be expanded is calculated, and the node
with the smallest cost evaluation function value is selected as the next search node, so
that the search advances in the most favorable direction until the target point is finally
reached.

When A* algorithm is applied to the three-dimensional path planning of UAV, its
efficiency and accuracy have a certain conflict because of its low delay [28], and it cannot
be controlled by effective means to produce better path planning with low delay.

Sparse A* algorithm, based on A* algorithm, effectively reduces the search space and
search time by adding constraints of UAV, but there is also the risk of missing the best
path. Therefore, it is necessary to further optimize the risk problem to ensure that the
route planning can be carried out quickly and the optimal path can be obtained. Because
the planned trajectory combines constraints and can meet the maneuverability of UAV,
it can be directly applied to UAV flight.

In order to solve the winding path problem of the sparse A* algorithm, an improved
sparse A* algorithm is proposed to reduce the winding path of the trajectory by extracting
the path feature points and quadratic optimization. Using the principle of continuous
function to find the inflection point, the obtained paths are quadratically derived to
obtain the set of quadratic derivatives, and then the feature points are selected according
to certain selection criteria. As digital maps are used in this paper, the paths are sets
of discrete values, so the quadratic derivatives are carried out in the same way as the
discrete functions.

(1) Feature points are extracted in the manner shown below.

∆x(n) = x(n)− x(n− 1), n ≥ 2

∆y(n) = y(n)− y(n− 1), n ≥ 2

∆δ = (|∆x(n)−∆x(n− 1)|+ |∆y(n)−∆y(n− 1)|) ≥ 10e− 5, n ≥ 3

(15)

where x(n) and y(n) are the coordinates of node n.
(2) Redundant feature point rejection.
Since there are redundant points in the obtained path feature points, the redundant

feature points are eliminated to optimise the path as much as possible. After temporarily
eliminating one of the more concentrated path feature points in turn, if the value of the
track generation between the two points before and after the eliminated point is less than
the value of the track generation of the three points before the elimination, the point
needs to be eliminated, otherwise the point cannot be eliminated. Then, the next feature
point rejection is performed until there are no feature points left that cannot be rejected.
Finally, the optimal feature points are obtained.

(3) Secondary optimisation.
After the optimal path feature points are obtained through feature point rejection, there

are cases where the feature points are much larger than the minimum step size due to the
redundant feature points being eliminated, so the optimal feature points are optimized
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twice to meet the actual flight requirements of the UAV. The distance between adjacent
feature points is calculated to be greater than the minimum step size lmin. If it is greater
than lmin , the distance between adjacent feature points is expanded by adding points to
the minimum step size until all points meet the constraint.

3.3. Global track planning based on the improved A* algorithm. Since the im-
proved A* algorithm solves the path-winding problem of the sparse A* algorithm, it is
applied to the global static pre-trajectory planning of UAVs, as shown in Figure 2.

Figure 2. Global track planning based on the improved A* algorithm

3.4. Principle of the Differential Evolutionary Algorithm. The differential evo-
lution algorithm. as a population intelligence optimization algorithm [29], borrows its
basic principles from the design philosophy of genetic algorithms.

Compared to genetic algorithms, differential evolution algorithms are more effective
and converge faster. Let Xi(t)(t = 1, 2, ..., N) be the evolved individuals in the current
population in the differential evolution algorithm, and the variation operation is performed
as follows.

Vi(t) = (vi1(t), vi2(t), ..., viD(t)) = Xp1(t) + F (Xp2(t)−Xp3(t)) (16)

where Xpi(t) denotes an individual individual in the population, t denotes the number
of current iterations, and F denotes the scaling factor. d is the dimensionality of the
individuals in the population.

The crossover operation is performed on different evolved individuals Xi(t) and Vi(t)
, resulting in a new competing individual Ui(t) = (ui1(t), ui2(t), ..., uiD(t)) . The j -th
component of the competing individuals Ui(t) is calculated as shown in equation (2).

uij(t) =

{
vij(t) randj(0, 1) ≤ CR or j ̸= z
xij(t) randj(0, 1) > CR and j ̸= z

(17)

where z denotes a random integer and z ∈ {1, 2, ..., D}. CR ∈ [0, 1] denotes the crossover
probability.

Comparison of competing individuals with evolved individuals in the current population
by fitness values and selection between the two above for merit-based population renewal
as follows.

Xi(t+ 1) =

{
Ui(t) IF f(Ui(t)) ≤ f(Xi(t))
Xi(t) IF f(Ui(t)) > f(Xi(t))

(18)

The pseudo-code for the differential evolution algorithm is shown in Algorithm 1.

Algorithm 1 Differential Evolution

Input: population size M ; crossover factor D ; number of iterations T
Ouput: a population with optimal adaptation
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1: t← 1
2: for i = 1 to M do
3: for j = 1 to D do
4: xj

i,t = xj
min + rand (0, 1) ∗

(
xj
max − xj

min

)
;

5: end
6: while (|f (∆)| ≥ ε) or (t ≤ T ) do
7: for i = 1 to M do
8: ⇒ (Mutation and Crossover)
9: for j = 1 to D do
10: vji,t = Mutation

(
xj
i,t

)
;

11: uj
i,t = Crossover

(
xj
i,t, v

j
i,t

)
;

12: end
13: ⇒ (Selection)
14: if f (ui,t) < f (xi,t) then
15: xi,t ← ui,t;
16: if f (xi,t) < f (∆) then
17: ∆← xi,t;
18: end
19: else
20: xi,t ← xi,t;
21: end
22: end
23: t = t+ 1
24: end
25: return the best ∆

3.5. Combination of improved A* algorithm and differential evolution algo-
rithm. The combined dynamic trajectory planning algorithm designed in this work makes
full use of the global planning features of the improved A* algorithm and the real-time
planning capability of the differential evolution algorithm.

First, the optimal reference trajectory is planned in the entire planning space using the
improved A* algorithm. When unknown threat information is detected on the reference
trajectory, it enters the local planning phase using the differential evolution algorithm to
replan and locally adjust the original reference trajectory to avoid the threat. The flow
of the proposed dynamic trajectory planning method is shown in Figure 3.

4. 3-D simulation results and analysis.

4.1. Experimental parameters. In order to verify the effectiveness and applicability
of the proposed dynamic route planning combination algorithm, we select wild moun-
tain scenes and urban building scenes for simulation experiments. In order to verify
the effectiveness of the algorithm, the combined algorithm is simulated on IntelCorei7-
9700K@3.20GHz PC. The running environment is Windows 7’ s 32-bit operating system
with 4.00 GB of memory, and the simulation software is Matlab7.10.0(R2010a).

The starting point and target point of the UAV in the flight area are set, where the
coordinates of the starting point S are (2,2,2) and the coordinates of the target point G
are (35,20,5). The manoeuvrability limits of the UAV are set as follows: minimum flight
height is 40 m; maximum yaw angle is 60°; maximum pitch angle is 30°; maximum range
is 1.5 times the straight-line distance between S and G. The parameters of the differential
evolution algorithm are set as shown in Table 1.



UAV Trajectory Planning on Improved A* 1159

Figure 3. 3D dynamic trajectory planning process based on improved A* and
differential evolution

Table 1. Experimental parameters of DE algorithm.

Parameters Numerical values
Population size 40

Initial scaling factor 0.6
Crossover probabilities CR 0.2

Dimension D of individuals in the population 20
Error targets ε 0.01

Maximum number of iterations 20,000

4.2. 3D dynamic trajectory planning simulation. In order to be able to fully verify
the effectiveness of the proposed combined dynamic trajectory planning algorithm, the
simulation experiment was divided into two scenarios, including a mountain peak threat
scenario and an urban building complex scenario.

Scene 1: Mountain peak threat scenario. Set the starting point and target point of
the UAV in the flight area, where the coordinates of the starting point are (2,2,2) and
the coordinates of the target point are (35,20,7). The coordinates of the burst threat are
positioned at (32,15). The results of the 3D dynamic trajectory planning are shown in
Figures 4, 5, 6 and 7. Among them, Figures 4 and 5 show the 3D dynamic planning results
using the sparse A* algorithm, and Figures 6 and 7 show the 3D dynamic planning results
using the combined algorithm. The red trajectory is the statically planned reference
trajectory and the green trajectory is the secondary replanned (avoidance of emergent
threats) safety trajectory after a threat has been detected.

In the early stages of differential evolutionary algorithms there are usually chromosomes
with unusually large fitness. These chromosomes have a higher probability of being se-
lected in the population. Although having a high competitive power will control the
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Figure 4. Scene 1 Sparse A* Figure 5. Scene 1 Sparse A*

Figure 6. Scenario I Improved
A*+DE

Figure 7. Scenario I Improved
A*+DE

selection process, the global search process of the differential evolution algorithm does
not appear premature and converges faster.

It can be seen that in the case of an unexpected threat, both planning methods are
able to avoid the unexpected threat and quickly replan a new safe trajectory for the UAV,
which will return to the original reference trajectory once the UAV reaches the locally
planned target point. This is because the improved A* algorithm generates a globally
optimal trajectory in the static phase better than the traditional sparse A* algorithm,
and the differential evolution algorithm is used in the replanning phase to quickly plan a
trajectory that avoids emergent threats.

Scenario 2: Urban threat scenario. Set the coordinates of the start point to (3,3,3) and
the coordinates of the target point to (45,23,5). Assume the coordinate position of the
new no-fly zone during the flight is (40,15). The results of the 3D dynamic trajectory
planning are shown in Figures 9, 9, 10 and 11. Among them, Figures 8 and 9 show the
3D dynamic planning results using the sparse A* algorithm, and Figures 10 and 11 show
the 3D dynamic planning results using the combined algorithm.

The comparison shows that the trajectory of Figure 11 is better. The simulation plots
show that in the environment of dense urban buildings, the combination of the improved
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Figure 8. Scene II Sparse A* Figure 9. Scene II Sparse A*

Figure 10. Scenario II Improved
A*+DE

Figure 11. Scenario II Improved
A*+DE

sparse A* and differential evolution algorithm is still able to achieve real-time UAV tra-
jectory planning, avoiding tall buildings and no-fly zones, verifying the feasibility and
effectiveness of the algorithm proposed in this paper.

Table 2 shows the over-all properties comparison. From the experimental data, it can be
seen that compared with the basic sparse A* algorithm, although the combined algorithm
reduces the convergence speed, the planned path is shorter, the total cost is smaller, and
the performance of the algorithm is improved.

Table 2. The overall properties comparison

Algorithms
Convergence

speed/s
Path

length/km
Overall
cost

Sparse A* algorithm 21.97 197.67 247.39
Improved A*+DE 22.78 156.52 201.44

5. Conclusion. This work proposes a method that uses a combination of an improved
A* algorithm and a differential evolutionary algorithm, applied to 3D trajectory planning
in complex environments. The mathematical modelling of the problems related to UAV
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track planning, including the UAV model, manoeuvrability constraints and equivalent
digital maps, is performed. An improved sparse A* algorithm is proposed for solving
the winding path problem of the sparse A* algorithm, which reduces the winding path
of the trajectory by extracting path feature points and quadratic optimisation. The
improved sparse A* is combined with the differential evolutionary algorithm and applied
to UAV real-time track planning, where the improved sparse A* algorithm is used for
UAV global track planning, while the differential evolutionary algorithm is applied to
emergent threat avoidance, i.e. local track planning. Simulation results show that the
combined algorithm results in shorter path distances and a smaller total cost than the
sparse A* algorithm. Subsequent research will use real UAVs in real outdoor scenarios
for validation of effectiveness and consider more physical condition constraints for more
accurate calculation of the total cost of the trajectory.
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