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ABSTRACT. A more precise sparse region convolutional neural network algorithm is de-
veloped to increase the accuracy of remote sensing object recognition. Firstly, a new
intersection over union method is proposed to solve the problem that the intersection
over union used in sparse region convolutional neural network cannot well measure the
offset between the ground-truth box and the proposal box. It introduces multiple geo-
metric factors that are overlap area, center point distance, verter distance between the
ground-truth box and the proposal bozx, and diagonal distance of minimum enclosing of
the ground-truth box and the proposal box and into the new intersection over union. The
proposed intersection over union can measure the offset between the ground-truth box and
the proposal box to optimal the proposal box. Secondly, to improve the detection preci-
sion of sparse region convolutional neural network, a dual branches dynamic instance
interaction head is designed. The proposed dynamic interaction head consists of a fully
connected branch and a convolution branch. The fully connected head is used for both
bounding box regression and object classification. The convolution branch is only used
for bounding box regression. Compared with original sparse region convolutional neu-
ral network, the average mAP and recall are 3.55% and 5.75% higher, and the average
detection speed is only 0.85 FPS slower. The proposed method realizes balance between
detection precision and detection speed.

Keywords: Sparse region convolutional neural network, Deep convolution neural net-
works, Remote sensing object detection, Detection precision

1. Introduction. Remote sensing images are image data collected by imaging sensors
on board satellites or spacecraft, which contain detailed information about the features
of the observed scene. The aim of remote sensing image object detection is to identify
the object class from the information contained in the remote sensing image. Remote
sensing image object detection can provide data support for practical applications such
as natural catastrophe assessment, urban planning, agriculture, forestry, transportation,
and the military [1, 2]. The large height span of remote sensing image acquisition results
in the same class of objects having different scale sizes on different remote sensing images.
In addition, the remote sensing image contains a large number of objects and they have
smaller sizes. Therefore, it is a larger challenge for remote sensing image detection [3].
Traditional object detection methods require an artificially designed feature extractor
to extract features [4]. The robustness of the designed feature extractor and the quality
of extracted features tend to be below. Advances in deep learning technology have led to
the development of convolution neural networks that can be used to extract features with-
out relying on an artificially designed feature extractor [5]. The deep convolution neural
networks has been widely used in remote sensing image object detection [6], renewable en-
ergy forecast [7], intelligent transportation [8, 9] and human parameters recognition [10].
Many object detection methods based on deep convolution neural networks also have been
used in remote sensing image object detection [11, 12]. They have better feature expres-
sion ability and higher detection accuracy than traditional detection methods. However,
compared with other images, remote sensing images have a large number of small-sized
objects due to the long distance of shooting. In addition, due to the influence of lighting
and meteorological conditions, the image often has the problem of uneven brightness or
even the existence of a bright surface and shadow of the object. The aforementioned
issues make it challenging to identify objects in remote sensing images. Therefore, it is
required to improve the performance of the remote sensing object detection method.
Sparse R-CNN (Sparse region convolutional neural network) is a special object de-
tection method based on region convolutional neural network [13]. Compared with other
methods based on R-CNN (region convolutional neural network) that require tens of thou-
sands of proposal boxes, Sparse R-CNN requires only a small number of proposal boxes
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(hundreds of proposal boxes) to achieve object detection and obtain better detection per-
formance. Especially these sparse features of proposal boxes do not require interaction
with all features in the whole image. Both features and proposal boxes of proposal boxes
are learnable, so they can be optimized in the network together with other parameters.
Besides, the Sparse R-CNN also further improves its performance by employing a cascade
structure. It has a faster detection speed with acceptable detection accuracy than other
region convolutional neural network serials methods. The performance of object detec-
tion method based on deep convolution neural networks directly affects the remote sensing
images detection performance. To improve the remote sensing object detection accuracy
based on Sparse R-CNN method, we proposed an improved sparse region convolutional
neural network with higher accuracy for remote sensing image. Compared with origi-
nal Sparse R-CNN, our proposed method has higher detection accuracy and acceptable
detection speed.

The main highlight of this paper are as follows:

1. Tt propose a new IoU (Intersection over Union) method to better compute the
differences in position and scale between ground-truth box and the proposal box in remote
sensing image detection. We introduced the overlap area, center point distance, vertex
distance between the ground-truth box and the proposal box, and diagonal distance of
minimum enclosing of the proposal box and the ground-truth box into loU. The proposed
IoU can better optimize the proposal box and make it closer to the ground-truth box,
which is useful to improve remote sensing image detection precision.

2. It propose a dual branches dynamic instance interaction head to improve detection
boxes’ precision of Sparse R-CNN. The proposed interaction head consists of a fully
connected branch and a convolutional branch. The fully connected branch is mainly
responsible for both bounding box regression and object classification. The convolution
branch is only responsible for bounding box regression. The convolution layer is better at
performing bounding box regression due to its structural properties, so the dual branches
dynamic instance interaction head that has been presented has the potential to improve
the remote sensing image’s object detection precision.

2. Related work. The object detection techniques based on deep convolution neural
network are divided into two categories: two-stage object detection technique and one-
stage object detection technique. For two-stage object detection technique, the detecting
process is split into two stages. In the first stage, the two-stage object detection technique
generates region proposals. In the second stage, the two-stage object detection technique
regresses the bounding box and candidate regions and classifies the objects. For one-stage
object detection technique, it directly generates detection boxes and classifies the objects.
Compared with the two-stage object detection technique, the one-stage object detection
technique does not require to generate region proposals. Therefore, the one-stage object
detection technique has a faster detection speed and lower detection precision.

The one-stage object detection technique is better suited for simple or fast detection
tasks. Representative methods for the one-stage technique are YOLO serial method and
SSD methods. Redmon et al. firstly proposed the YOLOv1 method in 2016 [14]. In
2017 and 2018, they also proposed the YOLOv2 and YOLOv3, respectively [15, 16].
Although Redmon et al. withdrew the research on the computer version, many scholars
still try to improve the YOLO serial methods. Wu et al. [17] proposed the improved
YOLOvV5 algorithm based on YOLOv5. To improve the detection precision of smaller
targets and the detection adaptability for images with different sizes, it introduce the
multi-scale anchor mechanism that used in faster region convolutional neural network into
the YOLOvV5. The proposed method has complex network architecture, which is useful to
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improve the detection precision of remote sensing objects. Wulamuet al. [18] designed a
novel network with U shaped architecture and introduced atrous spatial pyramid pooling
into network for detecting remote sensing objects. It has higher detection precision in road
detection from remote sensing image. Qu et al. [19] improved the YOLOv3 model with
an auxiliary network and applied it to remote sensing image object detection by using an
image processing module to obtain a fixed size image and then adding a convolution block
attention module between the backbone network and auxiliary network. The convolution
block attention module can reduce the loss of key feature information. In addition, they
introduced the DIoU method into loss function to reduce the convergence time of YOLOv3
and improve the detection precision. Finally, the adaptive feature fusion technique was
also utilized to reduce inference overhead to improve object detection speed. The method
has a higher mAP than the original YOLOv3 model on remotely sensed images. Liu et al.
firstly proposed the SSD (single shot multiBox detector algorithm) method [20] and some
improved methods are also used in the remote sensing image object. Lv et al. [21] proposed
an improved single shot multi-Box detector algorithm for detecting smaller remote sensing
objects. It combined the top-down structure of feature pyramid networks with the single
shot multiBox detector algorithm and was able to extract more useful feature information.
The method has higher remote sensing image detection precision than the original single
shot multiBox detector algorithm without increasing the computational effort.

The size is smaller and the characteristics are not obvious for remote sensing object.
It is a challenge to successfully detect objects from remote sensing image. The two-
stage object detection technique has better performance in detection precision than the
one-stage object detection technique. Therefore, we use the two-stage object detection
technique to detect the remote sensing objects. The representative methods for the two-
stage object detection technique are the R-CNN serials methods. Girshick et al. proposed
the first R-CNN method. It firstly generated candidate regions and then extracts features
from generated candidate regions. Secondly, it used the support vector machine method to
classify features. In the end, each proposal box was corrected by bounding-box regression.
In the region convolutional neural network method, all proposal boxes were retained,
which caused a large computational effort and slow detection. In order to speed up the
detection speed, Girshick et al. proposed fast R-CNN base on region convolutional neural
network [22]. They first used the selective search method to filter the redundant proposal
boxes and obtain the feature matrix by mapping the filtered boxes to the feature map.
Secondly, the region of interest pooling operation was used to resize the feature matrix
to the same scale. In the end, the feature matrix was spread into one dimension and
imputed to the detection head to achieve object detection. The training time of fast region
convolutional neural network was one over nine lower than region convolutional neural
network and the detection speed of fast region convolutional neural network was 213 times
faster than region convolutional neural network. Besides, the fast region convolutional
neural network also had higher precision than region convolutional neural network. Ren
et al. proposed a region proposal network (RPN) to design Faster region convolutional
neural network [23]. The faster region convolutional neural network can be seen as a
combination of fast region convolutional neural network and region proposal network. The
region proposal network generated many anchors that were the regions of interest (Rol),
and then the classification branch determined whether the regions of interest belonged to
the foreground or background by softmax function. The regression branch corrected the
anchor box to form proposal boxes. In the end, the optimal proposal boxes were obtained
by confidence score and non-maximum suppression. When the coordinates of the anchor
box generated in RPN are floating points, Rol pooling will quantize and round them.
The approximate rounding operation will result in some deviation between the quantized
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proposal box and the original proposal box, and the extracted features will not be exactly
precise. For large-size objects, these quantitative losses occur on the edges of objects, so
the impact is not significant. However, for small objects, the detection performance is
greatly affected. He et al. proposed the Mask R-CNN [24] by designing a new pooling
operation that is Rol Align. Rol Align avoids two rounding operations through a bilinear
interpolation algorithm. Therefore, it greatly improves detection precision. Based on the
Mask R-CNN, Wu et al. [25] proposed an enhanced Mask R-CNN. They replaced the
feature pyramid network with a region proposal network to extract more effective feature
information. It has better performance in fine-grained remote sensing object detection.
On the same dataset, the enhanced Mask R-CNN is better than other methods. When
the IoU threshold is small, the quality of the proposal boxes is usually poor, and the
final detection boxes are prone to false detection. When the IoU threshold is too large,
the number of positive samples is significantly reduced. It will aggravate the foreground-
background imbalance problem [26] and the model is more prone to be overfitted. To
overcome the problem, the Cascade R-CNN is designed by Cai et al. [27]. They used
the cascading multiple same models with different IoU values. It enables the detector to
focus on proposal boxes with IoU values in a certain range to improve object detection
precision. Besides, an improved Faster R-CNN network is also designed by Chen et al.
They combined a feature pyramid network (FPN) and deformable convolutional network
(DCN) [28]. The FPN combined the structural information in shallow layers and semantic
information in deep layers to obtain richer multi-level features. A deformable convolution
network can enhance the effect of feature extraction. In addition, the shared convolutional
layers enable the improved network to realize end-to-end training.

To improve the ship detection precision from remote sensing images, Wang et al. [29]
proposed a high-performance ship detection method with low computation and efficient
storage. The method preprocessed complex and diverse remote sensing image by using an
accurate segmentation algorithm. It extracted ship object candidate regions using multi-
variate Gaussian distributions to improve the recall. The method has a few parameters
and strong detection robustness against interference such as reefs and noise. Li et al. [30]
designed a new detection network model for the detection of airport aircraft from remote
sensing images based on depth transferable. It adopts hard example mining and skip-layer
feature fusion to the training efficiency and improve the expression ability of the object
of the detection network. Besides, it also introduces a cascaded region proposal network
with soft-judgment non-maximum suppression into the network. It solves the over-fitting
problem. In complex backgrounds, It also can quickly and accurately detect different
airport objects. Tian et al. [31] designed a detection framework based on fast region con-
volutional neural network. To locate the boundary of large objects and avoid losing small
objects, DetNet was used as the backbone network to fix the spatial resolution of the deep
layer. It used convolutional projection to expand the bottleneck to increase the difference
between input and output feature maps, and then fused the extracted scene features and
regional features. To improve the regression performance, the framework also adopted a
Cascade structure. The Cascade structure had multiple stages, and each stage had an
independent classifier and repressor. The results obtained from the previous stage will
be used as the input for the next stage to improve the detection accuracy stage by stage.
To improve the performance of small target detection in remote sensing images, Courtrai
et al. [32] proposed an improved SANET-SR method based on the SA-NET network. It
firstly designed a super-resolution module to enhance the remote sensing image and then
detected object from the enhanced image. Cui et al. [33] proposed a new anchor-free ro-
tating ship detection framework which was called SKNet. It used the rotation coordinates
of the ship as the key points of detection instead of using the traditional rectangular box
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coordinates. The SKNet paid more attention to the central key points and shape of the
ship object (including width, height, and rotation angle). It designed two customized
modules: orthogonal pooling soft rotate non-maximum suppression and soft rotate non-
maximum. Orthogonal pooling was used to improve the prediction accuracy of central
key points and morphological dimensions, and soft rotate non-maximum suppression was
used to effectively remove redundant rotating object detection frames. Hua et al. [34]
proposed a cascaded convolution neural network framework for realizing real-time remote
sensing object detection. It consisted of two fully convolution networks. The first network
is the object accurate detection fully convolution network and the second network is the
self-attention pre-screening fully convolution network. It has faster remote sensing object
detection speed and an acceptable remote sensing object detection precision.

3. Improved Sparse R-CNN.

3.1. Proposed improved IoU. For the object detection methods based on deep con-
volution neural network, the loss function generally consists of two parts: regression loss
and classification loss. The IoU (Intersection over Union) loss is used as regression loss.
It can quantitatively measure the degree of overlap between the ground-truth box and the
proposal box to classify positive and negative samples. When the value of IoU between
ground-truth box and the proposal box is greater than a threshold, we consider that the
objects in both boxes belong to the same class. The proposal box will be classified as a
positive sample. On the contrary, it will be judged as a negative sample.

The original IoU is the area ratio of the intersection region and concurrent region
between the proposed box and the ground-truth box. When the proposed box and the
ground-truth do not intersect, the value of loU is zero, and the loss function cannot return
the gradient, so the gradient descent cannot be carried out to optimize the proposal box.
To solve the problem, Rezatofighi et al. [35] proposed GloU(Generalized Intersection
Over Union) by introducing minimum enclosing box between the ground-truth box and
the proposal box. However, the GIoU is equivalent to IoU and they cannot well measure
the difference between the two boxes when the proposal box is completely contained by
the ground-truth box. To solve the problem, DIoU was proposed by introducing the
distance of center points between two boxes [36]. However, the IoU, GloU, and DIoU
don’t consider the size difference between the two boxes, so they cannot well measure the
two boxes. In Figure 1, the blue boxes are the ground-truth box and the red boxes are
the proposal box. They have the same center points, ground-truth boxes and different
proposal boxes with different ratios of width and high in Figure 1. (a) and Figure 1. (b).
It can be seen that the proposal box in Figure 1.(b) is more close to the ground-truth
box than in Figure 1. (a). However, the IoU, GloU, and DIoU are the same in Figure 1.
(a) and Figure 1. (b). This means that the IoU, GIoU, and DIoU cannot reflect well the
relationship between ground-truth box and the proposal box.

To overcome the problem, we propose a new IoU method which called multifactorial
intersection over union (MIOU) and get new loss. The MIoU introduces the overlap area,
center point distance, vertex distance between the ground-truth box and the proposal box,
and diagonal distance of minimum enclosing of the ground-truth box and the proposal
box. The MIoU loss is expressed as follows:

ANB |C—=(AUB)| D2
Loy = 1— =04 1
Mol AUB C] ¢ (1-40By 1 p @

where the red box A, green box B, and box C are the proposal box, ground-truth box,
and the minimum enclosing box of the proposal box and ground-truth box in Figure
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(a) (®)

F1GURE 1. The losses of IoU, GIoU, DIoU and MIOU for the same ground-
truth box and different proposal boxes.

2, respectively. dj is the center point distance between the ground-truth box and the
proposal box. d; and ds are distances between non-adjacent vertices of the proposal box
and ground-truth box, respectively. The c is the diagonal length of the C box. The D is
expressed as follows:

p=1"_ (2)

3d
where d is the mean value of dy, d; and dy. The ﬁa—g is used to measure the overlapping

area between the A box and the B box. The closer the A box and B box are, the larger

the overlapping area is, and the smaller the 1 — fﬁ—g is, when A and B intersect. On the

contrary, the larger the 1— % is. The w is used to measure the proportion of areas
except for AU B in box C. The closer the A box and B box are, the larger the overlapping

area is, and the smaller the % is.When A and B not intersect, the W still has

2
a non-zero value and is useful to optimize the proposal box. The f—g is used to measure the

relative center distance between the proposal box and the ground-truth box. The closer
2
the position and scale of A box are to B box, the smaller i—g is.

dl A

B

d

F1GURE 2. The geometric distance between bounding boxes.

The D in (2) is used to measure the size differences between box A and box B. The D
equals zero when the two boxes have the same height and width. When the A box and B
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box completely coincide, the MIoU loss equals zero. The proposed MIoU can measure the
differences in size and location between the ground-truth box and the proposal box. In
Figure 1, the values of MIoU loss are 0.853 and 0.831 for Figure 1. (a) and Figure 1. (b),
respectively. The MIoU loss for Figure 1. (b) is smaller than Figure 1.(a). This means
that the proposal box in Figure 1.(b) is closer to the ground-truth box in the aspect of
size and location than the proposal box in Figure 1.(a). It looks like this is right from
Figure 1. However, the IoU, GIoU, and DIoU have the same values in Figure 1.(a) and
Figure 1.(b). They cannot well measure the difference between the proposal box and the
ground-truth box. This will affect detection precision.

3.2. Dual branches dynamic instance interaction head. Sparse R-CNN uses a sin-
gle fully connected head as the detection head in the dynamic instance interaction head.
This fully connected layer is not only responsible for the regression of bounding boxes,
but also for the classification of the object. Each output of the fully connected layer can
be viewed as the result of multiplying each neuron in the previous layer by the corre-
sponding weight coefficients and adding a bias. The fully connected layer can integrate
the features of the same class with different positions in the image, so it is more suitable
for classification. The fully connected layer ignores the spatial structure of the detected
objects, so it is not sensitive to the location information of the object. Therefore, the
location information of an object is easily lost in the bounding box regression. Compared
with the convolution layer, it is more suitable for classification.

To improve the detection precision of Sparse R-CNN, we propose a dual branches
dynamic instance interaction head. The convolution layer implements two-dimensional
mutual correlation convolution through convolution kernels. The convolution kernel moves
from the top leftmost part of image to the bottom rightmost of image according by moving
form the left to right. The perceptual fields in the window are multiplied by elements with
the convolution kernel array and summed, and finally, the elements at the corresponding
positions in the output array are obtained. So convolution layer is more sensitive to the
position information of the object. Therefore, we use the convolution layer to construct
the regression detection head. Our proposed deal branches dynamic instance interaction
head (DDIIH) is shown in Figure 3. The proposed DDIIH consists of a feature interaction
module and detection head module.

Detection Head

I I
| | . » Classifier —classes
C
Rol Feature : :—*I 1024 [——»[ 1024 IJ<|:

[

|

|

|

| A rég— Reshape
| .

|

|

|

|

Fc
| EETEE—| Params

| Proposal Features
\

I
b I
Object | I
Con Conv —
Features | = = —Fe o TT027 1 reg
I I
I I

FI1GURE 3. The structure of DDIIH.

The Rol feature is the region of interest feature that is extracted from all proposal
boxes. The proposal feature is the feature set of each proposal box in different locations.
The dynamic convolution parameters are generated by proposal features according to the
location and size of different proposal boxes. In dynamic convolution, the convolution
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kernels are variable, and their size and step of movement are determined by the dynamic
convolution parameters. The Rol feature and proposal features are interacted by such a
dynamic convolution process. The purpose of feature interaction is to reason about the
feature relationships between local regions and regions of interest to obtain the object
features of each class. The object features are used as the input of the detection head.
The detection head composed fully connected branch and a convolution branch. The
fully connected branch consists of two fully connected layers, a classifier, and a regressor.
The number of neurons in each fully connected layer is 1024. The fully connected layer is
more suitable for the classification task, so we mainly use this branch for classification, and
randomly select 20% of the regression information to be used for generating the detection
boxes with 80% of regression information obtained from the other branch. Dimension
transformation is used to adjust the dimension of the regression information obtained by
the fully connected branch to make it have the same dimension as regression information
obtained by the convolution branch. In the end, the regression information obtained by
two branches is fused to generate detection boxes.

The convolution branch consists of two convolution layers with 1024 channels, a fully
connected layer, and a regressor. The convolution layers are mainly used for extracting the
position information of bounding boxes, and the fully connected layer is mainly used for
the fusion and mapping of regression information. After fusing the regression information
obtained by the convolution branch and the fully connected branch, the information of
the detection boxes is obtained which is used to generate the final detection boxes. Since
the convolution layer is more suitable for extracting location information and the fully
connected layer is more suitable for extracting class information. The proposed dual
branches dynamic instance interaction head can extract more effective and richer location
information, improving the precision of detection.

We design the improved Sparse R-CNN through multiple DDIIH cascades. The struc-
ture of improved Sparse R-CNN is shown in Figure 4.We take the Resnet and feature
pyramid network as the backbone of the feature extraction network, which can obtain
a multi-level feature map. Then 300 proposal boxes are generated on the feature map
through Gaussian initialization. The Rol Align module extracts Rol feature and proposal
features by pooling operation. Rol feature and proposal features are used as the inputs
of feature interaction in DDIIH. Feature interaction is realized by dynamic convolution
in the feature interaction module of DDIIH to obtain the object features. Finally, the
detection module of DDIIH implements the classification and regression tasks at the cur-
rent stage according to the object features. The improved Sparse R-CNN contains five
cascaded Rol Align modules and DDITH modules. The detection boxes obtained in the
current DDITH module will also become the proposal boxes in the next cascaded Rol
Align module. Such a cascade structure can improve the quality of the proposal boxes
stage by stage.

3.3. Loss function of improved Sparse R-CNN. The total loss function of the im-
proved Sparse R-CNN is composed of classification loss and regression loss. Expressed as
the followings:

Loss = ﬁl * Lcls + ﬁQ * Lreg (3>

where L is the classification loss, L,.4 is the regression loss, 51 and /3, are the weights of
classification loss and regression loss in the total loss. The expression of the classification
loss function is as follows:

Lcls = _at(l - pt)’y log(pt) (4)
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Feature Map ¢

F1GURE 4. The complete structure of improved Sparse R-CNN.

where «a; is the weight of cross-entropy, which is used to adjust the proportion of positive
and negative samples to solve the imbalance between them. The (1 — p;)? is the modula-
tion coefficient, where p, is the probability of a class, 7 is the focusing parameter which
can make the loss focus more on difficult and misclassified samples. The regression loss
function can be expressed as:

Loy = 025 L9 4+ 0.8 % LIS (5)

conv

Where LY and L7, are the regression losses obtained from the fully connected branch

and the convolution branch, respectively. The L}ecg is expressed as followings:

reg ANB |C—-(AUB)| d D?
AUB |C| @ (1-45)+D

where A is the ground-truth box and B is the detection box obtained from the fully
connected branch. The Lg5?, has the same expression L'}’. The only difference is that
the B is detection box obtained from the convolution layer branch. The (6) is also our

proposed MIoU loss that is given in (1).

4. Simulation and Discussion.

4.1. Datasets and evaluation metrics. To expand the scale of the dataset to better
train the model, we merge two remote sensing image datasets that are NWPU_VHR _10
and HRSC_2016, into a dataset in PASCAL VOC format. The merged remote sensing
image dataset contains 12 classes with a total of 3000 images, and the ratio of the training
set, validation set, and test set is 6:2:2. This paper mainly uses mAP (mean average
precision) and recall to measure the precision of the algorithm, and FPS (frame per
second) to measure the speed of the algorithm. Precision and recall are represented as
follows:

TP -
precision = TP FP
TP
l=——"— 8
reca TPLFN (8)

where TP, FP and FN are the the number of true positive samples, false positive samples
and false negative examples,respectively. In practice, the values of TP, FP, and FN
correspond to the number of correct, false, and missing detection, respectively.

All experiments are implemented on the MMDetection platform. All methods use
resnetb0 + FPN and resnet1l01 + FPN as backbones to extract features, respectively.
During the training, we use random flipping to expand the dataset. We use the Adamw
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optimizer and apply the linear preheating strategy at the same time. The hyper param-
eters are consistent with those in the original Sparse R-CNN, that is, the weights of each
loss item in the loss function are 2 and 5,respectively.

4.2. Module analysis. In the improved Sparse R-CNN, the IoU algorithm and the
structure of the dynamic instance interaction head have been improved. The relevant
calculation details and model structure have changed. Therefore, it requires conducting
parameter experiments to determine a set of appropriate parameters again to ensure the
performance of the model. Since the number of proposal features and proposal boxes are
equal, we are only required to determine the number of proposal boxes and cascading
modules.

The number of suggestion boxes generated by initialization has a great impact on
the detection performance of Sparse R-CNN. When the number of proposal boxes is
insufficient, the detection precision is often not ideal, and the performance improvement
of the detector is easy to reach the bottleneck. It is suggested that the detection precision
can be guaranteed when the number of proposal boxes is too large, but the training
time of the model will increase significantly, and the detection speed is also not ideal.
We set the number of cascaded modules to 6. The mAP, FPS, and training time for
different numbers of proposal boxes are shown in Table 1. As the number of proposal
boxes increases, the mAP and training time gradually increase, and the FPS gradually
decreases. When the number of proposal boxes is equal to 300, the mAP increases slowly.
Therefore, the number of proposal boxes is set to 300.

TABLE 1. Impact of the number of proposal boxes on performance.

| Proposal boxes | mAP(%) | FPS | Training time(h) |
100 67.9 19.7 35.8
200 74.6 16.2 42
300 78.7 13.2 53
400 79.1 9.8 48.7
500 79.7 8.2 60.5

We test our proposed method for different numbers of cascaded modules with the same
number of proposal boxes which is 300. The results are shown in Table 2. We can see
that the mAP increases with the increase of the number of cascaded modules. The larger
the number of the cascaded module is, the smaller the FPS is and the longer the training
time is. When the number of cascaded modules is equal to 5, the mAP increases slowly.
Therefore, we set the number of cascaded modules to 5 to balance the precision and speed.
According to Table 1 and Table 2, the number of proposal boxes and cascaded modules
are set to 300 and 5, respectively.

TABLE 2. Impact of the number of Cascaded modules on performance.

| Cascaded module | mAP(%) | FPS | Training time(h) |
2 44.4 24.7 12.6
3 61.0 22.2 204
4 2.7 18.6 28.3
) 77.9 14.9 38.2
6 78.7 13.2 53.0
10 79.2 7.0 96.4
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4.3. Ablation study. To test the performance of the different IoU loss, we take IoU
loss, GIoU loss, and MIoU loss as the regression loss of Sparse R-CNN, respectively. The
relationship between the mAP and epoch for Sparse R-CNN based on IoU, GloU and
MIoU are shown in Figure 5. Although the mAP fluctuates with the increase of the
number of the epoch, the overall trend of mAP gradually increases for Sparse R-CNN
methods based on different IoU loss. The mAP of Sparse R-CNN based on our proposed
MIoU is still larger than the Sparse R-CNN based on IoU and Sparse R-CNN based on
GlIoU for the same epoch when the number of the epoch is greater than 10. All curves
tend to be smooth when the number of the epoch is greater than 30. When the number of
the epoch is 36, the mAP of Sparse R-CNN based on IoU loss, GIloU loss, and MIoU loss
are 72.4%, 74.1%, and 75.6%, respectively. The Sparse R-CNN based on MIoU loss has
the highest mAP than others. This shows the Sparse R-CNN based on proposed MIoU
has higher precision than Sparse R-CNN based on IoU loss and GIoU loss.

097

mAP

—=— Sparse R-CNN using loU
—+— Sparse R-CNN using GloU | |
—— Sparse R-CNN using MloU

0.1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
epoch

F1GURE 5. Relationship of mAP and epoch for Sparse R-CNN based dif-
ferent IoU losses.

We use ResNet1014+FPN as the backbone, and the max number of the epoch is 36 for
Sparse R-CNN and our proposed Sparse R-CNN. We select three different images from
the test dataset to test the original Sparse R-CNN that uses GIoU loss as regression
loss, Sparse R-CNN+MIoU, and Sparse R-CNN + MIoU+ DDIIH. The detection results
of different methods are shown in Figure 6. For the first picture, the original Sparse
R-CNN missed the detection of three planes that are marked in the red circle. Sparse R-
CNN+MIoU missed one plane that is also marked in a red circle. Our complete proposed
network that is Sparse R-CNN + MIoU+DDIIH successfully detects all objects. For the
second picture, the original Sparse R-CNN mistakenly detected irrelevant objects as a
baseball court. The Sparse R-CNN+MIoU and our complete proposed network success-
fully detect all objects. For the third picture, the Sparse R-CNN, Sparse R-CNN+MIoU,
and our complete proposed network mistakenly detected three objects, two objects and
one object, respectively. All error detected objects also are marked in red circles. Based
on the detection results, our complete network has a better performance in precision than
the original Sparse R-CNN.
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When we use ResNet101+FPN as backbone, the values of mAPfor Fast R-CNN, SSD,
RetinaNet, YOLOv4, Faster R-CNN, Sparse R-CNN, Cascade R-CNN and Our Method
are 58.8%, 63.4%, 69.6%, 72.5%, 73.4%, 74.1%, 80.5% and 77.9%, respectively. Recall
values for Fast R-CNN, SSD, RetinaNet, YOLOv4, Faster R-CNN, Sparse R-CNN, Cas-
cade R-CNN and our method are 66.8%, 72.4%, 73.2%, 80.4%, 81.7%, 81.5%, 90.4% and
86.3%, respectively. The Cascade R-CNN still has the highest mAP and recall, followed
by our method. The FPS for Fast R-CNN, SSD, RetinaNet, YOLOv4, Faster R-CNN,
Sparse R-CNN, Cascade R-CNN, and our method are 12.6, 15.5, 14.6, 19.3, 14.7, 15.6, 5.1,
14.9, respectively. The YOLOv4 has the fastest detection speed, followed by RetinaNet
and SSD.Based on Table 4, the Cascade R-CNN still has the highest mAP and recall,
followed by our method. Compared with Cascade R-CNN, the mAP and recall of our
method are 1.4% and 2.0% lower for ResNet50-+FPN backbone and 2.6% and 4.1% lower
for ResNet101+FPN backbone, respectively. However, compared with Cascade R-CNN,
the detection speed of our method is about two times faster. Compared with Sparse R-
CNN, the proposed method still has higher mAP and recall for both backbones.

FIGURE 6. Object detection results for original Sparse R-CNN and im-
proved methods. (a) Original Sparse R-CNN;(b) Sparse R-CNN+MIoU;(c)
Sparse R-CNN + MIoU+ DDIIH.
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We also use all images in the test dataset to test our proposed method and original
method. The detection precision and speed indxes are shown in Table 3. The mAP of the
Sparse R-CNN, Sparse R-CNN-+MIoU, and Sparse R-CNN+MIoU+ DDIIH are 74.1%,
75.6%, and 77.9%, respectively. Compared with the original Sparse R-CNN which is the
Sparse R-CNN+GIoU, the mAP of our complete network is 3.8% higher. The recall of the
Sparse R-CNN, Sparse R-CNN-+MIoU, and Sparse R-CNN+MIoU+ DDIIH are 81.5%,
82.7%, and 86.3%, respectively. Compared with the original Sparse R-CNN, the recall of
our final network is 4.8% higher. The FPS of the Sparse R-CNN, Sparse R-CNN-+MIoU,
and Sparse R-CNN+MIoU+ DDIIH are 15.6, 15.2, and 14.9, respectively. Compared with
the Sparse R-CNN, the FPS of our complete network is only reduced by 0.7. Based on the
above analysis, the proposed MIoU and DDIIH are effective, and the complete network
has the best performances in mAP and recall. The structures of the proposed MIoU and
DDIIH are more complex than the original Sparse R-CNN;, so it has lower FPS than the
original Sparse R-CNN.

TABLE 3. Performance of Sparse R-CNN, Sparse R-CNN+MIoU, and
Sparse R-CNN+MIoU+DDITH.

| MU | DDIH | mAP(%) | Recall%) | FPS |
- - 741 81.5 15.6
Vv - 75.6 82.7 15.2
Vv Vv 779 86.3 149

4.4. Performance comparison. We also compare our complete Sparse R-CNN with
SSD, RetinaNet, YOLOv4, Fast R-CNN, Faster R-CNN, Cascade R-CNN and Sparse
R-CNN. We select an image that contains six planes from the test dataset to test the
performance of different methods. The ResNet101+FPN is used as the backbone of dif-
ferent detection methods. The detection results of different methods are shown in Figure
7. Although our proposed method, Cascade R-CNN and Sparse R-CNN successfully de-
tected all planes, the detection boxes do not completely enclose the largest plane and the
confidence score of the largest plane is lower for Sparse R-CNN. The RetinaNet and SSD
only detect five planes. They miss the largest plane. The Faster-RCNN and YOLOv4
detect seven objects. The Faster R-CNN detects lane tail as a new plane. The YOLOv4
detects other object as an aircraft carrier. The Fast R-CNN misses and mistakenly detects
three planes and has redundant detection boxes. In Figure 7, our proposed method and
Cascade R-CNN have higher detection precision than other methods.

We also use ResNetb0+FPN and ResNet101+FPN as the backbone of different de-
tection methods. The performance indexes of different methods with different backbone
networks are shown in Table 4. When we use ResNetb0+FPN as a backbone, the mAPs
of Fast R-CNN, SSD, RetinaNet, YOLOv4, Faster R-CNN, Sparse R-CNN, Cascade R-
CNN, and our method are 56.0%, 59.3%, 68.1%, 71.3%, 71.9%, 72.5%, 77.2% and 75.8%,
respectively. The values of recalls for Fast R-CNN, SSD, RetinaNet, YOLOv4, Faster
R-CNN, Sparse R-CNN, Cascade R-CNN, and our method are 65.3%, 70.6%, 69.8%,
76.5%, 79.6%, 78.0%, 86.7% and 84.7%, respectively. The Cascade R-CNN has the high-
est mAP and recall, followed by our method. The FPS for Fast R-CNN, SSD, RetinaNet,
YOLOv4, Faster R-CNN, Sparse R-CNN, Cascade R-CNN, and our method are 17.4,
18.2, 18.3, 24.2, 17.8, 18, 8.3, 17, respectively. The YOLOv4 has the fastest detection
speed, followed by RetinaNet and SSD.
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(Fast R-CNN)

FIGURE 7. Detection results of different methods.
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TABLE 4. Performance comparison between improved Sparse R-CNN and

other methods.

Method Backbone mAP(%) | Recall%) | FPS
Fast R-CNN ResNet50+FPN 56.0 65.3 17.4
Fast R-CNN ResNet101+FPN 58.8 66.8 12.6
SSD ResNet50+FPN 59.3 70.6 18.2
SSD ResNet101+FPN 63.4 72.4 15.5
RetinaNet ResNetb0+FPN 68.1 69.8 18.3
RetinaNet ResNet101+FPN 69.6 73.2 14.6
YOLOv4 ResNet50+FPN 71.3 76.5 24.2
YOLOv4 ResNet101+FPN 72.5 80.4 19.3
Faster R-CNN ResNet50+FPN 71.9 79.6 17.8
Faster R-CNN ResNet101+FPN 73.4 81.7 14.7
Sparse R-CNN ResNet504+FPN 72.5 78.0 18.0
Sparse R-CNN ResNet101+FPN 74.1 81.5 15.6
Cascade R-CNN ResNet50+FPN 77.2 86.7 8.3

Cascade R-CNN ResNet1014+FPN 80.5 90.4 5.1

Our Method ResNet50+FPN 75.8 84.7 17.0
Our Method ResNet101+FPN 77.9 86.3 14.9

5. Conclusions. This paper proposes improved Sparse R-CNN for remote sensing object
detection. It proposes an improved IoU by introducing the multiple geometric factors that
are overlap area, center point distance, vertex distance between the ground-truth box and
the proposal box, and diagonal distance of minimum enclosing of the ground-truth box
and the proposal box into loU. Compared with the loU and GIoU, the proposed IoU can
better measure the offset between the proposal box and the ground-truth box to improve
the quality of the detection box. Besides, it also designs a dual branches dynamic instance
interaction head. It consists of a fully connected branch and a convolution branch. The
fully connected branch is mainly used for classification and the convolution branch is
completely used for bounding box regression. The fully connected layers are suitable
for classification and the convolution layers are suitable for the location. Therefore, the
proposed dual branches dynamic instance interaction head can improve the precision of
remote sensing object detection.

When all methods use the ResNet504+FPN as a backbone, compared with Cascade R-
CNN that has the highest detection mAP and recall, the mAP and recall of our method
are 1.4% and 2.0% lower, the average detection speed of our method is about 2.1 times
faster. Compared with the original Sparse R-CNN, the mAP and recall of our method
are 3.3% and 6.7% higher, and the average detection speed is only 1.0 FPS slower. When
all methods use the ResNet101+FPN as a backbone, compared with the Cascade R-CNN
that has the highest detection mAP and recall, the mAP and recall of our method are
2.6 % and 4.1% lower, the average detection speed of our method is about 3 times faster.
Compared with original Sparse R-CNN, the mAP and recall of our method are 3.8% and
4.8% higher, and the average detection speed is only 0.7 FPS slower. On the whole,
compared with the Cascade R-CNN, our proposed method has lower detection accuracy
and faster detection speed. Compared with Sparse R-CNN, our proposed method has
higher detection accuracy and slower detection speed. The proposed method realizes the
balance between detection accuracy and detection speed.
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In future work, to improve the detection accuracy of remote sensing image in foggy
weather, we will consider using remote sensing image dehazing method based on generative
adversarial network to enhance the remote sensing image.
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