
Journal of Network Intelligence ©2023 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 8, Number 4, November 2023

A Utility-frequency Skyline Itemsets Pattern Mining
Algorithm with Threshold Restrictions

Yadong Liu

College of Computer Science and Engineering
Shandong University of Science and Technology

Qianwangang Road, 579, Qingdao, China
794010914@qq.com

Shahab Tayeb

Department of Electrical and Computer Engineering
California State University

Engineering East 274, Fresno, USA
tayeb@csufresno.edu

Jimmy Ming-Tai Wu∗

Department of Information Management
National Kaohsiung University of Science and Technology

No1, University Rd., Yanchao Dist., Kaohsiung City, 824, Taiwan
wmt@wmt35.idv.tw

∗Corresponding author: Jimmy Ming-Tai Wu

Received July 12, 2023, revised August 20, 2023, accepted September 10, 2023.

Abstract. Skyline frequent utility patterns have been extensively studied. However,
the existing skyline pattern mining algorithms are inefficiency and time consuming, and
can be inadequate in practical applications, as sometimes traditional skyline pattern may
obtain points that are relatively extreme in one dimension. These one-sided extreme
points are not the points that the user would like to see in many applications, and the
user prefer to see the skyline itemsets with relatively balanced two dimensions. Therefore,
this paper proposes a new pattern of skyline mining with threshold settings. In the process
of new skyline pattern mining, multiple thresholds are used to exclude extreme points
that do not satisfy the user’s needs in certain dimensions, while also greatly reducing
the number of search size and improving the speed of searching the target itemsets. In
addition, the intelligent recommendation system of an online shopping website is taken
as an example to demonstrate the application potential of the new pattern in a service
AI system. In this paper, the UFmax array structure is applied so that it can be used
not only to get the itemsets with the highest utility at the same frequency, but also to
exclude the set of items whose utility and frequency both do not satisfy the threshold. The
SFUTPMiner algorithm is introduced to make skyline pattern mining more accurate and
efficient. Experiments were conducted on six databases respectively, and the proposed
algorithm was compared with the current popular mining algorithm. The results show
that the designed new pattern of skyline mining with threshold settings not only provides
a streamlined and optimised set of result items, but also surpasses the previous traditional
pattern in the aspect of runtime, search space and memory consumption.
Keywords: Data mining, Skyline Pattern, Pattern mining, Utility list

1183

1184 Y. Liu, S. Tayeb and Jimmy M.-T. Wu

1. Introduction. Data mining is the process of searching for information concealed in
massive data through algorithms and being able to extract new, valid and relevant knowl-
edge from the raw data [1, 2, 3]. Data mining is very extensive used in industries, a very
common example is behavioral data analysis of shoppers’ shopping habits. By mining the
data in the user’s historical shopping basket, the system can gain a deep understanding
of the customer group and recommend products that are more in line with their habits.
Medical information data is mined and analysed to provide decision solutions for disease
prediction and diagnosis. Frequent itemsets mining(FIM) has been extensively studied in
the field of data mining and has a very solid relevance in practical applications [4, 5, 6, 7].
Extracting these variables from the data can support the required decision-making. FIM
can be used in shopping website orders, web traffic, AI-based data analysis and decision
making systems and other fields.

Indeed, it has been recognized that considering frequency alone is often insufficient
in many applications. While frequency provides valuable insights into the occurrence
of itemsets, there are other important factors that need to be taken into account for a
comprehensive analysis. For example, in shopping data analysis, the daily frequency of
mobile phones sold in a large shopping mall is significantly lower than the frequency of
bread sold in the mall, but the unit profit of the former is much higher than that of the
latter, so considering frequency alone in data mining is not comprehensive enough. As a
result, research on high-utility itemsets mining (HUIM) has steadily gained more attention
[8, 9, 10, 11, 12, 13, 14]. The purpose of HUIM is to find the itemsets that exceeds the
minimum utility threshold given by the user. Chan et al. [9] first investigated the HUIM
issue, and later Yao et al. [15] discovered HUI by pairing the number of items and unit
profits. Then Liu et al. [11] printed a transaction-weighted utilization (TWU) model
which satisfied the downward closure feature and solved the problem of utility values not
satisfying the antimonotone property in the mining process. Later Lin et al. [10] printed
an high-utility pattern (HUP) tree structure. After that several algorithms were proposed
[16, 17, 18, 19, 20], which greatly improved the efficiency of HUI mining.

All of the above algorithms are designed to provide a group of regulations to help
users make rational and effective decisions, but sometimes users may prefer to find more
concise rules take action more quickly. Top-k association rule mining [21] and HUI mining
[22] were created to discover more succinct regulations. FIM can be leveraged to find
itemsets whose frequencies satisfy a minimum frequency threshold, and HUI mining can
be leveraged to find itemsets whose utilities satisfy a minimum utility threshold. However,
in certain application sites it is often not enough to focus on a single aspect. It is not
possible to meet the user’s usage needs. For example, a shopping website has thousands
of commodities in its database, and each commodity has its own price and sales volume.
For the same commodity, its price and sales volume may have some relationship. Items
with higher prices tend to sell in fewer quantities than items with lower prices. Everyone
has different acceptance of price, and different threshold settings can provide users with
different consumption levels with high-selling or high-scoring products that meet their
expectations. Therefore, a qualified recommendation system should at least be able to
find products that meet user needs in terms of price and sales volume from the database,
and make targeted recommendations. To address the limitations of previous patterns,
Goyal et al. [23] first printed a method to get hold of skyline frequent utility (SFU). The
algorithm procedure is found on the UP-tree structure [24] and requires the generation of
a large amount of candidate objects. Pan et al. [25] printed the SFUPMiner to increase the
effectiveness of acquiring skyline patterns. Lin et al. [25] further printed a very efficient
algorithm is to discovering SFUPs, which is implemented by using the utility list structure.
However, original algorithms are nevertheless very time-consuming when scanning the

A Utility-frequency Skyline Itemsets Pattern Mining Algorithm with Threshold Restrictions 1185

database and can be inadequate in practice. The characteristics of skyline itemsets make
it time-consuming and resource-consuming to find them even in databases with small
amounts of data. And as the dimensions increase, the difficulty of searching for skyline
continues to double. Without the constraint of threshold, the result set obtained by the
traditional skyline search algorithm contains some single-dimensional extreme points with
very high utility but very low frequency, or very high frequency but very low utility. These
one-dimensional extreme points are not what the user wants to see. For example, for most
passengers, they will neither choose hotels with very low prices but very poor comfort,
nor hotels with very high comfort but also extremely expensive prices. They prefer to get
hotels with less cost under certain comfort conditions or hotels with higher comfort under
certain cost restrictions. Moreover, obtaining these extreme points that are not practical
enough will consume a lot of time and resources, resulting in a waste of performance.
In light of the drawbacks mentioned earlier, we propose a novel approach for setting
thresholds in the skyline pattern mining process. This new approach effectively addresses
these limitations and offers several benefits. By applying the proposed thresholds, we
can exclude extreme points that do not align with the user’s requirements, resulting
in a more refined acquisition of skyline patterns. Moreover, this approach significantly
reduces the size of the search space, overcoming the resource consumption issues associated
with skyline pattern mining. As a result, our method enhances the search performance
specifically targeting the desired itemsets. The main contributions of our work can be
summarized as follows:

1. This paper proposed a new skyline frequency-utility with thresholds pattern (SFUTP),
which is based on the traditional skyline pattern by adding limits to both the utility
and frequency dimensions to exclude certain single-dimensional extremes where the
utility or frequency does not meet the user’s needs.

2. The UFmax array structure was proposed, through which the threshold value can be
used to filter the searched itemsets, greatly improving the reduction of search space
and improving the efficiency of algorithm execution.

3. Based on the new pattern of skyline mining with thresholding, the SFUTPMiner
algorithm is proposed, which uses UFmax arrays and threshold settings to achieve
fast mining of the search space.

2. Related Work. In this section, we will introduce the related research content regard-
ing high-utility itemset mining and skyline itemset mining.

2.1. High-utility Itemsets Mining. In the research, FIM has always been concerned
by the data mining industry [26, 27, 28, 17, 2]. FIM is crucial as the initial stage of asso-
ciation rule mining. Researchers divide the frequent itemsets mining methods into three
categories. For the hierarchical growth model, the most common algorithm is Apriori
algorithm [5], but the generation of candidate sets in each layer is cumbersome and has
drawbacks. To enhance the effectiveness of mining, a method of frequent pattern growth
(FP-growth) is also proposed [7], which is to mine FIS from FP-Tree by improving it.
In the Eclat model [7, 29], a vertical tid-list database is used, and mining is performed
by depth-first search. However, the problem solved by these algorithms is limited to the
frequency of the itemsets and does not take into account other factors such as its weight
and profit, which is clearly not sufficient in practice. To address the shortcomings of FIM,
HUIM has gradually become the focus of researchers’ attention as an extension to FIM,
itemsets whose utility is greater than the minimum threshold given by the user are called
high-utility itemsets. In the field of high utility itemset (HUI) mining, Yao et al. [12] pro-
posed an efficient algorithm. However, the itemsets discovered by their algorithm were

1186 Y. Liu, S. Tayeb and Jimmy M.-T. Wu

a

g

b

d

e

j

h

f
c

i

P
ri
c
e

Distance

Figure 1. Example of skyline points.

found to be imperfect due to the inherent limitations of the downward closure property.
To address this issue, Liu et al. [11] introduced the concept of transaction-weighted utility
(TWU). This approach effectively preserves the transaction-weighted downward closure
(TWDC) property, enhancing the accuracy and completeness of HUI mining results. How-
ever, the TWU model is not efficient. For this reason Liu and Qu [30] later proposed a new
method stemmed from the utility-list structure called HUI-Miner, which can improve the
performance of HUI searching. Afterwards, based on the utility-list structure, researchers
conducted a variety of optimization [16, 17, 18, 19, 31, 24, 20], which further improved
the searching efficiency of HUI.

Frequent itemsets mining can find itemsets with a frequency greater than a minimum
frequency threshold, and HUI mining can find itemsets with a utility greater than a
minimum utility threshold. However, both can only be searched in a single dimension.
To address this drawback by combining the two, Yeh et al. [32](2007) first posed a two-
stage algorithm to discover itemsets where each itemset’s utility and frequency are greater
than the user given minimum utility threshold or minimum frequency threshold. Later,
Podpean et al. [33](2007) developed a fast algorithm to search the high utility and high
frequency itemsets, however the algorithm was not efficient and the resulting itemsets
were not streamlined enough to help the user make the fastest decision.

2.2. Skyline Itemsets Mining. The concept of a skyline can be understood as a unique
collection of points that possess a special characteristic. Specifically, each point in the
skyline set is not completely dominated by any other point across multiple dimensions.
Because it only returns non-dominated points as solutions to decisions, it is important
that it behaves in a large database. Let us suppose that there is an itemset containing
n items, and that the skyline of these n items are those that are not dominated by any
other items. That is, there are no items that exceed their skyline in all dimensions.
This means that these items are better than all other items in at least one dimension.
In real life applications there is a significant relationship between distance from the city
centre and the price of housing, with housing closer to the city centre tending to be
more expensive, and housing becoming less expensive as the distance from the city centre
increases. Figure 1 provides a good illustration of this.

In Figure 1, the X-axis coordinates indicate the distance of the housing area from the
city centre and the Y-axis indicates the price of the housing. It is obvious to observe
through the graph that the skyline points in this dataset are {a,b,g}. Considered in two
dimensions, only these points are the non-dominant points in this dataset.

A Utility-frequency Skyline Itemsets Pattern Mining Algorithm with Threshold Restrictions 1187

Kung et al. [34](2005) initial introduced the concept of skyline. Borzsonyi et al. [35](2001)
introduced the skyline operation for database contexts. Chomicki et al. [36](2003) subse-
quently proposed an improved version of block nesting loops to improve performance by
using a specific order of tuples. Tan et al. [37](2001) proposed an algorithm for progres-
sively outputting skyline points. Papadias et al. [38](2005) proposed a nearest neighbour
search based branch-and-bound skyline (BBS) algorithm that implements a single visit to
find skyline points. Later Lin et al. [39] introduced two algorithms, namely SKYFUP-B
and SKYFUP-D, designed specifically for mining SFUI, these algorithms employ different
traversal strategies to explore the search space efficiently, and the SFUPMiner algorithm
[40] that employs an efficient utility-list structure to efficiently mine SFUP without gen-
erating candidate sets . In addition, the Umax array was further developed to maintain
maximum utility at the frequency of occurrence. Then, Song et al.[41](2021) proposed
a high-performance skyline itemset mining algorithm that can be filtered by utility by
improving the array structure of the original skyline storage. By incorporating utility
filtering, the SFUI UF algorithm can efficiently eliminate unpromising itemsets early in
the mining process. This filtering technique allows the algorithm to focus on itemsets
that have higher utility or potential to be part of the skyline pattern, thereby reducing
the search space.

The original traditional skyline pattern has a number of drawbacks due to the lack
of threshold constraints. The first is that there may be extreme points in the result set
of a search in a single dimension, such as a situation where the value of the frequency
dimension is very high but the value of the utility dimension is extremely low, which is
equivalent to a situation where the sales of an item in a shopping mall are very hot but
the total revenue is extremely low, which is not what the user wants to see. Therefore,
the single-dimensional extreme items in the result set may have an adverse effect on
the user’s decision-making judgment. Secondly, the original skyline pattern mining will
search the complete database and construct a large number of utility lists, which will
cause the traditional skyline pattern algorithm to consume a lot of time and memory, and
the efficiency is low. Therefore, we propose a new skyline mining pattern. in the paper,
the pattern takes the minimum utility threshold and the minimum frequency threshold
as restrictions, and under the appropriate threshold setting conditions, it can not only
exclude the one-dimensional extreme items and obtain the final result set that meets the
actual needs of users. It can also greatly reduce the data search space that the algorithm
needs to search, reduce the amount of operations and improve the execution efficiency of
the algorithm.

3. Preliminary and Problem Statement.

3.1. Preliminaries. Suppose we have a finite set of itemsets denoted by I as {i1, i2, ..., im}.
An itemset X is a subset of I, and if it contains k items, it is referred to as a k -
itemset. On the other hand, let D be the transaction database consisting of transactions
{T1, T2, ..., Tn}, where each transaction Tq is a subset of I.

To illustrate this, we can consider a database D represented in Table 1. In this table,
each transaction is identified by its unique transaction ID (TID), and the quantities col-
umn represents the frequency of each item within that transaction. Additionally, Table 2
displays the unit profit associated with each item.

Definition 3.1. The number of times itemset X appears in database D is defined as f(X):

f(X) = |{Tq|X ⊆ Tq ∧ Tq ∈ D}|. (1)

For example, in the Table 1 database, f(A)= 4, f(AD)= 3.

1188 Y. Liu, S. Tayeb and Jimmy M.-T. Wu

Table 1. A transaction database.

TID Items:quantities

T1 (A,1) (D,6) (E,1) (C,2)
T2 (A,5) (D,1) (C,1) (F,1)
T3 (A,10) (E,3) (C,6)
T4 (B,2) (A,5) (D,6) (E,1) (C,1)

(F,1)
T5 (B,4) (D,3) (E,1) (C,3)
T6 (B,2) (E,4) (C,2)
T7 (D,1) (E,1) (C,1)

Table 2. A profit table.

Item profit

A 1
B 2
C 1
D 2
E 3
F 5

Definition 3.2. The u(ij, Tq) is defined as the utility of item ij in transaction Tq, and
its formula is expressed as follows:

u(ij, Tq) = q(ij, Tq)× pr(ij). (2)

For example, it can be derived from T1 in Table 1 that the utility of the item {C} can
be computed as u(C, T1) = q(C, T1)× pr(C) = 2× 1 = 2.

Definition 3.3. The utility of an itemset X in a transaction Tq is called as u(X,Tq) and
defined as:

u(X,Tq) =
∑

ij⊆X∧X⊆Tq

u(ij, Tq). (3)

For example, in the Table 1 database, u(AD, T1) = u(A, T1) + u(D,T1) = 1 + 12 =
13.

Definition 3.4. The utility of itemset X in a transaction database D, can be called as
u(X) and defined as:

u(X) =
∑

X⊆Tq∧Tq∈D

u(X,Tq). (4)

For example, it can be derived from Table 1 that the utility of itemset {AD} in database
D can be computed as u(AD) = u(AD, T1) + u(AD, T2) + u(AD, T4) = 7 + 6 + 11 = 24.

Definition 3.5. The utility of transaction Tq in transaction database D is called tu(Tq),
which represents the sum of utility of all items in transaction Tq and defined as:

tu(Tq) =
∑
ij⊆Tq

u(ij, Tq). (5)

For example, it can be derived from Table 1 that tu(T1) = u(A, T1) + u(C, T1) +
u(D,T1) + u(E, T1) = 1 + 2 + 12 + 3 = 18.

A Utility-frequency Skyline Itemsets Pattern Mining Algorithm with Threshold Restrictions 1189

Definition 3.6. The transaction-weighted utility of an itemset X in a transaction data-
base D is called as twu(X) and defined as:

twu(X) =
∑

X⊆Tq∧Tq∈D

tu(Tq). (6)

For example, it can be derived from Table 1 that twu(A) = T1 + T2 + T3 + T4 =
18 + 13 + 30 + 30 = 91.

This is followed by a definition of skyline mining.

Definition 3.7. For itemset X and itemset Y , if f(X) ≥ f(Y) and u(X) > u(Y) or
f(X) > f(Y) and u(X) ≥ u(Y), then the itemset X governs Y and it is represented as
X ≻ Y .

For the running example, the itemset {AC} ≻ {ACEF} since u(AC) > u(ACEF) and
f(AC) > f(ACEF).

Definition 3.8. Considering the frequency and utility of two-dimensional factors, if an
itemset is not dominated by other itemsets in the database, it is called skyline frequency-
utility pattern(SFUP).

The traditional SFUP has the disadvantage that without a threshold as a lower limit,
the result set obtained has extreme itemset, i.e. the single dimension of utility or frequency
is too low, so we set thresholds on both frequency and utility dimensions to ensure that
the result set obtained is more balanced and more in line with user needs.

Definition 3.9. A skyline itemset whose itemset frequency is not less than the minimum
frequency threshold and whose itemset utility is not less than the minimum utility threshold
is called a skyline frequent-utility itemset with threshold pattern (SFUTP).

Definition 3.10. Under the condition of meeting the minimum threshold, an itemset X is
considered as a potential SFUTP (PSFUTP) if its frequency is equal to r and non-itemset
having higher utility than u(X).

3.2. Problem Statement. Based on the above definition, we define the SFUTP mining
problem as one that considers frequency and utility factors and discovers non-dominated
itemsets in a database on the basis of satisfying frequency and utility thresholds.

In the running example, given a minimum utility threshold of 45 and a minimum
frequency threshold of 4, {EC} and {DEC} can be considered as SFUTPs, where {DEC}
has a utility of 51 and a frequency of 4 and {EC} has a utility of 48 and a frequency of
6. Because neither of them is governed by other sets of items in the database, and they
meet the given threshold in the two dimensions of utility and frequency.

4. Skyline Frequency-Utility-Threshold Pattern Mining. In this section, the first
part gives a practical application example of the skyline pattern, showing the actual
application scenario in data driven intelligent recommendation system. In the second
part of our study, we proposed an efficient algorithm for mining SFUTP. The algorithm is
SFUTPMiner, which utilizes a utility-list structure to facilitate fast and straightforward
itemset combination operations. The pseudo code for implementing the SFUTPMiner
algorithm is provided in the subsequent sections, offering a comprehensive understanding
of its implementation details. This algorithm, based on the new pattern, demonstrates
its effectiveness in efficiently mining SFUTP patterns.

1190 Y. Liu, S. Tayeb and Jimmy M.-T. Wu

4.1. Application of Skyline Mining Algorithm in Shopping Recommendation
System. The AI-based recommendation system is used in all aspects of life. For example,
for short video websites, its intelligent algorithm will recommend different types of short
videos at different time periods according to the user’s age and preference, so as to increase
user usage and increase website revenue. Similarly, when shoppers browse online shopping
websites, reasonable product recommendations will increase the user’s product click rate
and purchase rate. AI, on the other hand, can make targeted recommendations based
on the user’s consumption ability and user preferences. The model and algorithm used
in this paper can provide suitable product information for the recommendation system.
What customers care about is the rating and price of the product, and what the merchant
cares about is the profit and sales volume of the product. For a product of the same type,
the AI recommendation system can provide users with products with high ratings and
low prices based on the skyline algorithm. From the perspective of merchants, they can
choose to recommend popular products with high profits and high sales volume to increase
revenue, or recommend products with high profits and low sales volume to increase sales
of unpopular products.

Figure 2. Data-driven AI recommendation system.

The AI recommendation system shown in the Figure 2 can infer the user’s purchasing
ability by learning the user’s shopping habits based on multi-dimensional factors, and
provide different threshold parameters for the data in the database according to the
purchasing ability and purchasing preference, and in many cases, different factors need to
be considered to mine the required product information from the database. For example,
the matching degree between the user’s consumption level and the commodity price level,
the favorable rating of the commodity, the sales volume, the commodity profit, the brand

A Utility-frequency Skyline Itemsets Pattern Mining Algorithm with Threshold Restrictions 1191

effect, and even the place of shipment of the commodity may affect the recommendation
of the system.

4.2. Search Space and Utility-list Structure. First we show the search space re-
quired for SFUTP mining, as shown in Figure 3, using the example in the form of a set
enumeration tree, and in order to sort the itemset mentioned on the utility-list (UL) in
ascending order by TWU, we use the common ”depth-first search” technique to search
the given search space.

{}

CEDAB

BDBA BE AD

BDEBACBAEBAD

BADE BADC BAEC

BADEC

ADCADE

BDEC

BEC

ADEC

BDC

AE AC

DEC

DCDE

AEC

ECBC

Figure 3. Example of a search graph with five items.

B

tid iutil rutil

4 4 21

5 8 12

6 4 14

A

tid iutil rutil

1 1 17

2 5 3

3 10 15

4 5 16

 D

tid iutil rutil

1 12 5

2 2 1

4 12 4

5 6 6

7 2 4

E

tid iutil rutil

1 3 2

3 9 6

4 3 1

5 3 3

6 12 2

7 3 1

C

tid iutil rutil

1 2 0

2 1 0

3 6 0

4 1 0

5 3 0

6 2 0

7 1 0

Figure 4. The constructed utility-lists.

1192 Y. Liu, S. Tayeb and Jimmy M.-T. Wu

Let the items in a database be sorted in ascending TWU order. The utility-list [30] of
an itemset X is a set of tuples, in which each tuple consists of three parts as (tid, iutil,
rutil), where tid is the transaction ID containing itemset X, iutil is the actual utility of
the set X in the transaction, and rutil is the sum of the utilities of all items after X in
tid. For instance, in Table 3, the utility-list structures for (D) and (BCD), their util-
ity lists are UL.D = (T1, 12, 5), (T2, 2, 1), (T4, 12, 4), (T5, 6, 6), (T7, 2, 4) and UL.DE =
(T1, 15, 2), (T4, 15, 1), (T7, 5, 1). The structure of the utility-list for 1-itemsets according
to the given examples in Figure 3 is shown in Figure 4.

4.3. UFmax Array Structure. In this section, we apply an array structure called the
Utility-Max array. With this array structure, the itemsets with maximum utility at each
frequency value can be obtained by scanning through the database. The subsequent search
for SFUTP is facilitated.

We have optimised the original Umax array structure. UFmax is an array of fmax

elements. where fmax is the maximum frequency of the 1-itemset contained in the database
D. The UFmax array with frequency i is defined as

UFmax[i] = {u(X) | f(X) ≥ i}. (7)

To facilitate the filtering of itemsets that satisfy the user-defined minimum utility and
frequency thresholds, the UFmax array is initialized with appropriate values. The initial
value of UFmax[1]-UFmax[minfre] is set to the maximum value. Similarly, the initial
value of UFmax[i]-UFmax[fmax] is set to the user-defined minimum utility threshold,
where fmax corresponds to the maximum frequency of the 1-itemset in the database.

By setting these initial values, the UFmax array becomes a useful tool for efficiently
filtering out itemsets that meet the specified minimum utility and frequency thresholds.
This initialization process allows for quick identification of itemsets that do not satisfy
the user’s criteria, thereby reducing the search space and improving the efficiency of the
mining process.

For example, if we set the minimum utility threshold to 40 and the minimum frequency
threshold to 4, then the UFmax array is initially set as follows: UFmax[1]=UFmax[2]
=UFmax[3]=inf, UFmax[4]=UFmax[5]=UFmax[6] =UFmax[7]=40. for itemset {DC},
u(DC) = 42, f(DC) = 5. So u(DC) is compared with UFmax[5], u(DC)=42¿UFmax[5]
=40, so UFmax[5] is updated, UFmax[5]=42, and {DC} is temporarily stored in the
list of candidate sets. For itemset {ADC}, u(ADC)=41, f(ADC)=3. So u(ADC) is
compared with UFmax[3], u(ADC)=41¡UFmax[3]=Inf, so itemset {ADC} does not meet
user requirements and is not updated to the candidate set list. That is, the filtering of
our desired itemset can be done by the UFmax array with only one comparison.

4.4. Pruning Strategies. Indeed, the generation of numerous candidate itemsets in the
algorithm, can be a potential issue that affects the efficiency of the algorithm. How-
ever, several pruning strategies can be employed to mitigate this problem and reduce the
generation of excessive candidate sets during the algorithm’s execution.

When a threshold is added to the pattern mining process, the TWU value can be used
in the first stage to filter low-utility itemsets. The search space can be further pruned
based on the utility-list structure and the UFmax array.

Definition 4.1. In the transaction database D. the minimum utility of items (MUS) is
the maximum utility of 1-items with the highest frequency and defined it as:

MUS = {u(i) | f(i) = fmax}. (8)

where i is an item in D and fmax is the maximal frequency of all 1-itemsets in D.

A Utility-frequency Skyline Itemsets Pattern Mining Algorithm with Threshold Restrictions 1193

For the database shown in Table 1, 1-item {C} have the highest frequency : f(C) = 7.
Since u(C) = 40 , MUS = 40.

1. During the initial stage, if the TWU of a 1-itemset falls below a specified minutility,
it indicates that the 1-itemset and all its extension sets cannot be the SFUTP.

2. Consider an itemset, X. In its utility-list structure, if the sum of iutil is found to be
less than UFmax[f(x)], it implies that X is not a SFUTP itemset. Thus, we can
safely eliminate X from the search space.

3. If the combined iutil and rutil values of itemset X in its utility list are lower than
UFmax[f(x)], it implies that all supersets of X are not SFUTP. Consequently, these
supersets can be pruned and eliminated from the search space.

4.5. Proposed SFUTP Algorithm. This paper designs the following algorithm for
mining the SFUTP demanded by the user. First, the SFUTPMiner algorithm is used to
search the database to get the final list of candidates, then the judge algorithm is used to
judge, and finally the real SFUTP is obtained.

The work of Algorithm 1 is to calculate the relevant information of each item before
searching, and initialize the UFmax array. First calculate the maximum frequency of
itemsets in the database and the twu value of each 1-item. The value of fmax can be
used as the upper bound of the capacity of the UFmax array initialization and each item
is sorted in ascending order of the twu value. Then initialize the UFmax array, and
initialize the UFmax array with different index values to different values. For the UFmax
array whose index value is less than the minimum frequency threshold, the initial value
is set to infinity to filter out itemsets that do not meet the frequency threshold. For the
UFmax array whose index value is greater than the minimum frequency threshold, the
initial value is set to the minimum utility threshold to filter out itemsets that do not meet
the utility threshold. Next, the PatternSearch algorithm is invoked to carefully mine the
search space for potential SFUTPs.

Algorithm 2 is a search procedure for potential SFUTPs, which uses depth-first search.
Construct its utility list for itemset M, and scan the information in the utility list to
make a judgment. If the sum of its utility is greater than the value of the UFmax array
whose index is f(M), then put M into the potential list. And update the UFmax value.
If the sum of its utility and residual utility is greater than the value of UFmax for it, it
can be considered to expand its utility list and continue to search for its superset. Then
continue to call the PatternSearch procedure recursively to determine the new PSFUIs.
Final return to PSFUTP list after update.

Algorithm 3 is the final judgment stage, which compares each itemset in the potential
SFUTP list to finally obtain the real SFUTP set.

5. Illustrative Examples. In this section, we give an illustrative case to explicate the
process of our proposed SFUTPMiner algorithm, here using the Table 1 database as an
example and Table 2 showing the profit for each item. Assume that the user is given a
minimum utility threshold of 45 and a minimum frequency threshold of 4. The first scan
of the database gives the maximum frequency of the 1-itemset as f(C) = 7, so MUS =
U(C) = 16, and the TWU of all 1-itemsets was calculated by using a database scan with
the result {TWU : (A) : 86, (B) : 68, (C) : 130, (D) : 87, (E) : 117(F) : 43}. Afterwards,
the items in the database with TWU less than the given minimum utility threshold or
MUS were removed and the set of all remaining items was sorted in ascending order of
TWU to complete the reorganization of transaction database. The reorganised database

1194 Y. Liu, S. Tayeb and Jimmy M.-T. Wu

Algorithm 1 SFUTPMiner

Require:
D, a transaction database ; UFmax, an array structure for maintaining maximum
utility of itemsets and for utility and frequency filtering. minutil,user-given minimum
utility threshold; minfre,user-given minimum frequency threshold.

Ensure:
PSFUTIs:the potential skyline itemsets with thresholds restrictions.

1: for each transaction Tq ∈ D do
2: for each item x ∈ Tq do
3: Compute fmax and twu;
4: end for
5: end for
6: Sort x in twu-ascending order;
7: for index=1 to minfre-1 do
8: Set UFmax[index] to Inf ;
9: end for

10: for index= minfre-1 to fmax do
11: Set UFmax[index] to minutil ;
12: end for
13: PatternSearch()
14: Return PSFUTPs ;

Algorithm 2 PatternSearch

Require:
M.UL, the utility-list of the itemset M ; exM ,the extensions of M; UFmax, an array
structure.

Ensure:
PSFUTIs: the potential skyline itemsets with thresholds restrictions.

1: for each item i in M’UL do
2: if the sum of M.iutil > UFmax(f(M)) then
3: Set UFmax(f(M)) = U(M);
4: PSFUTIs ← M ;
5: Dispose itemset N from PSFUTIs if (f(N)==f(M));
6: end if
7: if the sum of (M.iutil+ M.rutil) ≥ UFmax(f(M)) then
8: exM.ulists := M.ulists + construct(ex.ulist);
9: PatternSearch(exM.ulists,UFmax,PSFUTPs);

10: end if
11: end for

is shown in Table 3. Next, a list of utilities is constructed for each 1-itemset in the
database and the results are shown in Figure 4. Next, the SFUTPMiner set the initial
value of UFmax[1] to UFmax[3] to Inf and UFmax[4] to UFmax[7] to 45. Next, we then
use depth-first search to continue mining the filtered search nodes to find other SFUTP
itemsets.

Firstly, we start exploring from {B}, by calculating that its utility value is 16 and
its frequency is 3. U(B) < UFmax[3], so {B} is not eligible and the PSFUTP table is
not updated. Consider again the superset of {B}, the sum of iutil + rutil of {B} can
be calculated as 63, which is less than UFmax[3], and it can be known that all of the

A Utility-frequency Skyline Itemsets Pattern Mining Algorithm with Threshold Restrictions 1195

Algorithm 3 Judge algorithm

Require:
PSFUTPs,the potential skyline pattern with thresholds restrictions.

Ensure:
List of SFUTPs, the list of final skyline pattern.

1: for each itemset A ∈ PSFUTPs do
2: for each itemsetB ∈ PSFUTPs do
3: if u(A) ≥ u(B)

∧
f(A) > f(B) || u(A) > (B)

∧
f(A) ≥ f(B) then

4: SFUTPs ← A ∪ SFUTPs ;
5: Dispose of B from PSFUTPs ;
6: end if
7: end for
8: end for
9: Return List of SFUTPs ;

Table 3. A transaction database.

TID Items:quantities

T1 A:1 D:12 E:3 C:2
T2 A:5 D:2 C:1
T3 A:10 E:9 C:6
T4 B:4 A:5 D:12 E:3 C:1
T5 B:8 D:6 E:3 C:3
T6 B:4 E:12 C:2
T7 D:2 E:3 C:1

supersets of {B} have no hope of becoming candidate itemsets, so no extension is needed.
Next consider {A}, which is finally judged to be incompatible with both {A} and its
superset. The utility of {D} is 34 and the frequency is 5, so U(D) < UFmax[4]. Since
the sum of iutil + rutil of {D} can be calculated as 54, which is significantly higher than
UFmax[4], {D} can be extended, and the supersets of {D} are {DE} and {DC}. The
utility of {DE} is calculated to be 44 and the frequency is 4. U(DE) < UFmax[4], {DE}
is not qualified. Consider again the superset of {DE}, which can be extended because the
sum of its iutil + rutil is 51. The superset of {DE} has {DEC}, the utility of {DEC} is
calculated to be 51 and the frequency is 4,U(DEC) > UFmax[4]. So {DEC} is stored
in the set of potential SFUTPs and the value of UFmax[4] updates to 51.
where {DEC} has a utility of 51 and a frequency of 4. {EC} has a utility of 48 and

a frequency of 6. It is judged that neither {DEC} nor {EC} can completely dominate
the other, so both {DEC} and {EC} are SFUTPs, the skyline frequency utility pattern
with threshold we are looking for.

6. Experimental Evaluation. Several datasets were used to conduct extensive experi-
ments in this section. Throughout the experiments, different thresholds were set, and rig-
orous tests were performed. The objective was to assess the performance and efficiency of
the new skyline pattern in comparison to existing methods. The algorithm SFUI UF [41]
has been compared with SFUPMiner [40], SKYFUP B [39] and SKYFUP D [39] algo-
rithms in the paper. It shows the excellent performance of SFUI UF, so the SFUI UF
algorithm is the best traditional skyline pattern algorithm at present. Therefore, this
experiment chose to compare the SFUTPMiner algorithm in the new pattern with the

1196 Y. Liu, S. Tayeb and Jimmy M.-T. Wu

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) Foodmart

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
u
n
ti
m

e
 (

s
)

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b) ECcommerce retail

0

0.5

1

1.5

2

2.5

3

R
u
n
ti
m

e
 (

s
)

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(c) Connect

0

2000

4000

6000

8000

R
u
n
ti
m

e
 (

s
)

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(d) Mushroom

0

0.5

1

1.5

2

2.5

3

3.5

R
u
n
ti
m

e
 (

s
)

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(e) Chess

0

10

20

30

40

50

60

R
u
n
ti
m

e
 (

s
)

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(f) Accident

0

200

400

600

800

1000

1200

R
u
n
ti
m

e
 (

s
)

SFUTPMiner

SFUI_UF

Figure 5. Running time comparison.

SFUI UF algorithm, and set utility threshold and frequency threshold for the SFUTP-
Miner algorithm at the same time. Our experiments were performed on a computer
with a 6-Core 3.00 GHz CPU and 8 GB memory running 64-bit Microsoft Windows 10.
The algorithms in this paper were programmed using the Java language.The six different
datasets downloaded from the SPMF [42] were used for the experiments conducted. The
six datasets are: foodmart, ecommerce retail, connect, mushroom, chess and accident.
The characteristics of each dataset are provided in the Table 4.

Table 4. Characteristics of the six datasets.

Dataset #Trans #Items
count

#Density

Foodmart 4,141 1,559 0.28%
ECommerce retail 14,975 3,468 0.34%

Connect 67,557 129 33.33%
Mushroom 8,416 119 19.33%

Chess 3,196 75 49.33%
Accident 340,183 468 7.22%

6.1. Runtime. By conducting experiments using six datasets, we first compare the
SFUTPMiner algorithm in our new pattern with the previous most advanced SFUI UF
algorithm in the field of running time by setting different thresholds, and the effects of
this comparison are revealed in Figure 5.

In the experiment, SFUI UF algorithm has no threshold limit. For SFUTPMiner al-
gorithm, To determine the thresholds for the new skyline pattern, we utilized a range of
values from 10% to 70% of the maximum frequency and maximum utility observed in the
dataset. These thresholds were chosen to ensure comprehensive testing of the pattern’s

A Utility-frequency Skyline Itemsets Pattern Mining Algorithm with Threshold Restrictions 1197

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) Foodmart

0

1

2

3

4

5

6

7

8

it
e
m

s
e
ts

 c
o
u
n
t

105

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b) ECcommerce retail

0

500

1000

1500

2000

2500

3000

it
e
m

s
e
ts

 c
o
u
n
t

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(c) Connect

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

it
e
m

s
e
ts

 c
o
u
n
t

106

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(d) Mushroom

0

0.5

1

1.5

2

2.5

it
e
m

s
e
ts

 c
o
u
n
t

104

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(e) Chess

0

2

4

6

8

10
it
e
m

s
e
ts

 c
o
u
n
t

105

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(f) Accident

0

2

4

6

8

10

12

it
e
m

s
e
ts

 c
o
u
n
t

104

SFUTPMiner

SFUI_UF

Figure 6. Search space size comparison.

effectiveness. By considering different thresholds within this range, we were able to assess
the pattern’s performance across various levels of frequency and utility in the dataset.
The experimental results show that when the threshold is small, the algorithm execution
time and SFUI UF is almost the same, which may be caused by the low threshold and
the failure to effectively prune the search space. When the threshold value surpasses 0.2,
the SFUTPMiner algorithm demonstrates significantly shorter execution times compared
to the SFUI UF algorithm. Moreover, as the threshold value increases, the execution time
of the SFUTPMiner algorithm decreases considerably. Under the appropriate threshold
constraints, The larger the data set, the more obvious the time advantage of the SFUTP
new pattern. It can be seen that adding thresholds setting to the new pattern can solve
the disadvantages of low efficiency and slow speed in the mining process of the original
skyline pattern.

The SFUTPMiner algorithm itself does not have the advantage of faster speed, but
because we have added two dimensional threshold limits to the original skyline pattern
and proposed a new skyline pattern, namely SFUTP, in the same database search process,
the SFUTPMiner algorithm of the new pattern will scan less space than the traditional
skyline pattern mining algorithm, and the utility list to be constructed is also less, and its
calculation amount will be greatly reduced, Therefore, its consumption time is shorter.

6.2. Search Space Size. Figure 6 illustrates the effects of comparing the search space
in the execution of the two algorithm. In this comparison, the search space refers to the
number of items traversed during the execution of the algorithm.

The experimental results show that in foodmart and ecommerce retail datasets, when
the threshold value is small, the search space is almost the same as SFUI UF, which
may be due to the lower threshold value, which does not achieve effective pruning of
the search space, but when the threshold value exceeds 0.2, the SFUTPMiner algorithm
exhibits a significantly smaller number of scanned itemsets compared to the SFUI UF
algorithm. As the threshold value increases in the SFUTPMiner algorithm, the search

1198 Y. Liu, S. Tayeb and Jimmy M.-T. Wu

space required gradually decreases. This means that fewer candidate itemsets need to be
considered during the mining process. Specifically, when the threshold value reaches 0.7,
the search space required by SFUTPMiner becomes significantly smaller compared to the
traditional skyline pattern. This reduction in search space is a desirable characteristic of
the SFUTPMiner algorithm. It implies that SFUTPMiner can efficiently identify frequent
itemsets that satisfy the user-defined threshold, leading to improved mining performance
and potentially faster execution times. This observation indicates that SFUTPMiner is
more efficient in terms of the number of itemsets it needs to traverse, particularly as
the threshold value increases. One of the main reasons for this result is that previous
skyline pattern mining algorithms, including SFUI UF, do not utilize thresholds. These
traditional algorithms typically scan and evaluate all itemsets in the dataset without con-
sidering any specific threshold values. they prune the data in the whole database and
finally obtain the result itemsets. For the SFUTP new pattern, it filters the items in
the database that do not meet the threshold in advance by setting the threshold from
the beginning. During the mining process of the skyline pattern, SFUTP faces a search
space that is essentially the filtered database space based on the threshold. By applying
the proposed pruning strategy to this reduced database, the search scope further narrows
down. Table 5 shows that although the dataset is very large, the quantity of skyline item-
sets is pretty few compared to the large dataset, i.e. most of the itemsets in the dataset
are hopeless itemsets, so a good pruning strategy is very important. The SFUTP pattern
used in this paper, by setting thresholds on both the frequency and utility dimensions,
can prune the searched itemsets very significantly, greatly simplifying the search space.

The Table 5 also reveals the new pattern used in the paper obtains a different amount of
resultant sets on certain datasets than those obtained by the traditional pattern algorithm.
This is because the pattern we proposed is different from the original pattern. Due to
the increased threshold limit, the search space changes when the algorithm performs the
search task. In theory, the result set obtained in the new pattern should be less than or
equal to the result set of the original pattern. The result set obtained in the SFUTP may
be less, but it is more in line with the significance of practical application, Because the
SFUTP will exclude some points that are extremely unbalanced in the single dimension,
leaving the middle section of the skyline that is more helpful to users. However, we also
noticed that in the mushroom dataset, when the threshold setting reaches 0.7, the result
set is empty. This is caused by too much pruning of search space due to too large threshold
setting, so appropriate threshold setting is crucial for the new pattern.

Table 5. Skyline itemsets count.

thresholds 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Foodmart 1 1 1 1 1 1 1 1
ECommerce

retail
2 2 2 2 2 2 2 1

Connect 46 45 42 40 37 34 30 26
Mushroom 17 17 16 10 5 5 4 0

Chess 35 34 32 31 30 28 26 21
Accident 18 18 17 15 14 14 11 8

6.3. Memory Consumption. The experiment compared the SFUTPMiner algorithm
in new pattern with the SFUI UF algorithm for different threshold cases and measured
the memory usage using the JAVA API, as shown in Figure 7.

A Utility-frequency Skyline Itemsets Pattern Mining Algorithm with Threshold Restrictions 1199

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) Foodmart

0

10

20

30

40

50

60

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b) ECcommerce retail

0

5

10

15

20

25

30

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(c) Connect

0

200

400

600

800

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(d) Mushroom

0

20

40

60

80

100

120

140

160

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(e) Chess

0

20

40

60

80

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)
SFUTPMiner

SFUI_UF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(f) Accident

0

200

400

600

800

1000

1200

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

SFUTPMiner

SFUI_UF

Figure 7. Memory consumption comparison.

Looking at the experimental result presented in Figure 7, since one can see that, al-
though the memory consumption does not show a significant decline trend with the in-
crease of the threshold, the memory consumption of the SFUTPMiner algorithm in the
new pattern with threshold setting is smaller than that of the traditional skyline pattern
in most conditions.

7. Conclusion. This paper introduces a novel pattern and a new pattern mining al-
gorithm SFUTPMiner , which incorporates threshold settings. The proposed approach
offers several advantages, including significant reduction in search size, improved speed
of skyline itemsets search, and enhanced accuracy of search results. We also propose a
new application scenario in the paper, combining pattern mining with AI for shopping
recommendation systems. The new pattern proposed in this paper can serve the rec-
ommendation system very well, infer the user’s purchasing ability by learning the user’s
shopping habits, and provide different threshold parameters for the data in the database
according to the purchasing ability and purchasing preference, while considering multi-
dimensional Factors are used to mine the required product information from the database
and serve AI to make personalized recommendations to customers. While skyline mining
is the search for non-dominated itemsets in two dimensions, with the setting of thresh-
olds, certain points that are extreme in a single dimension can be filtered to find quality
items that satisfy the user’s minimal needs in multiple dimensions. Thanks to the set-
ting of thresholds, a variety of pruning strategies can be applied, thus greatly simplifying
the search space. The SFUTPMiner algorithm used in this paper is stemmed from the
utility-list structure and applies an optimised UFmax array structure so that it can not
only find the itemsets with the highest utility at the same frequency, but also exclude
itemsets whose utility and frequency do not meet the threshold, greatly improving the
search efficiency. The final experiments, which compared with an excellent algorithm
from the past, were performed on various actual datasets. The experiment findings sug-
gest that the new pattern and SFUTPMiner algorithm offer notable advantages in terms

1200 Y. Liu, S. Tayeb and Jimmy M.-T. Wu

of both time and space efficiency, particularly when dealing with large datasets. It not
only solves the drawbacks of slow speed and poor performance of traditional skyline pat-
tern in large datasets, but also greatly optimizes the result itemsets, and can accurately
provide users with good quality skyline result itemsets. The new pattern also has defects
and limitations. For example, proper threshold selection is a difficult problem to solve.
In large databases, because building a utility list requires a lot of time and memory, the
algorithm in large databases still consumes a lot of time and needs more novel ways and
frameworks to solve it, which is also the direction of our future research.

Acknowledgment. This research is supported by Shandong Provincial Natural Science
Foundation (ZR201911150391).

REFERENCES

[1] W. Gan, L. Chen, S. Wan, J. Chen, and C.-M. Chen, “Anomaly rule detection in sequence data,”
IEEE Transactions on Knowledge and Data Engineering, 2021.

[2] T.-Y. Wu, J. C.-W. Lin, U. Yun, C.-H. Chen, G. Srivastava, and X. Lv, “An efficient algorithm for
fuzzy frequent itemset mining,” Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 5787–5797,
2020.

[3] T.-Y. Wu, J. C.-W. Lin, Y. Zhang, and C.-H. Chen, “A grid-based swarm intelligence algorithm for
privacy-preserving data mining,” Applied Sciences, vol. 9, no. 4, p. 774, 2019.

[4] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between sets of items in large
databases,” in Proceedings of the 1993 ACM SIGMOD international conference on Management of
data, 1993, pp. 207–216.

[5] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association rules,” in Proc. 20th int. conf.
very large data bases, VLDB, vol. 1215. Citeseer, 1994, pp. 487–499.

[6] G. Grahne and J. Zhu, “Efficiently using prefix-trees in mining frequent itemsets.” in FIMI, vol. 90,
2003, p. 65.

[7] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,” ACM sigmod
record, vol. 29, no. 2, pp. 1–12, 2000.

[8] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee, “Efficient tree structures for high utility
pattern mining in incremental databases,” IEEE Transactions on Knowledge and Data Engineering,
vol. 21, no. 12, pp. 1708–1721, 2009.

[9] R. Chan, Q. Yang, and Y.-D. Shen, “Mining high utility itemsets,” in Third IEEE international
conference on data mining. IEEE Computer Society, 2003, pp. 19–19.

[10] C.-W. Lin, T.-P. Hong, and W.-H. Lu, “An effective tree structure for mining high utility itemsets,”
Expert Systems with Applications, vol. 38, no. 6, pp. 7419–7424, 2011.

[11] Y. Liu, W.-k. Liao, and A. Choudhary, “A two-phase algorithm for fast discovery of high utility
itemsets,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 2005,
pp. 689–695.

[12] H. Yao, H. J. Hamilton, and L. Geng, “A unified framework for utility-based measures for mining
itemsets,” in Proc. of ACM SIGKDD 2nd Workshop on Utility-Based Data Mining. Citeseer, 2006,
pp. 28–37.

[13] L. Chen, W. Gan, Q. Lin, S. Huang, and C.-M. Chen, “Ohuqi: Mining on-shelf high-utility quanti-
tative itemsets,” The Journal of Supercomputing, pp. 1–25, 2022.

[14] C.-M. Chen, L. Chen, W. Gan, L. Qiu, and W. Ding, “Discovering high utility-occupancy patterns
from uncertain data,” Information Sciences, vol. 546, pp. 1208–1229, 2021.

[15] H. Yao, H. J. Hamilton, and C. J. Butz, “A foundational approach to mining itemset utilities from
databases,” in Proceedings of the 2004 SIAM International Conference on Data Mining. SIAM,
2004, pp. 482–486.

[16] U. Ahmed, J. C.-W. Lin, G. Srivastava, R. Yasin, and Y. Djenouri, “An evolutionary model to mine
high expected utility patterns from uncertain databases,” IEEE transactions on emerging topics in
computational intelligence, vol. 5, no. 1, pp. 19–28, 2020.

[17] W. Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, V. S. Tseng, and S. Y. Philip, “A survey of
utility-oriented pattern mining,” IEEE Transactions on Knowledge and Data Engineering, vol. 33,
no. 4, pp. 1306–1327, 2019.

A Utility-frequency Skyline Itemsets Pattern Mining Algorithm with Threshold Restrictions 1201

[18] W. Gan, J. C.-W. Lin, J. Zhang, and P. S. Yu, “Utility mining across multi-sequences with individ-
ualized thresholds,” ACM Transactions on Data Science, vol. 1, no. 2, pp. 1–29, 2020.

[19] G. Srivastava, J. C.-W. Lin, M. Pirouz, Y. Li, and U. Yun, “A pre-large weighted-fusion system of
sensed high-utility patterns,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 626–15 634, 2020.

[20] J. M.-T. Wu, J. C.-W. Lin, and A. Tamrakar, “High-utility itemset mining with effective pruning
strategies,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 13, no. 6, pp. 1–22,
2019.

[21] P. Fournier-Viger, C.-W. Wu, and V. S. Tseng, “Mining top-k association rules,” in Canadian
Conference on Artificial Intelligence. Springer, 2012, pp. 61–73.

[22] V. S. Tseng, C.-W. Wu, P. Fournier-Viger, and S. Y. Philip, “Efficient algorithms for mining top-k
high utility itemsets,” IEEE Transactions on Knowledge and data engineering, vol. 28, no. 1, pp.
54–67, 2015.

[23] V. Goyal, A. Sureka, and D. Patel, “Efficient skyline itemsets mining,” in Proceedings of the Eighth
International C* Conference on Computer Science & Software Engineering, 2015, pp. 119–124.

[24] V. S. Tseng, C.-W. Wu, B.-E. Shie, and P. S. Yu, “Up-growth: an efficient algorithm for high utility
itemset mining,” in Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2010, pp. 253–262.

[25] J.-S. Pan, J. C.-W. Lin, L. Yang, P. Fournier-Viger, and T.-P. Hong, “Efficiently mining of skyline
frequent-utility patterns,” Intelligent Data Analysis, vol. 21, no. 6, pp. 1407–1423, 2017.

[26] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas, “A survey of sequential
pattern mining,” Data Science and Pattern Recognition, vol. 1, no. 1, pp. 54–77, 2017.

[27] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang, and H. B. Le, “A survey of itemset
mining,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 7, no. 4, p.
e1207, 2017.

[28] W. Gan, J. C.-W. Lin, H.-C. Chao, and J. Zhan, “Data mining in distributed environment: a
survey,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 7, no. 6, p.
e1216, 2017.

[29] J. Liu, Y. Pan, K. Wang, and J. Han, “Mining frequent item sets by opportunistic projection,” in
Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, 2002, pp. 229–238.

[30] M. Liu and J. Qu, “Mining high utility itemsets without candidate generation,” in Proceedings of the
21st ACM international conference on Information and knowledge management, 2012, pp. 55–64.

[31] V. S. Tseng, B.-E. Shie, C.-W. Wu, and S. Y. Philip, “Efficient algorithms for mining high util-
ity itemsets from transactional databases,” IEEE transactions on knowledge and data engineering,
vol. 25, no. 8, pp. 1772–1786, 2012.

[32] J.-S. Yeh, Y.-C. Li, and C.-C. Chang, “Two-phase algorithms for a novel utility-frequent mining
model,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 2007, pp.
433–444.

[33] V. Podpecan, N. Lavrac, and I. Kononenko, “A fast algorithm for mining utility-frequent itemsets,”
Constraint-Based Mining and Learning, p. 9, 2007.

[34] H.-T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of a set of vectors,” Journal
of the ACM (JACM), vol. 22, no. 4, pp. 469–476, 1975.

[35] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in Proceedings 17th international
conference on data engineering. IEEE, 2001, pp. 421–430.

[36] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting,” in ICDE, vol. 3, 2003,
pp. 717–719.

[37] K.-L. Tan, P.-K. Eng, B. C. Ooi et al., “Efficient progressive skyline computation,” in VLDB, vol. 1,
2001, pp. 301–310.

[38] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline computation in database systems,”
ACM Transactions on Database Systems (TODS), vol. 30, no. 1, pp. 41–82, 2005.

[39] J. C.-W. Lin, L. Yang, P. Fournier-Viger, and T.-P. Hong, “Mining of skyline patterns by considering
both frequent and utility constraints,” Engineering Applications of Artificial Intelligence, vol. 77, pp.
229–238, 2019.

[40] J. C.-W. Lin, L. Yang, P. Fournier-Viger, S. Dawar, V. Goyal, A. Sureka, and B. Vo, “A more
efficient algorithm to mine skyline frequent-utility patterns,” in International conference on genetic
and evolutionary computing. Springer, 2016, pp. 127–135.

1202 Y. Liu, S. Tayeb and Jimmy M.-T. Wu

[41] W. Song, C. Zheng, and P. Fournier-Viger, “Mining skyline frequent-utility itemsets with utility
filtering,” in Pacific Rim International Conference on Artificial Intelligence. Springer, 2021, pp.
411–424.

[42] Fournier-Viger, “Spmf: A java open-source data mining library,” ,https://www.philippe-fournier-
viger.com/spmf, 2016.

