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Abstract. Stereo matching is an inherent difficulty in stereo vision, which is widely
used in many fields to recover image depth information by finding relevant homonymous
point pairs through binocular images. The traditional stereo matching process is divided
into four steps: cost computation, cost aggregation, parallax computation, and parallax
optimization, but with the rapid development of neural networks, deep learning-based
stereo matching methods are emerging rapidly, making a breakthrough in stereo match-
ing possible, and deep learning-based methods have achieved excellent results with higher
accuracy and faster speed than traditional matching methods. Learning-based matching
networks have taken the top position in test benchmarks such as KITTI and Middlebury.
Deep learning-based stereo matching methods are classified into non-end-to-end based and
end-to-end based matching methods. In this paper, we review the work related to stereo
matching and analyze and explain representative stereo matching networks, summarize
the advantages of different types of matching networks and the directions for improve-
ment, help researchers understand the work related to stereo matching, and look forward
to further breakthroughs in stereo matching work in this field of research.
Keywords: stereo matching; deep learning; neural network; parallax estimation; depth
information

1. Introduction. Stereo vision is one of the hot problems in computer vision research
and is an important branch of machine vision [1]. It uses the principle of parallax to
estimate the depth information of the 3D scene in the corrected binocular image. It
has extremely wide applications in robot vision [2], military applications, and medical
imaging, aerial mapping, 3D reconstruction [3], autonomous driving [4], depth ranging [5],
and industrial inspection [6]. The stereo vision process mainly contains six parts: image
acquisition, camera calibration, image correction, feature extraction, stereo matching,and
3D reconstruction [7], among which the stereo matching process is the key step of stereo
vision and also the difficult point of stereo vision, whose matching accuracy and efficiency
will directly affect the final result of 3D reconstruction and play a great role in the
construction of the whole stereo vision system.
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The stereo matching process is the process of finding the correspondence between pixels
in two images by transforming the two-dimensional search problem into a one-dimensional
search problem along polar lines on the corrected left and right camera image pairs, per-
forming parallax estimation by completing the matched pixel pairs, and then calculating
the depth of the pixels using fB/d [8]. f is the camera focal length, B is the baseline
distance between the two cameras, and d is the parallax estimation the resulting parallax.
Traditional stereo matching methods are usually divided into four steps [9]: cost calcu-
lation, cost aggregation, parallax calculation, and parallax optimization. The matching
cost calculation is used to initially measure the correlation between pixels to be matched
in the parallax range, and the matching cost aggregation process aggregates the related
pixel surrogate values with the target pixel, which can more accurately reflect the cor-
relation between pixels. The parallax calculation step compares the surrogate values of
each target pixel and the pixel to be matched to filter out the pixel pair with the highest
correlation, and uses its parallax d as the optimal parallax. The parallax optimization
step eliminates the incorrect parallax values that do not meet the conditions to further
improve the matching accuracy. Traditional stereo matching methods can be divided into
three categories: (1) local stereo matching algorithms [10,11], (2) global stereo matching
algorithms [12], and (3) semi-global stereo matching methods [13,14]. The local stereo
matching algorithm basically contains the four steps of the traditional stereo matching
process by using the winner-take-all (WTA) method to calculate the parallax. The lo-
cal stereo matching algorithm completes the matching process within the local search
window by mainly using the grayscale information of the image itself and its neighbor-
hood pixel point information when searching for matching points. The local matching
algorithm can be divided into region based matching algorithm, feature based match-
ing algorithm and phase based matching algorithm according to the selected matching
primitives. The advantages are low time complexity of the algorithm, convenient, simple,
flexible and versatile, fast operation speed, parallel computation and high efficiency of
the algorithm. However, the performance is poor in the weak texture region and texture-
free region. In the parallax discontinuity region, it is easy to have large deviation. The
global stereo matching algorithm differs from the local stereo matching algorithm in that
it does not include the cost aggregation step of display, and it uses the global constraint
information of the image to construct a global energy function containing data terms and
smoothing terms through the whole image pixel, and uses the method of minimizing the
energy function to obtain the parallax map. The global stereo matching methods include
confidence-propagation, graph-cuts, and dynamic planning methods. The global stereo
matching algorithm has high accuracy and robustness, but the computational complexity
is high and time consuming, and the computational efficiency is not high enough for par-
allel operation. The semi global matching(SGM) algorithm proposed by Hirschmuller [15]
also uses the energy function idea, but it solves the NP difficulty problem in the form of
multi-path optimization energy function, and the method achieves a good balance between
maintaining the accuracy of the results and the computational complexity.

Recently, with the development of neural network [16,17,18,19] and deep learning tech-
nology [20,21,22,23], the research trend of stereo matching technology has gradually
shifted from the study of traditional stereo matching algorithms to the study of matching
algorithms dominated by deep learning. In general, stereo matching algorithms based on
deep learning are mainly divided into two categories, namely, non-end-to-end matching
algorithms and end-to-end matching algorithms. The pioneering work is the MC-CNN
network proposed by Zbontar and LeCun [24], which introduced deep learning technology
into stereo matching and successfully used CNN to calculate the cost of matching for the
first time, replacing the manually designed cost calculation in the traditional method.
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metrics, the MC-CNN network obtained satisfactory results in terms of speed and accu-
racy compared to the performance of traditional methods in weak texture regions and
light imbalance regions. A similar non-end-to-end network is SGM-Net proposed by Seki
and Pollefeys [25], which is a non-end-to-end network based on cost aggregation and solves
the problem that the cost aggregation process requires artificially designed penalty pa-
rameters for different smoothing terms. These non-end-to-end networks have obtained
good results, but there are still limitations. Some of the non-end-to-end networks still
require manually designed parameters and functions, which are computationally complex
and time-consuming and require more hardware resources [26], while the non-end-to-end
networks also fail to solve the perceptual field limitation problem and lack relevance by
not taking contextual information into account. Therefore, with the success of Mayer et
al. in stereo matching work, end-to-end networks are gradually becoming applicable, and
although deep learning techniques have greatly improved the traditional stereo matching
work, the emergence of end-to-end network models has undoubtedly broken the barri-
ers and led the stereo matching work on another new path.Unlike the non-end-to-end
network which is an alternative to the traditional stereo matching step, the end-to-end
stereo matching network takes the left and right views as input and obtains the mapping
result from the trained neural network to directly output the parallax map. The end-to-
end network models are also classified into two types of end-to-end networks consisting
of 2D encoder-decoder [27] structures and end-to-end networks guided by regularization
modules consisting of 3D convolution, according to their different architectures. Rep-
resentative related works include the end-to-end regression network Disp-Net [28], first
proposed by Mayer et al. using an encoder-decoder structure to compute correlated 3D
costumers from left and right image features (encoding), while using CNN regression to
obtain parallax map results (decoding), respectively. The next pioneering network is
GC-Net [29], which processes a 4D costomer (height, width, parallax, number of feature
channels) composed of stitched left and right image monolithic features extracted by two
encoders with shared weights through a 3D CNN regularization module, while the network
incorporates 4D costomer contextual information and is the first in the KITTI benchmark
to The first end-to-end network that outperforms a manually designed end-to-end net-
work. In addition to the aforementioned non-end-to-end and end-to-end networks, there
exists a third type of classification, namely unsupervised stereo matching networks, due to
their reliance on large amounts of labeled training data. Unsupervised learning-based [30]
matching networks greatly simplify the training process of the network. Godard et al. [31]
reconstructed images using polar line geometric constraints without using ground truth
depth and generated parallax maps by training the network while constructing a new loss
function back propagation to further train the network to improve robustness. Zhou et
al. [32] iteratively updated the network parameters in an iterative manner to gradually
converge a random network to a steady state, and the obtained results achieved no inferior-
ity to the supervised learning matching methods in various stereo matching benchmarks.
However, although these unsupervised learning methods yielded satisfactory results in
the benchmarks, incorporating the monocular view approach into stereo matching is in-
herently difficult and lacks reliability compared to supervised learning networks trained
with real data labels. In some mainstream benchmark tests today, such as KITTI 2012,
KITTI 2015, Middlebury, etc., stereo matching methods based on deep learning basically
occupy the front-end position and outperform traditional matching methods in terms of
performance, becoming the mainstream of stereo matching research work. In order to
help researchers sort out and further contribute to stereo matching work, this paper sum-
marizes stereo matching work based on deep learning in recent years, mainly summarizing
end-to-end matching methods and non-end-to-end matching methods supported by large
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and rich real label data, and comparing the performance of these algorithms in different
benchmark tests to help researchers of stereo matching work further grasp the advantages
and disadvantages of various methods.

2. Non-end-to-end Stereo Matching. The non-end-to-end network is an alternative
to one or more steps in the traditional four-step stereo matching process illustrated in
Figure 1, so in the research and development of non-end-to-end stereo matching networks,
researchers have designed stereo matching networks with different focuses, including and
not limited to matching networks with a focus on matching cost, by designing convo-
lutional neural networks with different learning features and metric functions instead
of combining hand-designed features and similarity measures, and using them for cost
calculation to improve the accuracy of stereo matching algorithms. Non-end-to-end net-
works also include matching networks based on cost aggregation. The traditional cost
aggregation process considers the association and influence of the target pixels with the
pixels in their neighboring regions and requires manual parameter setting, while the cost
aggregation-based end-to-end networks use a learning approach to obtain the required
parameters for the aggregation process and improve the aggregation effect. Remain-
ing related works such as designing optimization networks using residual information or
multi-stage strategies to perform parallax optimization on the resulting parallax after cost
aggregation, a non-end-to-end approach based on parallax optimization, are also part of
the researchers’ attention. The following is a categorical summary and overview of some
excellent or seminal work on end-to-end networks.

Figure 1. Traditional matching algorithm steps

2.1. Cost Calculation. The development of MC-CNN [24] network in this field is un-
doubtedly a pioneering work, where the trained CNN network can obtain the matching
scores of the target image blocks in the left and right images and thus predict whether
these two target image blocks match or not. Zbontar and LeCun used a twin network
in the network framework of MC-CNN-art ( Siamese Network), which is implemented
by sharing weights, can evaluate the similarity of two inputs, as in Figure 2(a). In the
MC-CNN-art network, the left and right images are used as input, and the window size
is chosen as 9× 9 to obtain the image blocks. The left and right image blocks are passed
through a convolutional layer consisting of 32 kernels of size 5× 5 for feature extraction,
and the features are processed through two fully connected layers with 200 neurons each,
and the left and right processed features are connected to generate a 400-dimensional fea-
ture vector, which is again passed through The similarity measure of the central pixels of
the two image blocks is obtained by passing through multiple fully connected layers with
300 neurons each. After obtaining the cost metric, the network further aggregates the cost
using traditional methods such as cross-arm aggregation crossover (CBCA) [33] and semi-
global matching (SGM) along the scan line aggregation proposed by Mei et al. and finally
obtains the parallax map after parallax calculation and optimization steps. The authors
also proposed another MC-CNN-fst network, which is different from the MC-CNN-art
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network that uses network learning to obtain the similarity metric, and this network uses
the vector inner product as the similarity metric instead of the complex fully connected
layer as in Figure 2(b), and the performance decreases as a result of the decrease in net-
work complexity, which also makes this network framework increased compared to the
MC-CNN-art framework error and a slight decrease in matching accuracy, but reduces
the time cost and greatly enhances the computational speed. With the performance on

(a) MC-CNN-acrt (b) MC-CNN-fst

Figure 2. Siamese network structures:MC-CNN-art and MC-CNN-fst

the KITTI 2012, KITTI 2015, and Middlebury datasets, these methods have successfully
demonstrated that CNNs extract image features and perform similarity measures more
accurately and efficiently than the manually designed traditional methods, and thus a
number of works have been inspired by the twin network architecture. Chen et al. [34]
proposed Deep Embedding network, which uses convolutional kernels of different sizes to
embed multi-scale features into two parallel networks, but the characteristics of the twin
network (Siamese Network) architecture increase the time cost due to the need to pass
through multiple fully connected layers when further processing the features. For exam-
ple, when a twin network (Siamese Network) is assumed to have a matching cost time for
forward inference of parallax , then an image of size with minimum parallax 0 and maxi-
mum parallax D requires a computation time of M ∗N ∗ (D+ 1) ∗ T , when the inference
time of the twin network is large, the time cost consumption reduces the efficiency of the
overall framework. Therefore, the same cost calculation method as MC-CNN-fst architec-
ture is used in the Deep Embedding network architecture, where the multi-scale features
extracted by the twin network are dotted to obtain the final matching score. This further
improves the time efficiency while solving the problem that fixed-size kernels do not work
perfectly in different regions. Luo et al. [35] also used the twin network architecture
to propose Content CNN, which uses the same vector dot product method as the above
network to calculate the cost score to reduce the computational burden, while it uses a
multi-classification model for parallax instead of a binary classification model for parallax,
which improves the accuracy while providing security for the cost aggregation work that
follows. Other scholars have proposed different network architectures focusing on more
complex network structures, such as influenced by twin network architectures, Zagoruyko
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and Komodakis proposed different classes of neural networks such as pseudo-twin [36],
2-channel, etc. Chen and Yuan [37] used Park and Lee add a 4P layer (Per-Pixel Pyramid
Pooling) [38] so that the generated features have coarse to fine information to access a
wider range of contexts. This expands the perceptual field without loss of resolution and
detail.

2.2. Cost Aggregation. After obtaining the initial cost, traditional methods use cost
aggregation to correlate the cost of a single pixel with the cost of its surrounding pixels
(usually pixels on the aggregation path or neighborhood-related pixels) to further im-
prove the matching cost correlation, and the commonly used aggregation methods are
SGM along-scan aggregation with two penalty parameters P1 and P2 set manually to
control the effect between different parallax differences when aggregating the cost along
the path. The commonly used aggregation methods are SGM along-scan aggregation,
where the effect of different parallax differences is controlled by manually setting two
penalty parameters P1 and P2. Other commonly used aggregation methods are cross-
cross-arm aggregation, which improves the accuracy by constructing closely associated
cross-arm regions for the target pixels and aggregating only the surrogate values of the
pixels in the regions during the cost aggregation process. However, these methods usu-
ally rely on a priori knowledge and have to manually set penalty parameters such as in
the smoothing term, thus leading to the study of non-end-to-end networks based on cost
aggregation. In the work of scholars Seki and Pollefeys SGM-Net [25] framework was pro-
posed to distinguish positive and negative parallax transitions along the scan line based
on different occlusion relations, which can give satisfactory results even in pathological
regions. The framework automatically learns the penalty parameters by CNN, taking a
5×5 grayscale image block with its position parameters as input and the predicted results
of SGM penalty parameters as output. The network introduces a new loss function to
adjust the smoothing penalty for pixels with different confidence levels. The loss func-
tion consists of a path cost, which calculates the path cost by considering the difference
between the parallax values of pixels to be aggregated along the scan line and their true
parallax, and a neighborhood cost, which considers the transition differences between
different neighboring pixels, such that the neighboring edge pixels should be penalized
more during the aggregation process.The cost of the neighborhood cost is calculated. The
network is thus trained to obtain penalty parameters to ensure that different pixels are
subject to different smoothing terms, so that information can be propagated from reliable
pixels to unreliable pixels along the scan line. Related work is also based on the combi-
nation of high confidence pixels and random forest algorithm by Spyropoulos et al. By
using the pixels selected by the random forest classifier as ground control points (GCP)
[39,40] and adding soft constraints to their matching, minimizing the MRF [41] energy is
optimized to allow reliable pixels in the global framework to Schonberger et al. similarly
proposed SGM-Forest [42] using a random forest classifier to select scanlines of differ-
ent orientations for fusion based on the differences between pixels and select the optimal
scanline path for each location pixel, replacing the simple summation combination of the
original multi-directional scanline paths, thereby obtaining the confidence level.

2.3. Parallax Optimization. Parallax optimization is the last step of the matching
process in traditional matching methods, which is used to eliminate unreliable parallax
values after winner-take-all (WTA), commonly used methods such as left-right consistency
check (LRCR) and uniqueness constraint, and after eliminating error points, interpola-
tion, filtering and other methods are used to fill smooth parallax map holes and improve
parallax map results. And the non-end-to-end network based on parallax optimization
assists network optimization by introducing residual information and other methods to
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achieve more reliable optimization results instead of traditional image filtering and other
optimization means. Therefore, Jie et al. [43] proposed the LRCR network model, which
can run parallax estimation in parallel with left-right consistency checking, and correct
parallax values for unreliable regions by using iterative cyclic learning, and in each cycle,
the correction process pays more attention to unreliable regions where more erroneous
parallaxes exist due to the introduction of the soft attention mechanism of the LRCR
framework . There are also scholars who use the idea of residual information correction in
optimization networks for optimization, such as Batsos and Mordohai proposed RecRes-
Net [44] to correct erroneous parallaxes by combining multi-scale residual information at
multiple resolutions. The DRR [45] (Detect, Replace, Refine), which uses residual cor-
rection to improve the output parallax, is also outstanding, and the network framework
proposed by Gidaris and Komodakis ensures the speed while maintaining the optimiza-
tion effect. By repeating the process of detecting the wrong parallax, replacing the wrong
parallax with a new one, and correcting the new parallax with the residual information,
the DRR achieves an outperforming result in the KITTI 2015 test.

3. End-to-end Stereo Matching. However, these non-end-to-end methods still in-
evitably require some regularization functions to be designed manually to obtain the
final results, and their network frameworks usually waste computational resources, e.g.,
the DRR in the parallax optimization network framework repeats its three processes con-
tinuously, which increases the computational burden, and Most of the post-processing
processes of parallax optimization are accompanied by such problems. Moreover, non-
end-to-end networks cannot correlate image context information well, and it is difficult to
solve the problem of limited perceptual field. Therefore, the proposed end-to-end networks
have gradually made an impact on the traditional matching methods and non-end-to-end
matching methods, and the research on end-to-end matching methods has gradually be-
come mainstream with the success of Mayer et al. Broadly speaking, end-to-end networks
can be divided into two types of networks: 2D architecture networks and 3D architecture
networks, which differ in their strategies for feature processing and ensemble encoding
of cost bodies. 2D architecture uses Correlation operation to process features to build
cost volume and uses 2D encoder-decoder to process cost bodies,as shown in Figure 3.3D
architecture processes features to build cost bodies by concatenation operation processing
of features to construct the cost body, and processing of the cost using a regularization
module composed of 3D convolution. In the subsequent sections, the different network
architectures are discussed according to their respective features and operating principles,
which are highlighted and corroborated with excellent end-to-end algorithms to summa-
rize them.

3.1. 2D Architecture. Mayer’s proposed parallax regression network Disp-Net [28] is a
milestone in end-to-end parallax regression work, which consists of two frameworks, Disp-
NetS and Disp-NetC, and they use a 2D encoder-decoder structure. The 2D encoder-
decoder consists of a series of 2D CNN convolutional stacks, which are more often used
in work such as semantic segmentation, optical flow, etc. Feature extraction is performed
in the encoder part, and the last layer of the encoder generates in a low-scale parallax
map based on a 1-in-64 feature map, while the resolution is extended to 1-in-32 by de-
convolution of that scale feature map with the parallax map, and the decoder part The
resolution is increased by up-convolution, and in order to compensate for the spatial infor-
mation lost due to the downsampling process, the expanded parallax map is spliced with
the corresponding scale features by jump connection, so that more semantic and detailed
information can be used in the next deconvolution, and thus the contextual information
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Figure 3. END-to-End network 2D architecture

is fused to expand the perceptual field and get a more accurate parallax map, which has a
resolution of half of the input image resolution. The Disp-NetC architecture is influenced
by FlowNetC proposed by Dosovitskiy et al. to solve the optical flow estimation problem
[46], which differs from Disp-NetS in that it takes a stack of left and right RGB images
as input and implicitly learns the correlation between the two image features, and uses
a twin network with shared parameters to separately input the left and right images for
feature extraction, and uses the the correlation module performs vector inner product of
the extracted features to simulate the cost calculation process to generate the 3D cost
space. The 2D encoder-decoder architecture is used in the subsequent part of the net-
work to regress the final parallax map, and in the evaluation of real datasets at KITTI
2012 and KITTI 2015, Disp-NetC is nearly 1000 times faster than MC-CNN-art, which
is less effective but sufficient to demonstrate the superiority of the end-to-end network.
However, although Disp-Net has achieved good results, the inherent problems caused by
weakly textured regions, monotonous repetitive regions, and occlusion are still difficult
to be solved by Disp-Net, so many subsequent works are being carried out to solve the
problems based on the Disp-Net framework.

The first one to achieve optimal results on the KITTI dataset is the CRL (Cascade
Residual Learning) proposed by Pang et al. [47], which uses a multi-stage learning ap-
proach and is divided into two stages, as shown in Figure 4. In the first stage, DispFulNet
acquires the parallax map, the inputs are left view IL and right view IR, and an addi-
tional upper convolution module is added on top of the DispNetC architecture, which is
different from DispNetC in that the network outputs a full-resolution parallax map con-
taining more detailed information. In the second stage, DispResNet implements parallax
optimization, the input is the parallaxd1obtained in the first stage, the left and right

views, the left view ĨL synthesized according to the parallax on the right wrap, the error
between the left view and the synthesized left view eL. through the hourglass structure,
combined with the first stage to generate a multi-scale residual signal, the final parallax
map is output through the residual information for parallax optimization.

The success of the CRL architecture demonstrates that learning residuals can be more
effective and efficient than learning parallax directly in the secondary network. The
residual learning not only refines the parallax map better, but also facilitates the fine-
tuning of the whole network and alleviates the overfitting problem. A similar idea is used
in iResNet [48] proposed by Liang et al. The difference is that the framework allows
iterative optimization of the parallax, allowing iterative application of the optimization
module for tuning, and the information shared between the first and second stages of
iResNet is more than CRL. The iResNet ranked first in the 2018 Robust Vision Challenge.
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Figure 4. Multi-stage learning CRL network

Figure 5. Optimized cascade network EdgeStereo

However, although parallax estimation by cascade structure has achieved satisfactory
results in parallax optimization using the residual signal, learning the residual signal is
actually fraught with difficulties because the initial parallax, which is usually very well
predicted, converges the residual to zero and the complex network structure increases the
computational burden. Therefore, Song et al. [49] proposed EdgeStereo to optimize the
cascade structure by using residual pyramids in a single network to obtain parallax and
optimize it. The EdgeStereo network consists of a parallax network and an edge sub-
network, where the parallax network predicts the parallax map containing two modules,
a pyramid module for encoding multi-scale contextual information of the pathological
region and a residual pyramid module for refining the process of the residual pyramid
module,as shown in Figure 5. The sub-network module obtains edge information with
improved detail through feature embedding and edge-aware smoothing loss regularization.
The main network part conv1 1 to conv3 3 extracts quarter resolution image features Fl

and Fr carrying semantic information, obtains cost Fc through correlation layer, extracts
reduced features F l

r on feature Fl, connects Fc and F l
r with edge features extracted by

edge sub-network to generate hybrid features, context pyramid connects the outputs of
the four branches of the context pyramid with the hybrid features into a scene prior
to provide multi-scale contextual cues and low-level semantic information for parallax



1212 K. Wu and X. Wang

estimation, and the full-resolution parallax map is obtained through Residual Pyramid
refinement. And Cooperation of Edge Cues continuously supervises the parallax map
prediction by edge information, so that the parallax variation in edge regions is larger
and the inspection variation in non-edge regions is smaller. Yang et al. [50] proposed
the SegSereo network model, which introduces semantic information into the matching
work and introduces semantic maximum loss (softmax loss) greatly improves the parallax
accuracy and achieves optimal results in the KITTI test benchmark.

Figure 6. End-to-End network 3D architecture

3.2. 3D Architecture. Unlike 2D architecture end-to-end networks that are derivatives
of traditional neural networks, 3D architecture end-to-end networks are networks that
emerged specifically for the development of stereo matching work,as shown in Figure
6. They are different from networks and variants such as the 2D architecture DispNet,
which are more focused on designing a network dominated by 3D convolutional regulariza-
tion, with the advantage that the generated 4D costomer retains more details, geometric
features of the image with contextual information, and the disadvantage that the compu-
tational complexity is too high, requiring more memory usage and sacrificing the running
time. The GC-Net network proposed by Kendall et al., one of the first approaches to
propose Cost Volume, is also the first end-to-end network that outperforms traditional
matching methods in the KITTI test benchmark. The first step of GC-Net extracts left
and right image features through 2D convolutional layers, downsamples the input image
and accesses the Backbone of ResNet to output a feature map with half resolution. In the
second step, using the feature construction Cost Volume, the left feature map and the D
(maximum parallax) right feature map generated with a pixel-by-pixel shift along the par-
allax direction are concatenated one by one, thus aligning the left and right map feature
points, traversing all possible parallaxes, and forming a 4D tensor of 1

2
W × 1

2
H × 1

2
D×C

for each stereo image pair, with W and H being the impact width and height, D being
the maximum parallax, and C being the number of feature channels. The third step
learns the regularization function that can combine the context and optimize the paral-
lax, using multi-scale 3D convolution and deconvolution to form a decoder-encoder for
upsampling and downsampling, and a separate deconvolution module to upsample the
cost body back to the original image size and process the cost body to get a cost body
tensor of W ×H ×D× 1 with the same size as the original image. In the fourth step, the
parallax map is regressed and the soft argmax is applied to the cost bodies. soft argmax
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is fully differentiable and the probability values of the matching cost bodies are used as
weights to weight and sum each parallax to obtain the parallax map,as shown in Figure
7.

Figure 7. End-to-End 3D architecture network GC-Net

A large part of the excellent effect of GC-Net network originates from the fact that
its constructed Cost Volume contains four dimensions, which means that there is more
image stereo geometry information applied to the network framework. Influenced by GC-
Net network, Chang and Chen [51] added more information to the network learning to
pursue the accuracy improvement, thus proposing PSM-Net.The main innovation of this
network is the introduction of the spatial pyramid pooling module SPP (spatial pyramid
pooling), which can better utilize the contextual information compared to GC-Net, and
the SPP module uses adaptive average pooling to compress the features to a 4-scale av-
erage pooling and The feature dimensionality is reduced by a 1 × 1 convolutional layer,
and then the low-dimensional feature maps are sampled and concatenated to aggregate
multi-scale information to build Cost Volume to make full use of global information.
Next, the network proposes stacked hourglass networks, which are essentially stacked 3D
encoder-decoder structures, to regularize 4D Cost Volume to predict parallax. Based on
PSM-Net, Yang et al. [52] proposed GWC-Net, which proposes a group-wise strategy,
grouping multichannel feature maps according to channels to improve parallax accuracy
by fully considering the correlation of feature channels while retaining the advantages
of the original Cost Volume construction method. However, adding more information
into the network framework improves the accuracy, but also increases the computational
burden and sacrifices the running time. This is why many networks are working in the
other direction to reduce network complexity. Therefore, there are also many networks
that work in the other direction to reduce the complexity of the network and pursue the
improvement of the speed of the transport loss. Related to make to solve this problem
is the GA-Net proposed by Zhang et al. [53], the main work of this network is the opti-
mization made to the part from obtaining cost colume to softmax regression parallax, by
proposing two 2D convolutional layers with fewer parameters instead of the traditional
stacked 3D convolution with higher parameters to achieve nearly the same effect with
fewer parameters. One of the two convolutional layers is the SGA (semi-global aggrega-
tion layer), which is a modification of the traditional semi-global matching SGM and is a
differentiable approximation of the SGM method, which aggregates the cost of multiple



1214 K. Wu and X. Wang

different directions and is the network framework to get accurate parallax estimation in
the occlusion region, weak texture region, and other non-regions. Secondly, the locally
guided aggregation layer (LGA), which is mainly used to solve the edge blurring prob-
lem, deals with thinner structures and object edges by aggregating local costs to refine
parallax. Lu et al. [54] proposed SCV-Net (Sparse Cost Volume Net) in the process of
generating from features cost colume from features, which significantly reduces memory
usage to increase speed. Also using the pyramid model is AnyNet proposed by Wang et
al. [55]. This network uses a coarse-to-fine strategy to extract feature maps at three scales
and obtain parallax results by deploying the pyramid model. Yang et al. [56] also uses the
pyramid strategy to propose Hierarchical Stereo Matching (HSM) network, which solves
the problem of high-resolution [57,58] stereo matching by extracting different resolution
features and calculating the cost according to the resolution. Other works achieved better
results by designing function-specific networks in combination with existing networks. Liu
et al. designed dynamic self-assembly optimization strategies applied to cost distribution
and parallax map, respectively, and proposed Lac+GANet [59] network combining net-
work architectures GwcNet and GA-Net to significantly improve the module performance.
Xu et al. [60] proposed ACVNet, constructing a new cost volume whose generated atten-
tion concatenation volume (ACV) suppresses redundant information to increase relevance
and uses a more lightweight aggregation network while ensuring accuracy. Cheng et al.
[61] proposed a hierarchical NAS framework end-to-end search network LEAStereo, which
jointly optimizes the entire network framework and ranks high in various benchmark tests.

In summary, end-to-end networks have been increasingly effective in stereo matching
work, and these end-to-end networks with 2D and 3 architectures aim to solve the accuracy
problem in the maladaptive region. 2D architectures continuously optimize the network
mainly with learning ideas such as multi-stage and multi-tasking in order to pursue a
better combination of contexts to improve network reliability. 3D architectures emerge
for stereo matching work The end-to-end network of 3D architecture emerges for stereo
matching work, with the main research of optimizing cost colume or reducing the number
of 3D convolutions to achieve the pursuit of parallax accuracy or matching speed.A sum-
mary of the learning-based stereo matching algorithm classification is shown in Figure 8.

Figure 8. Deep learning for stereo matching algorithm classification and
algorithm enumeration
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4. Results.

4.1. Dataset. KITTI KITTI test [62] benchmark contains two benchmarks, KITTI
2012 and KITTI 2015. KITTI 2012 contains 194 training images and 195 test images,
which is the first stereo matching dataset containing outdoor static scenes that rank each
matching algorithm according to specified pixel errors in different criteria, including Non-
occluded areas (Out-Noc), Out-All areas (Out-All), Average disparity / end-point error
in non-occluded areas (Avg-Noc), Average disparity / end-point KITTI 2015 contains 200
training scenes and 200 test scenes, unlike the benchmark KITTI 2012, which contains
dynamic scenes for which a pixel is correctly estimated if the parallax error or end-point
error is< 3px or < 5%.

Middlebury Middlebury [63] test benchmark contains several different datasets rang-
ing from 2001 to 2021. The benchmark uses the Middlebury 2014 dataset as a public
processing standard, which consists of 33 subpixel-level indoor still scenes, including 13
training pairs, 10 additional pairs, and 10 test pairs. Full resolution F , half resolution
H and quarter resolution Q of these images are officially provided for researchers to use.
The official tool MiddEval3 is provided to help researchers compare the data with the
real parallax GT maps, and the experimental results are uniformly submitted and ranked
on the website. the Middlebury 2014 dataset provides parallax in PFM format, so the
parallax maps required for comparison must also be in PFM floating point format.Some
of the data are shown in Figure 9.

(a) Motorcycle (b) Parallax

(c) Piano (d) Parallax

Figure 9. Middlebury data set motorcycle with piano and parallax chart

4.2. Evaluation Indicators. The main evaluation annotations for stereo matching work
are the root mean square error (RMS) and bad point rate B proposed by Scharstein and
Szeliski in 2002 [64], which are the evaluation annotations for most of the mainstream
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datasets, while the mean absolute error A is also considered as a measure of matching
accuracy, calculated as follows, respectively.

R = (
1

N

∑
(x,y)

|dC(x, y)− dT (x, y)|2)
1
2 (1)

B = (
1

N

∑
(x,y)

|dC(x, y)− dT (x, y)| > δd) (2)

A = (
1

N

∑
(x,y)

|dC(x, y)− dT (x, y)|) (3)

where dC(x, y) is the parallax predicted by the matching method, dT (x, y) is the true
parallax, δd is the set parallax threshold, and N is the image size.

Table 1. Stereo matching algorithm classification

Classification Methods Advantages Disadvantages
Related Work

Improvement

Traditional stereo

matching

SGM,AD-

Census, etc

Simple,no real parallax

required,adaptable,low
resource consumption

Slow speed, low
accuracy, manual

design parameters

required

Improvements to the

traditional four steps,
etc.

Non-End-to-End

Networks

MC-CNN

SGM-Net, etc.

Higher accuracy than
traditional methods,

improved network on

traditional steps,
better parallax map

results

Requires manual
design parameters,high

computational burden,

does not take full
advantage of

contextual

information, and
limited perceptual

field

multi-stage learning.

Multi-network
architecture learning,

multi-task learning,

etc.

End-to-End
Networking

Disp-Net
GC-Net,etc

Leverages contextual

information to expand
the field of sensing

with high accuracy

compared to
non-end-to-end

networks

High network

complexity and

computational burden,
large memory

consumption and high

runtime

Optimize cost colume
or reduce the number

of 3D convolutions,

etc. to improve
accuracy or speed up

4.3. Experimental Comparison and Analysis. As shown in Table 4, Out-Noc is the
percentage of error pixels in the non-occluded region, and Out-All is the percentage of
error pixels in the global region. Table 1 shows the experimental results of each classical
matching method selected by classification for different error thresholds in KITTI 2012.
It can be seen that among the non-end-to-end matching methods, the results achieved
by the matching methods based on cost calculation, generation aggregation, and parallax
optimization are not very different, and the matching networks since the pioneering work
such as MC-CNN and SGM-Net have significantly improved in accuracy compared with
the traditional matching algorithm SGM, however, the non-end-to-end networks led by
these two networks consume a large amount of computational resources and the overall
algorithm runs at a significantly reduced speed. The end-to-end matching network also
achieves significant improvement over the classical network for both 2D and 3D architec-
tures. The end-to-end network has higher accuracy and faster overall comparison than
the non-end-to-end network due to the full contextual expansion of the sensory field. The
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Table 2. KITTI 2012 Algorithm Comparison

Method Family
2 pixels 3 pixels 4 pixels 5 pixelss Runtime

(s)
Environment

Out-

Noc
All

Out-

Noc
All

Out-

Noc
All

Out-

Noc
All

SGM Traditional 8.66 10.16 5.76 7.00 4.38 5.41 3.56 4.41 3.7
1 core @ 3.0 Ghz

(C/C++)

MC-
CNN-art

Consideration
calculation

3.90 5.45 2.43 3.63 1.90 2.85 1.64 2.93 67 Nvidia GTX Titan

DeepEm

bedding

Consideration
calculation

5.05 6.47 3.10 4.24 2.32 3.25 1.92 2.68 3
Nvidia GTX Titan
(CUDA, Caffffe)

Content-

CNN

Consideration

calculation
4.98 6.51 3.07 4.29 2.39 3.36 2.03 2.82 0.7

Nvidia Titan X

(CUDA)

SGM-
Net

Cost
aggregation

3.60 4.92 2.37 3.09 1.97 2.52 1.72 2.17 67
Nvidia (R) Titan X
(Torch7)

RecRes

Net

Parallax
optimization

3.37 4.38 2.21 2.94 1.73 2.31 1.45 1.92 0.3
GPU @ NVIDIA
TITAN X (Tensorflow)

Disp-

NetC

2D

architecture
7.38 8.11 4.11 4.65 2.77 3.20 2.05 2.39 0.06 Nvidia Titan X

iResNet
2D

architecture
2.69 3.34 1.71 2.16 1.30 1.63 1.06 1.32 0.12 Nvidia Titan

Edge

Stereo

2D
architecture

2.32 2.88 1.46 1.83 1.07 1.34 0.83 1.04 0.32
Nvidia GTX 1080Ti
(Caffffe)

SegStereo
2D

architecture
2.66 3.19 1.68 2.03 1.25 1.52 1.00 1.21 0.6 Caffe

GC-Net
3D

architecture
2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46 0.9 Nvidia Titan

PSMNet
3D

architecture
2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15 0.41

Nvidia Titan Xp
(CUDA)

comparison of 2D and 3D architectures shows that the more complex network architec-
ture of the 3D architecture has better accuracy than the 2D architecture, but also slightly
slower operation speed.

As shown in Table 3, D1-bg, D1-fg, and D1-all represent the background region, fore-
ground region, and all regions, respectively,where the error threshold is limited to 3 pixels,
and this dataset is selected from KITTI 2015 with Middlebury 2014, as seen in the table
more non-end-to-end networks are joined with end-to-end networks and the accuracy has
improved, and throughout the benchmark test, deep-based Throughout the benchmark
tests, stereo matching methods based on deep learning have dominated the head rank-
ings, and their matching methods are often inspired by these classical networks such as
GANet+ADL, the current matching algorithm ranked first in KITTI 2015, which is a
combination of GANet and other algorithms. From the comparison of KITTI and Mid-
dlebury test benchmark experimental results, the overall speed of the end-to-end network
is significantly better than traditional methods and non-end-to-end matching methods.
Algorithm accuracy and speed are hardly compatible, for example, SGM-Forest has the
highest accuracy with 7.37 bad point rate compared to other algorithms in the Table 4 in
Middlebury 2014 test benchmark, but consumes 88.5s which is nearly 50 times slower than
MC-CNN-fst. And MC-CNN-fst also obtains nearly 90 times faster than MC-CNN-acrt
at the expense of accuracy. It is increasingly difficult for current traditional matching
algorithms to achieve better matching methods than deep learning, and it is even difficult
to squeeze into the list. Deep learning-based stereo matching algorithms have gradually
outperformed traditional matching methods in terms of matching accuracy, but research
on more robust stereo matching algorithms is still necessary.
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Table 3. KITTI 2015 Algorithm Comparison

Family Method
All-pixels Non-Occluded pixels Runtime

(s)
Environment

D1-

bg

D1-

fg

D1-

all

D1-

bg

D1-

fg

D1-

all

Non-End-to-

EndNetworks

MC-

CNN-art
2.89 8.88 3.89 2.48 7.64 3.33 67

Nvidia GTX Titan

X(CUDA,Lua/Torch7)
Connent-

CNN
3.73 8.58 4.42 3.32 7.44 4.00 1

Nvidia GTX Titan X

(Torch)
SGM-
Net

2.66 8.64 3.66 2.23 7.44 3.09 67 Titan X

SGM-

Forest
3.11 10.74 4.38 2.79 9.70 3.93 6

1 core@3.0 Ghz

(Python/C/C++)

LRCR
2.55 5.42 3.03 2.23 4.19 2.55 49.2 Nvidia GTX Titan X

RecRes

Net
2.46 6.30 3.10 2.23 5.37 2.75 0.3

GPU @ NVIDIA

TITAN X (Tensorflow)

DRR
2.58 6.04 3.16 2.34 4.87 2.76 0.4 Nvidia GTX Titan X

End-to-End

Networks

Disp-

NetC
4.32 4.41 4.34 4.11 3.72 4.05 0.06

Nvidia GTX Titan

X(Caffe)

CRL
2.48 3.59 2.67 2.32 3.12 2.45 0.47 Nvidia GTX 1080

iResNet
2.25 3.40 2.44 2.07 2.76 2.19 0.12 Nvidia Titan X(Caffe)

Edge
Stereo

1.84 3.30 2.08 1.69 2.94 1.89 0.32
Nvidia GTX 1080Ti

(Caffe)

Seg

Stereo
1.88 4.07 2.25 1.76 3.70 2.08 0.6 Caffe

GC-Net
2.21 6.16 2.87 2.02 5.58 2.61 0.90 Nvidia GTX Titan X

PSMNet 1.86 4.62 2.32 1.71 4.31 2.14 0.41
Nvidia Titan

Xp(CUDA)
GWC-
Net

1.74 3.93 2.11 1.61 3.49 1.92 0.32 Nvidia Titan Xp (–)

HSM
1.80 3.85 2.14 1.63 3.40 1.92 0.14 Titan X Pascal

GA-Net-

15
1.48 3.46 1.81 1.55 3.82 1.93 1.8 GPU(Pytorch)

SCV
-Net

2.22 4.53 2.61 2.04 4.28 2.41 0.36 Nvidia GTX 1080Ti

LEA
Stereo

1.40 2.91 1.65 1.29 2.65 1.51 0.30
GPU @ 2.5 Ghz

(Python)

LaC+

GANet
1.44 2.83 1.67 1.26 2.64 1.49 1.8

GPU @ 2.5 Ghz
(Python)

ACVNet 1.37 3.07 1.65 1.26 2.84 1.52 0.2
NVIDIA RTX 3090
(PyTorch)

Table 4. Middlebury 2014 Algorithm Comparison

Method Family Res Bad2.0 Avgerr Time

SGM-Forest Non-End-to-End H 7.37 2.84 88.5
MC-CNN-acrt Non-End-to-End H 8.08 3.82 150
MC-CNN-fst Non-End-to-End H 9.47 4.37 1.69
SGM Traditional H 18.4 5.32 9.90
EdgeStereo End-to-End F 18.7 2.68 0.35
iResNet End-to-End H 22.9 3.31 0.34
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5. Conclusion. This paper summarizes the work related to deep learning-based stereo
matching, classifying and summarizing from traditional matching methods to learning-
based network methods, and comparing deep learning-based net stereo matching net-
work methods by each test benchmark has outperformed traditional matching methods
in terms of accuracy. The non-end-to-end network structure of the deep learning-based
stereo matching method is simple and generalizable, but does not combine contextual
information. The end-to-end network based approach combines contextual information
network is more complex and more accurate, but consumes more computational resources
and is more expensive. Therefore, the deep learning based matching method needs to be
coordinated in terms of accuracy and running time to ensure the accuracy while minimiz-
ing the time, and because of the need for a large number of training images to support
the portability and generalization capability is weak, the problems arising from inher-
ently pathological regions areas such as weak texture, repeated texture and other regions
are still a major hurdle to overcome. Therefore, it is necessary to design a robust, high
accuracy, fast, cross-domain portable stereo matching method.
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