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Abstract. In order to solve the problems of diversity loss and easy to fall into lo-
cal optimization in the late iteration of sparrow search algorithm, an Improved Sparrow
Search Algorithm(ISSA) with multi-strategy is proposed. The population variety is boosted
and the capability of global search is enhanced by the introduction of the Circle chaotic
mapping to initialize the population; the Gaussian difference variation is introduced to
improve the ability of the population to jump out of the local optimum; and the golden
sine algorithm is introduced to balance the global search and local exploitation ability. In
order to verify the effectiveness of the improved algorithm, five benchmark functions were
selected for simulation experiments and compared with the genetic algorithm, grey wolf
algorithm, particle swarm algorithm and sparrow search algorithm. The simulation re-
sults show that the IISSA has better search accuracy and convergence speed. The ISSA is
used to determine the optimal metric properties and the optimal parameters of the Deep
Sparse Least Squares Support Vector Machine (DS-LS-SVM) for the problem of difficult
parameter selection in the classification. Simulation results on publicly available software
defect datasets show that the ISSA-DS-LS-SVM model is able to retain valid and useful
metric attribute data than traditional research methods, resulting in better performance
evaluation metrics in software defect prediction applications.
Keywords: Sparrow search algorithm; Chaotic mapping; Golden sine; Gaussian differ-
ence variation; Least squares support vector machine

1. Introduction. Nowadays, information technology has become deeply involved in peo-
ple’s work and life. As a bridge between people and technology, the quality of the presen-
tation and implementation of the whole system directly determines whether the product
can meet the customer’s requirements. The consequences of software quality problems
can be very frightening.

Deficiencies existing in the software’s own system are the main problem affecting the
quality of the system [1,2,3]. From the system developer’s point of view, to ensure the
quality of the software system, it is necessary to avoid the deficiencies in the system from
the revelation stage of development, and to correct the existing deficiencies in time. The
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system developer needs to focus on this level of software testing to fundamentally guar-
antee the correctness and safety of the system development, thus providing the fullest
guarantee for the overall elimination of software deficiencies. Specifically, the main pur-
pose of software testing is to find the deficiencies in the system and to see if the existing
functionality is in line with the previous requirements [4,5]. The length of testing for
software accounts for almost half of the entire development time, in other words, the
workload in this area is enormous.

Software defect prediction is the solution to this problem, as it allows the evaluation
of deficiencies in the system with the help of previous data. Software defect prediction
avoids the need to spend too much effort on software testing and avoids wasting human
and material resources. We have mainly classified software defect prediction into three
types: dynamic, conventional static, and machine learning prediction [6,7,8]. Learning
algorithms, have been the focus of machine learning based defect prediction models. Due
to the development of machine learning techniques, the integration of learning algorithms
and defect prediction models has been promoted. Many versions of software defect pre-
diction based on machine learning prediction have emerged, the most classic of which is
the software defect prediction model based on support vector machines (SVM) [9,10].

Support Vector Machine (SVM) is an efficient machine learning algorithm [11,12], which
has gained widespread use and interest in recent years. However, when the feature space
is very large, even infinite dimensional, traditional SVM models face the problem of
unbearable memory and time complexity. Deep learning models are able to handle high-
dimensional data, but too many parameters can make the models easily fall into overfit-
ting. To this end, this paper proposes the Depth Sparse Least Squares Support Vector
Machine (DS-LS-SVM), which can be effectively used for learning and classification of
large-scale, high-dimensional data.

1.1. Related Work. In addition to support vector machines, researchers have experi-
mented with a variety of classifiers to implement defect prediction models.

Wang and Yao [13] implemented twenty-seven prediction models with the WEKA tool-
box and found that RF was the best. Yang et al. [14] performed predictions on the
NASA dataset with eight models including conventional machine learning methods and
neural networks, while comparing the simulation results. Ultimately, the algorithm SVM
was shown to be the most effective by comparing metrics such as accuracy, recall and
F-value. A machine learning-based approach to software defect prediction, which uses
the relationship between system code metrics and system deficiencies as test evidence,
has shown good results for the support vector machine approach and is considered one of
the best choices for relevant assessments because of its classification accuracy.

However, traditional SVMs have limitations in dealing with high-dimensional large-scale
data. To address this problem, Sparse Least Squares Support Vector Machine (LS-SVM)
was proposed [15,16], which can effectively reduce the dimensionality of data and improve
the computational efficiency.

Ma et al. [17] presented a two-stage feature selection method for LS-SVM based on
correlation analysis and recursive feature elimination. Their experiments on different
datasets showed that the proposed method provides better generalization performance
compared to other feature selection methods. Arya et al. [18] introduced an online
LS-SVM algorithm that allows for continuous fine-tuning of the model using new data
while preserving the original sparsity structure. Results demonstrated that the proposed
approach achieves comparable performance to batch training methods with significantly
reduced computation time. Fan et al. [19] proposed a novel feature representation method
that combines deep learning and sparse coding with LS-SVM for classification tasks. They
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achieved improved classification accuracy on benchmark datasets compared to traditional
feature extraction techniques.

The DS-LS-SVM takes a bottom-up learning approach, combining the sparse nature of
deep learning with the L2-parametric penalty of SVMs. Specifically, the DS-LS-SVM first
maps the input feature vector to a low-dimensional subregion a relatively low-dimensional
subregion by using an L1-parametrization with weights. The L2-parametrics is then used
to control the number of support vectors. Compared to the LS-SVM model, DS-LS-
SVM not only compresses the feature information efficiently, but also maintains excellent
performance in complex situations.

1.2. Motivation and contribution. DS-LS-SVM achieved improved classification ac-
curacy on benchmark datasets compared to traditional feature. However, no strict criteria
have been established for the selection of DS-LS-SVM parameters, and much relies on em-
pirical or manual testing.

The main innovations and contributions of this work include
(1) An Improved Sparrow Search Algorithm (ISSA) incorporating multiple strategies is

proposed to address the problems that the sparrow search algorithm decreases in popula-
tion diversity and tends to fall into local optimum in the late iteration. By introducing the
Circle chaotic mapping to initialize the population, the population diversity is increased
and the global search ability is improved; the Gaussian difference variation is introduced
to improve the ability of the population to jump out of the local optimum; and the golden
sine algorithm is introduced to balance the global search and local exploitation ability.

(2) To address the problem of difficult parameter selection for DS-LS-SVM in classifica-
tion, ISSA is used to determine the optimal metric attributes and the optimal parameters
for DS-LS-SVM. The effectiveness of the proposed ISSA-DS-LS-SVM model is verified in
a software defect prediction application.

2. SSA theory.

2.1. Basic principles. SSA mainly simulates the foraging and anti-predatory behaviour
of sparrows, which can be divided into several different roles according to their behaviour
[20]. Individuals with high fitness values in the population are called discoverers, with
high predation ability and high energy levels of their own. The remaining individuals are
called followers, while a certain proportion of individual sparrows from the population are
selected as scouts to scout the population for early warning and abandon food if danger
is detected and move to a safe location.

In the population, most of the discoverers gather in the centre of the population and
have a high predatory capacity. At the same time, most sparrows in the population will
move towards the centre of the high energy sparrows in order to obtain more food, known
as followers. Individuals at the edge of the population are vulnerable to attack by other
predators, so a certain number of sparrows are selected to act as scouts, calling to warn
the population when a predator is spotted and constantly moving towards the centre of
the population to renew their position to ensure safety.

The SSA algorithm is a new group intelligence algorithm inspired by sparrow foraging,
anti-predation and vigilance behaviours [21,22], which consists of a discoverer, joiner and
scout. The discoverer is responsible for foraging in the group, the joiner follows the best-
adapted discoverer in order to obtain food, and the joiner also monitors the discoverer
to wait for an opportunity to grab food. During foraging, if a scout senses a predator in
danger, it will quickly alert the whole colony to fly to safety.
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2.2. Specific steps. The execution flow of SSA is shown below:
(1) Initialize the location of the population.
The initial position of the population can be represented by a matrix with a total of n

sparrows, each row of the matrix being the initial position of each sparrow in d -dimensional
space:

X =


x1,1 x1,2 . . . x1,d

x2,1 x2,2 . . . x2,d
...

...
. . .

...
xn,1 xn,2 . . . xn,d

 (1)

In d -dimensional space, the initial fitness values [23] for all its sparrows are:

fx =


f([x1,1 x1,2 . . . x1,d])

f([x2,1 x2,2 . . . x2,d])

...

f([xn,1 xn,2 . . . xn,d])

 (2)

(2) Update the finder location.
The sparrow with the highest fitness value in the population acts as a spotter and the

spotter moves continuously to find more food, while other followers move with it. If a
sparrow discovers a predator, it chirps to the population to indicate a warning, and if the
warning signal value is greater than a threshold, the finder moves to a safe position, the
followers move with it, and the whole population is updated to a new position, where the
finder update formula can be expressed as

X t+1
i,j =

{
X t

i,j exp
(

−i
α·itermax

)
, R2 < S

X t
i,j +Q · L, R2 ≥ S

(3)

where X t+1
i,j denotes the j -th dimensional position of the i -th individual in generation t of

the population; α is a uniform random number in (0, 1]; iter max is the maximum number
of iterations; R2 is the warning value at which the scout sparrow detects a predator calling;
S is a predetermined safety value; Q is a standard normally distributed random number;
and L is a 1Öd dimensional unit matrix.

(3) Update follower position. Between 70% and 80% of the population is selected as
discoverers [24], with all the rest being followers. Followers may also become discoverers
as discoverers move towards more food and acquire more food. The follower position
update equation can be expressed as:

X t+1
i,j =

{
Q · exp

(
Xt

worst −Xt
i,j

i2

)
, i > n/2

X t+1
p +

∣∣X t
i,j −X t+1

p

∣∣ ·A · L, i ≤ n/2
(4)

where X t
worst is the worst position of the sparrow in the current population; X t+1

p is the
best position in the population; A is a matrix where each element is randomly assigned a
value of 1 or -1.

(4) Update scout locations.
10%-20% of the population is randomly selected to act as scouts, and while the other

sparrows are foraging, they are responsible for keeping a lookout and will immediately
abandon the current food to move to the next location if danger is approaching. The
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formula for updating the scout’s position can be expressed as:

X t+1
i,j =

 X t
best + β ·

∣∣X t
i,j −X t

best

∣∣ , fi ̸= fg

X t
i,j +K ·

(
|Xt

i,j−Xt
worst |

(fi−fw)+ε

)
, fi = fg

(5)

where X t
best is the current global optimal position; β is a random number satisfying a

normal distribution; K is a random number with the value range [−1, 1]; fiis the fitness
value corresponding to the current optimal position; fg is the fitness value corresponding
to the current worst position; and ε is the minimum constant.

3. Proposed ISSA.

3.1. Circle chaos mapping. Tent chaos mapping and Logistic chaos mapping are com-
monly used to initialize populations. In this paper, Circle chaos mapping is used to
initialize the population.

The traditional logistic chaos mapping is not uniformly distributed and has an impact
on the convergence speed and accuracy of the algorithm. Although the Tent mapping
is more uniformly distributed, it has unstable cycles and tends to fall into immobility,
while the Circle mapping is more stable and has a comparable uniformity of distribution
to Tent. Circle chaotic mappings are a typical class of chaotic mappings and are one of
the classical models in nonlinear dynamical systems.

Xi+1 = mod

[
Xi + 0.2−

(
0.5

2π

)
sin (2πXi) , 1

]
(6)

where Xi+1 represents the (i+ 1)-th position. Mod[] is the residual function. Generate a
successful initialization population for each position.

The Circle chaotic mapping is a continuous dynamical system described by a non-linear
differential equation. The introduction of noise enhances the randomness and unpre-
dictability of the Circle chaotic mapping, helping to improve encryption and immunity to
interference. This can be achieved by adding Gaussian white noise:

x (n+ 1) = x (n) + (a− by (n)) · dt+ σ · sqrt (dt) ·N (0, 1) (7)

y (n+ 1) = y (n) + (bx (n)− z (n)− xy (n)) · dt+ σ · sqrt (dt) ·N (0, 1) (8)

z (n+ 1) = z (n) + (xy (n)− cz (n)) · dt+ σ · sqrt (dt) ·N (0, 1) (9)

where N (0, 1) shows Gaussian white noise with mean 0 and variance 1; σ is the noise
intensity parameter and dt is the time step. The above three equations describe the
three-dimensional form of the Circle chaos mapping, with a, b and c being the mapping
parameters respectively.

The addition of Gaussian white noise can simulate the interference and noise in the
environment, effectively improving the resistance and unpredictability of the encryption.
The size of the noise strength parameter σ needs to be determined according to the specific
application scenario and needs to be adjusted experimentally to achieve the best results.

3.2. Gaussian difference variation. To prevent the population from falling into a
local optimum during iteration, the optimal position of the population is perturbed at
each iteration using Gaussian difference variation.

Compared to traditional difference-in-variance algorithms, Gaussian difference is able
to generate larger perturbations in the vicinity of the current variant individual, making
it easier for the algorithm to jump out of the local optimum. If the position is better
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after the perturbation, the population optimum position is updated, otherwise it remains
unchanged. The Gaussian difference variance is calculated as follows:

Lt = k1 · g1 ·
(
X∗ −X t

best

)
+ k2 · g2 ·

(
Xrand −X t

best

)
(10)

where k1 and k2 denote weight coefficients; g1 and g2 denote Gaussian distributed random
numbers with mean 0 and variance 1; X∗ is the population optimal sparrow position;
Xrand denotes the random sparrow position; and denotes the position after Gaussian
differential variation.

Once the perturbed positions are obtained, the fitness values of the positions before and
after the perturbation are compared and the position with the best fitness is selected as
the optimal position for this iteration of the population. The optimal position is updated
as follows:

X t
best =

{
Lt , f (Lt) < f (X t

best )
X t

best , f (Lt) ≥ f (X t
best )

(11)

where f (Lt) and f (X t
best ) represent the adaptation values of the post- and pre-disturbance

positions respectively.

3.3. The golden-sine algorithm. The Golden Sine Algorithm (Golden-SA) [25] reduces
the search space by the golden ratio to approximate the optimal solution of the algorithm,
which has the advantage of simplicity of principle and superiority finding capability. Gold-
SA algorithm position update formula is as follows:

X t+1
i,j = X t

i,j · |sin (r1)|+ r2 · sin (r1) ·
∣∣k1 ·X t

p − k2 ·X t
i,j

∣∣ (12)

The discoverer needs a larger search range in the early stage to improve the global search
capability, while a smaller search range is needed in the later stage to mine the global
optimal location, and the update of the follower location is also vulnerable to the update
of the discoverer location. Therefore, the search capability of SSA is mainly related to the
search range of the discoverer. However, the discoverer in SSA at R2 < S, each dimension
of the sparrow population is shrinking with the number of iterations, so the golden sine
algorithm is used to improve Eq. (12), balancing the discoverer’s ability to search globally
in the early stages with the ability to exploit locally in the later stages.

X t+1
i,j =

{
X t

i,j · |sin (r1)|+ r2 · sin (r1) ·
∣∣k1 ·X t

p − k2 ·X t
i,j

∣∣ , R2 < S
X t

i,j +Q · L ,R2 ≥ S
(13)

4. ISSA-based DS-LS-SVM.

4.1. Fundamentals of LS-SVM. SVM models typically exhibit slight generalization
errors in the two test data sets when dealing with binary classification. Therefore, after
establishing the linear discriminant equation, this equation can be used to test the type
of each given test sample.

Suppose the linearly divisible sample set is {(xi, yi) |xi ∈ Rm, yi ∈ (−1,+1), i = 1, 2, . . . , n},
then it can be expressed as a linear function as follows

g(x) =< ω · x > +b (14)

The corresponding classification surface can then be expressed as follows:

< ω · x > +b = 0 (15)

The optimization problem for the SVM model is calculated as follows:

min

(
1

2
∥ω∥2 + c

l∑
i=1

εi

)
s.t. yi (ω · ∅ (xi) + b) ≥ 1− εi (16)
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The optimization problem for the LS-SVM model [26] is calculated as follows:

min

(
1

2
∥ω∥2 + c

l∑
i=1

ε2i

)
s.t. yi (ω · ∅ (xi) + b) ≥ 1− εi (17)

where c is the penalty factor.
With the introduction of the kernel function, the optimal classification surface of the

SVM is calculated as follows:

f(x) = sgn

(
n∑

i=1

aiyiK (xi, x) + b

)
(18)

In contrast to the above, the LS-SVM algorithm actually operates the following set of
linear functions.

0 1 ... y1
1 K (xi, xj) + 1/c ... K (xi, xj)
... ... ... ...
1 K (xi, xj) ... K (xi, xj) + 1/c

×


b
a1
a1
a1

 =


0
y1
...
yn

 (19)

Ultimately the optimal classification surface for the LSSVM model can be obtained.

min

{
1

2

n∑
i,j=1

K (xi, xj) +
n∑

i=1

a2i
2γ

−
n∑

i=1

xiyi + b
n∑

i=1

ai

}
(20)

Although the LS-SVM algorithm is able to obtain the corresponding classification results
and achieve the task objectives when processing general classification problems, it still
has two significant drawbacks [27,28]. 1. The solution process of LS-SVM is more similar
to linear computation, which feels simple, but the reality is that it is computationally
more complicated when processing large-scale data classification; 2, LS-SVM algorithm
does not possess sparsity, which leads to the classification algorithm test after training,
often showing lower rate and much less efficiency.

4.2. DS-LS-SVM. DS-LS-SVM is an effective solution to the above two drawbacks. Un-
like the traditional sparse LS-SVM, DS-LS-SVM first sets up the hidden layer unit, and
subsequently uses the data structure obtained from the shallow layer as the basis for deep
continuous training learning, and continuously performs the above steps. This learning
process focuses on the process of obtaining features, and its feature proposal structure is
shown in Figure 1.
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Figure 1. Feature extraction model of sparse LS-SVM

The highest layer learning result obtained is then the final learning result of the classi-
fier. The model after such training is called a stacked sparse LS-SVM model, also known
as DS-LS-SVM model, as shown in Figure 2. DS-LS-SVM contains a number of hidden
layers, each of which obtains its function from its next level hidden layer. The training
results of the lower level hidden layers are used to calculate the activation values to obtain
the upper level feature values. Subsequently, mapping is used to obtain the correspond-
ing high-dimensional data which are used as input features for the higher hidden layers.
The inputs are executed sequentially and extracted to obtain the learning results of the
DS-LS-SVM model. If the N M -dimensional data information is denoted as x1, . . . , xn,

Figure 2. Model architecture of DS-LS-SVM

then the N training data can be obtained as P M -dimensional support vectors, denoted
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by s1, . . . , sp . The Lagrangian multiplier corresponding to each support vector is denoted
by a1, . . . , ap and its category label is denoted by t1, . . . , tp .

h1(i) = aitiK (si, x) (21)

where h1(i) denotes the i-th element in the first hidden unit.
A scientifically valid detection of new data points is then required by virtue of the

activation kernel function. This data point is passed to the next layer by means of a
mapping and the sample type is analysed at the top layer in the form of a classification
function.

y(x) =
l∑

i=1

aitiK
(
si, Ö(x)

)
+ b (22)

where si represents the i -th support vector; l represents the number of support vectors at
the end of the network; and Ö is the feature vector of the test data x transformed with
the help of the hidden layer.

Through the above analysis, DS-LS-SVM has a higher algorithmic superiority compared
to LS-SVM, not only in terms of the optimisation problem solved, but also in terms of
the sparsity of the solution.

4.3. ISSA-DS-LS-SVM. However, the DS-LS-SVM model suffers from the problem of
difficult parameter selection, which also leads to inefficient search. In addition, and due
to the problem of premature sieving of beneficial attribute information, DS-LS-SVM also
suffers from the disadvantage of being prone to local optimal solutions. For this reason,
this work proposes to use an improved ISSA to achieve parameter optimisation and metric
element attribute selection optimisation for DS-LS-SVM.

The improved ISSA not only excels in global search, but can also be used to build more
efficient parametric optimisation software by using the eigenvectors as input vectors to
the DS-LS-SVM model, while at the same time using the improved ISSA’s global search
capability and potential parallelism to The DS-LS-SVM is based on the use of the feature
vectors as input vectors to the DS-LS-SVM model. The pseudo-code of ISSA-DS-LS-SVM
is shown in Algorithm 1.

Algorithm 1 ISSA-DS-LS-SVM

Input: Training data X, labels Y, number of layers L, sparsity parameter λ, regu-
larization parameter γ, kernel function K, number of sparrows N, maximum number of
iterations T.

Ouput: Trained model parameters α, b, and sparse features H.
1: Initialize the sparrow population with random positions and velocities.
2: Evaluate the fitness of each sparrow using the mean squared error between the

predicted and actual labels.
3: Update the personal best position and fitness for each sparrow.
4: Update the global best position and fitness for the population.
5: Update the velocity and position of each sparrow using the following equations.

a. vi (t+ 1) = w·vi (t) + c1·rand()·(pbesti − xi (t)) + c2·rand()·(gbest − xi (t))
b. xi (t+ 1) = xi (t) + vi (t+ 1)

6: Update the model parameters α and b using the best position found by the sparrow
population.

7: For l = 1 to L do
a. Compute the kernel matrix Kl using the sparse features Hl.
b. Solve the LS-SVM problem to obtain the parameters αl and bl.
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c. Compute the residual error El = Y −Klαl − bl
d. Update the sparse autoencoder weights and biases using backpropagation with

El as the target.
8: Return the trained model parameters α and b, and the sparse features H.

5. Experimental results and analysis.

5.1. Experimental design. To confirm the effectiveness of the ISSA and ISSA-DS-LS-
SVM algorithms, the following 2 experiments were conducted in this work:

(1) To determine whether ISSA is superior to the general algorithm, this was achieved
primarily by comparison with GA, PSO, ACO, AFSA and SSA. The results of optimisa-
tion tests using six standard functions are used, thus demonstrating the effectiveness of
ISSA.

(2) To more fully verify the advancedness of the proposed ISSA-DS-LS-SVM-based pre-
diction model and its advantages in defect prediction, this work compares its simulation
with DS-LS-SVM, AFSA-DS-LS-SVM and SSA-DLSSVM models. The experimental en-
vironment is shown in Table 1. the experimental parameters of ISSA are shown in Table
2.

Table 1. Experimental environment.

Experimental platform Specific parameters
Memory 16 G
Systems Centos 7

Framework Tensorflow, Keras
Language Python

Table 2. Experimental parameters.

Parameters Numerical values
Number of layers L 6
Sparsity parameter λ 0.2

Regularization parameter γ 0.6
Kernel function K Radial basis function

Number of sparrows N 100
Maximum number of iterations T. 20,000

5.2. ISSA simulation experiments. The population size was set to 100, the number
of iterations was set to 2000 and the dimensionality was set to 30 for all population
intelligence algorithms. The expressions of the five test functions were as follows:

f1(x) =
n∑

i=1

x2
i , x ∈ [−100, 100] (23)

f2(x) =
n∑

i=1

|xi|+
n∏

i=1

|xi|, x ∈ [−10, 10] (24)

f3(x) =
n∑

i=1

(
i∑

j=1

xj

)2

, x ∈ [−100, 100] (25)
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f4(x) =
n∑

i=1

[
x2
i− 10 cos (2πxi) + 10] , x ∈ [−5.12, 5.12] (26)

f5(x) = 20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i

− exp

(
1

n

n∑
i=1

cos (2πxi)

)
+20+ e, x ∈ [−32, 32] (27)

The optimisation results of each algorithm on the five tested functions are shown in Table
3. The standard deviation of ISSA is the smallest among the results obtained, which
indicates that its robustness is also good, and its average and worst optimisation values
are also better than those of the other algorithms. Overall, the ISSA algorithm is not only
more stable, but also more accurate in its search for the best. In addition, a t-test with a
confidence level of 5% was carried out. The results of the t-test show that ISSA does not
come from the same distribution as the other algorithms. ’-’ indicates that it comes from
a different distribution and ’+’ indicates that it comes from the same distribution. Taking

Table 3. Comparison between ISSA and other algorithms

Test
functions

Algorithms
Optimal

optimization
values

Tie-breaker
optimisation

values

Worst
optimized

value

Standard
deviation

t-test

GA 6.40E+00 6.88E+00 7.48E+00 3.68E-01 -
PSO 5.56E+01 7.94E+01 9.58E+01 1.28E+01 -

f1 ACO 4.28E+01 6.82E+01 1.05E+02 2.10E+01 -
AFSA 1.99E+00 2.48E+00 2.70E+00 2.26E-01 -
SSA 9.00E+01 1.16E+02 1.29E+02 2.44E+01 -
ISSA 3.00E-137 1.65E-109 4.38E-109 1.35E-99 None
GA 3.38E+04 4.92E+04 5.82E+04 6.58E+03 -
PSO 2.96E+04 3.76E+04 4.48E+04 4.64E+03 -

f2 ACO 3.30E+04 4.60E+04 5.32E+04 6.68E+03 -
AFSA 2.98E+04 4.38E+04 5.80E+04 1.41E+04 -
SSA 3.18E+04 4.38E+04 5.80E+04 1.56E+04 -
ISSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 None
GA 1.00E+02 5.40E+02 5.64E+02 3.28E+01 -
PSO 5.02E+02 5.80E+02 6.18E+02 3.30E+01 -

f3 ACO 2.96E+02 3.90E+02 4.36E+02 4.52E+02 -
AFSA 2.26E+02 2.56E+02 2.84E+01 1.98E+01 -
SSA 3.24E+02 3.84E+02 3.98E+02 3.72E+01 -
ISSA 1.60E+01 2.68E+01 3.90E+01 6.12E+00 None
GA 6.80E+02 9.50E+02 1.12E+03 1.33E+02 -
PSO 2.58E+02 3.58E+02 4.24E+02 4.94E+01 -

f4 ACO 2.52E+02 3.76E+02 3.86E+02 7.74E+01 -
AFSA 3.24E+02 3.81E+02 4.14E+02 3.63E+01 -
SSA 3.50E+02 3.98E+02 4.28E+02 4.26E+01 -
ISSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 None
GA 3.42E+01 3.68E+01 3.92E+01 1.71E+00 -
PSO 3.58E+01 3.78E+01 3.94E+01 1.11E+00 -

f5 ACO 3.62E+01 3.76E+01 3.86E+01 7.74E-01 -
AFSA 3.24E+00 3.60E+00 4.00E+00 2.60E-01 -
SSA 3.64E+01 3.98E+02 3.72E+01 4.60E-01 -
ISSA 8.88E-15 8.88E-15 8.88E-15 0.00E+00 None

the test function f3 as an example, the convergence curves of the various algorithms are
shown in Figure 3. It can be seen that when the dimension is 30, ISSA converges the
fastest compared to the rest of the algorithms, and also has the best accuracy in its search
for merit. At the same time, the evolutionary curve of this algorithm can drop in a short
time when it first starts, so this means that ISSA has better robustness as it does not
impose too many restrictions on the initial position of the artificial fish; algorithms other
than ISSA show premature maturity after several executions, so this means that the ISSA
algorithm can avoid premature maturity more effectively.
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Figure 3. Evolution curve of benchmark function optimization

5.3. Software defect prediction simulation. To more fully validate the advanced-
ness of the proposed ISSA-DS-LS-SVM based prediction model and its advantages in
defect prediction, this work simulates it against DS-LS-SVM, AFSA-DS-LS-SVM, and
SSA-DS-LS-SVM models. Software defect prediction datasets are an important resource
for evaluating the performance and effectiveness of machine learning models and algo-
rithms for software defect prediction tasks. Software defect prediction datasets used in
the simulation are:

(1) NASA Software Defect Dataset: This dataset, provided by the NASA Software
Defect Detection and Prediction Project, contains three years of data from 18 software
projects, including pre-processed features and defect markers.

(2) EUSES dataset: This dataset contains 236 Excel spreadsheets and is used to predict
whether the cells in them contain errors.

(3) PROMISE dataset: This dataset is provided by the PROMISE software engineering
programme and contains data from 20 files from 10 software projects for defect prediction.

(4) KC1 dataset: This dataset contains 210 Java files and is used to predict the presence
of defects.

(5) MC1 dataset: This dataset contains 16 C++ programs for predicting defects.
The above datasets are publicly available and can be used in a wide range of software

defect prediction studies. In accordance with the metrics commonly used in information
mining principles, the confusion matrix metrics are used to compare the evaluation capa-
bilities of the models. Therefore, the confusion matrix shown in Table 4 is used. Using

Table 4. Confusion matrix.

Actual
category

Forecast
category (with defects)

Forecast
category (without defects)

Module with defects Correct positive example (TP) Wrong negative example (FN)
Without defective modules Positive examples of errors (FP) Correct negative example (TN)
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Figure 4. DS-LS-SVM Figure 5. AFSA-DS-LS-SVM

Figure 6. SSA-DS-LS-SVM Figure 7. ISSA-DS-LS-SVM

NASA as an example, the confusion matrices for the different models are shown in Figures
4, 5, 6 and 7 respectively, where the horizontal axis represents the predicted defect type
number, the vertical axis represents the true defect type number, the diagonal line repre-
sents the classification accuracy and the off-diagonal line represents the misclassification
rate.

It can be seen that all models correctly determine the state of the software during
normal operation, with ISSA-DS-LS-SVM identifying only slightly lower defects for labels
3 and 4, at 92%, corresponding to a false positive rate of 8%. All other types of software
defects can be identified accurately. The experimental results verify that the classification
performance of ISSA-DS-LS-SVM is significantly better than other models.

6. Conclusion. To address the problems of long time and low accuracy of searching the
optimal hyperparameter combination of DS-LS-SVM by traditional methods, a prediction
model based on ISSA-optimized DS-LS-SVM is proposed, using Circle chaotic mapping
to initialize the population, which increases the diversity and stability of the population
and expands the search range of the sparrow in space, thus improving the efficiency of
the algorithm in finding the optimal; introducing Gaussian differential The algorithm’s
ability to jump out of the local optimum is improved by introducing Gaussian variance
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perturbation at the optimal position to avoid the phenomenon of premature convergence.
The results validate the effectiveness of ISSA by comparing experiments on the benchmark
function search. Finally, the hyperparameters of DS-LS-SVM are optimised using ISSA
to establish an optimal classification model and to conduct comparative experiments with
other optimisation-seeking algorithms for software defect prediction, and the results show
that the proposed method can accurately discriminate software defects. However, the
current classification method with ISSA-DS-LS-SVM prediction model is limited to the
division of presence and absence of defects. Could the next step be to consider the use
of multi-classification DS-LS-SVM for predicting the severity of software defects, thus
providing greater help for software testing.
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