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Abstract. For the firefly algorithm in the solution of complex functions are prone to
low accuracy and ”premature” phenomenon. In this paper, we propose a tolerance-based
elite mutation firefly algorithm (MOFA-TEM). The algorithm employs non-dominated
sorting and congestion distance to select the elite leader , which is fused with the indi-
vidual historical optimal solution to form a more comprehensive integrated information
of the population, and jointly guide the movement of the fireflies, which not only en-
hances the interactivity of the information between fireflies in the population, but also
improves the algorithm’s ability of global exploration. Secondly, a tolerance-based firefly
state judgment mechanism is designed, which will exponentially increase the probability
of updating the elite leader as the number of individual firefly stagnation increases, which
both fully exploits the potential of ’s search for excellence and prevents ineffective search-
ing of the population. Finally, if the firefly triggers the tolerance mechanism, the elite
mutation strategy will be used to update the and select a new elite learning object to avoid
the algorithm from stagnating. Experiments on 19 test functions and validation using
Friedman’s test show that MOFA-TEM gives better results compared to other optimiza-
tion algorithms.
Keywords: Firefly algorithm; elite learning; tolerance mechanism; elite mutation
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1. Introduction. Multi-objective optimization problems (MOPs) [1] is a category of
problems with multiple conflicting optimization objective functions, without the existence
of all the objectives optimal at the same time, so the MOPs is usually obtained as a set
of compromise solutions, the Pareto solution set (PS) [2]. When tackling intricate MOPs,
traditional optimization approaches suffer from the disadvantages of low solution accu-
racy, slow convergence, long time-consumption, and high cost. With the improvement of
the requirements for the solution of MOPs and the limitations of traditional optimization
algorithms in solving complex problems, many scholars have proposed swarm intelligence
algorithm (SIA) [3], which has been rapidly developed in the past two decades and has
become one of the most active algorithmic research fields at present. Swarm intelligence is
the property of individuals with simple intelligence to exhibit group intelligent behavior
through mutual collaboration and organization. As a bio-heuristic algorithm, SIA ex-
pands the search scope and enhances the search efficiency through competition, learning,
and interaction among groups to find better individuals. Because of its global search per-
formance, it is suitable for solving complex MOPs and has become a mainstream method
for MOPs. It has been successfully applied in the fields of transportation network pre-
diction [4], remote sensing imagery [5], route planning [6], and Internet of Things [7].
Nowadays, there are many novel SIA, such as the tumbleweed optimization algorithm [8],
the krill herd algorithm [9], the ant lion optimizer algorithm [10], the crow search algo-
rithm [11], the Phasmatodea Population Evolution algorithm [12], and the bamboo forest
growth optimization algorithm [13].

Yang proposed the multi-objective firefly algorithm (MOFA) [14]. The idea of the
algorithm comes from the biological habit of glowing fireflies in nature to fly towards
fireflies brighter than themselves. Fireflies are discretely distributed in a certain activity
range, each firefly emits light of varying intensity due to different amounts of fluorescein
in its body, and over time, the fireflies in the range gradually gather near the brightest
fireflies to form a number of aggregation centers of similar brightness, similar to the process
of searching for superiority. Although MOFA is simple, efficient and easy to implement,
and has found extensive applications across various domains such as feature selection and
neural network training [15, 16, 17, 18], it still suffers from the defects of falling into
local optimum, slow convergence speed, and poor convergence accuracy. For this reason,
scholars have made many optimizations and improvements to MOFA, which are studied in
the following three areas: (1) Optimization and improvement of the iterative strategy of
the algorithm, including parameter adjustment and iterative solution optimization. Zhao
et al. [19] enhances population initialization and introduces the Maximin learning strategy,
which accelerates convergence and expands the exploration area of the population. He et
al. [20] improves the convergence speed of the algorithm by introducing inertia weights
based on the attention mechanism in the learning formula. (2) Optimizing and improving
the learning structure of the algorithm to utilize more population information. Zhao et
al. [21] creates a central particle derived from the historically optimal position, subject
it to one-dimensional deep learning iterations, and let the acquired knowledge guide the
population’s evolution. Lai et al. [22] not only divides the populations, but also divides
the evolutionary stages and use different learning strategies at different stages of learning.
Zhao et al. [23] divides fireflies into self-learning particles and ordinary particles; self-
learning particles use 3 learning strategies to generate candidate solutions and select the
optimal solution, while ordinary particles learn from 2 particles that outperform them.
(3) Integration of MOFA with other algorithms to improve the MOFA by utilizing the
advantages of other algorithms. Aydilek [24] proposes a hybrid algorithm combining FA
and PSO, combining the strengths of both algorithms, PSO is employed for global search
while FA is utilized for local search.



1408 J. Chen, R.-X. Zeng, S.-Y. Qiu, P. Kang and J. Zhao

In summary, although the above improved algorithm enhances the exploration ca-
pability to a certain extent, there is still room for improvement in effectively balancing
convergence and diversity. We propose a tolerance-based elite mutation firefly algorithm
(MOFA-TEM). The algorithm during the search for the best solution, each firefly exists
individual behavior and group behavior, fireflies through the learning of the population’s
flight experience and draw on their own flight experience to discover the best solution,
and save the optimal information searched for in the individual optimum, not only to
maximize the utilization of the population’s high-quality information, to improve the
quality of the elite leader, and to ensure that the individual and the population of the
co-evolutionary. In order to monitor the movement status of fireflies, a tolerance-based
judgment mechanism is introduced. As the tolerance of individual fireflies, that is, the
frequency of stagnation occurrences rises, the probability of updating the elite leader of
the population will increase exponentially, which will help the population to update the
learning object at the right time and ensure that the population maximizes the utiliza-
tion of the learning potential of the elite leader without falling into stagnation. Finally,
the elite mutation strategy is used to update the elite leader , generating a new learning
object to prevent the algorithm from being stuck in local optima.

2. MOFA. The MOFA draws inspiration from the natural behavior of fireflies, with two
key elements: brightness and attractiveness. The attractiveness is defined as follow:

βij = β0 · e−γ·rij (1)

where β0 is the most attractive, usually β0 = 1; γ is the light absorption coefficient,
usually γ ∈ [0.01, 100]; rij is the Euclidean distance between any two fireflies.

Assuming that firefly i moves towards firefly j, the movement formula of firefly i is as
follows:

Xi(t+ 1) = Xi(t) + βij(rij)(Xj(t)−Xi(t)) + α · εi (2)

where t represents the current iteration number; α is the step factor, usually take the
random number between [0, 1] ; εi represents a random number vector.

3. MOFA-TEM.

3.1. Improvement of Learning Strategy. In standard MOFA, as shown in Formula
(2), the firefly is only affected by the firefly that dominates it and the random term, so the
selection of a better quality learning object for the firefly plays a crucial role in accelerating
the convergence of the population and improving the accuracy of the solution. MOFA-
TEM updates the position of fireflies through the elite leader gbest and the individual
history of optimal pbest . gbest records the optimal position of the population throughout
the search phase, and each firefly saves the optimal information of the search in it, so its
structure is superior in multiple dimensions. pbest stores the best position of each firefly
throughout the search history, incorporating the firefly’s own experience of the search.
MOFA-TEM searches for potentially better solutions in its neighborhood centered on
the firefly’s own current position, and add gbest and pbest to guide the search towards
achieving optimal results, learning from the population and its own experience, preventing
the firefly from conducting ineffective searches and wasting the number of evaluations in
other directions. The position update formula follows:

Xi(t+ 1) = wXi(t) + a1βgi(gbest−Xi(t)) + a2βpi(pbesti −Xi(t)) + alpha(t) (3)
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where ω is the weighting factor; gbest is elite leader; pbesti is the historical optimum of
firefly i ; βig is the attraction between fireflies i and gbest ; βpi is the attraction between
fireflies i and pbest ; a1, a2 ∈ (0, 1) and a1 + a2 = 1 ; alpha(t) = 0.9 · alpha(t − 1) ,
alpha(1) = 0.2 , is a random perturbation factor that reduces as the iterations progress.

3.2. Tolerance-based firefly state judgment mechanism. In MOFA-TEM, the op-
timization search direction of fireflies is determined by gbest and pbest , and fireflies in
the population complete the position iteration by learning from the superior individuals,
and if gbest is a locally optimal position in the solution space, other fireflies in the pop-
ulation may stagnate together with gbest after several searches. To avoid stagnation of
the population, this paper introduces a tolerance-based firefly state judgment mechanism,
by judging the current evolutionary state of the firefly and updating the firefly’s learn-
ing object gbest at the appropriate time, to avoid the firefly falling into the ”precocious
maturity” due to the wrong search direction.

The tolerance-based firefly state judgment mechanism defines tolerance as the number
of times a firefly has been in stagnation, denoted as Si . If the tolerance Si increases by 1, it
means that firefly individuals learn from the current gbest , and the fitness value does not
get better, that is, the current gbest is not conducive to population evolution. Obviously,
the larger the Si value, the greater the number of individual firefly stagnations and the
greater the probability that the population’s evolutionary capacity is in stagnation. Thus
MOFA-TEM determines the evolutionary status of each individual firefly by using the
individual’s own evolutionary experience to update the elite leader gbest according to the
tolerance probability. For firefly i , the probability of updating gbest is expressed as :

Pi =
exp(Si − 1)

exp(5)− 1
(4)

This algorithm determines the referentiality of gbest according to the method of in-
creasing Pi exponentially with increasing tolerance Si . When Pi > rand() , the elite
leader of the current firefly is considered to be less referential and highly susceptible to
stagnation, therefore stops learning from the current learning object gbest . Conversely, if
Pi < rand() , consider the current firefly’s elite leader to still be referential and continue
to learn from the current learning object gbest.

The probability Pi will be recalculated after each position update, and the probability
Pi of the MOFA-TEM adjustment updating gbest increases exponentially as the tolerance
Si increases. When Si is smaller, meaning that the number of stagnation is smaller, the
value of Pi is also smaller, indicating that the population learns with a higher probability
still toward the current learning object gbest , fully exploiting the potential of the current
search direction. When Si is large, meaning that the number of stagnations is high, the
value of Pi increases exponentially, indicating that the current direction of search is almost
uninformative and the population should stop learning from the current learning object
gbest.

3.3. Elite Mutation. The elite leader gbest as the elite solution that guides the evolution
of the population and is the object of study for all fireflies in the population. When a firefly
triggers the tolerance-based firefly state judgment mechanism, it indicates that the old
learning object cannot lead the population to evolve. Therefore, a mutation operation is
executed on the elite leader gbest , and if the mutated new individual gbest∗ has a superior
fitness value compared to the original gbest fitness value, then gbest∗ replaces gbest and
participates in a new round of evolutionary process. The new elite leader gbest∗ will act
as a new learning object during subsequent evolution, guiding the population movement
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and thus helping stagnant individuals to escape from the local optimum. The formula
follows:

gbest∗j = unifrnd(gl, gu) (5)

{
gl = gbestj − rand() · (V arMax− V arMin)

gu = gbestj + rand() · (V arMax− V arMin)
(6)

where j denotes the j th dimension of gbest; unifrnd(gl, gu) denotes a random number
between [gl, gu]; rand() denotes a random number between [0, 1]; V arMax , V arMin
denote the upper and lower limits of the firefly.

3.4. Algorithm description. Algorithm 1 gives the pseudocode for MOFA-TEM. Firstly,
the firefly population was randomly initialized, the fitness value of each firefly was cal-
culated, and gbest was selected according to the non-dominated sorting and crowding
distance. In the iteration, the fireflies update their positions according to the improved
learning Formula (3) and record the historical optimal solution for each firefly. According
to Formula (4), the probability of updating gbest for each firefly is calculated based on
the tolerance, if Pi > rand() , a new learning object gbest∗ is generated according to For-
mula (5), and if gbest∗’s fitness value is better than gbest , gbest is updated. Otherwise,
learning continues according to Formula (3) until the condition is satisfied. The basic flow
of MOFA-TEM is shown in Figure 1.

Algorithm 1 Algorithm1: Pseudo-code of MOFA-TEM

Input: Population size Npop , maximum iterations MaxIt , external archive Rep
Output: PS
Initialize firefly population
Calculate the fitness value of fireflies
while (t ≤ MaxIt) do
Selecting gbest based on non-dominated sorting and congestion distance
for i = 1 : Npop do
Move firefly i according to Formula (3)
Calculate the tolerance Si of firefly i
Pi is calculated according to according to Formula (4)
if (Pi > rand()) then
Generate a new gbest∗ according to Formula (5)

end if
end for
Update the PS in Rep
if (Rep is full) then
Remove overflow solutions according to the congestion distance mechanism

end if
end while
return PS
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Figure 1. Flowchart of MOFA-TEM

4. Simulation experiment and result analysis. In order to validate the perfor-
mance of MOFA-TEM in dealing with MOPs, section 4.2 compares MOFA-TEM with
5 classical multi-objective evolutionary algorithms (MOEAs) [25], namely PESA-II [26],
MOPSO [27], MOEA/D [28], MOFA [14] and NSGA-III [29]. Section 4.3 compares
MOFA-TEM with seven recent MOEAs, namely MONSFA [30], MOEA/D-ACD [31],
NSGA-II-SDR [32], CFMOFA [33], Top [34], DGEA [35] and HVMA-M [36].

4.1. Test Functions. In order to test the ability of MOFA-TEM to solve different prob-
lems, 19 test functions from DTLZ, Viennet, Deb and ZDT are selected for comparative
analysis in this paper, as Table 1. The ZDT and Deb test sets are two-objective test prob-
lems, and the Viennet and DTLZ test sets are three-objective test functions. These test
functions have different properties and complex Pareto front features, such as concavity,
multimodality, and irregular Pareto front shapes, which can effectively demonstrate the
algorithm’s reliability and efficiency.
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Table 1. Test function set

Problem Objective Constraints

ZDT1 2 n = 30, 0 ≤ xi ≤ n
ZDT2 2 n = 30, 0 ≤ xi ≤ n
ZDT3 2 n = 30, 0 ≤ xi ≤ n
ZDT4 2 n = 10, 0 ≤ x1 ≤ 1, -5 ≤ xi ≤ 5, i = 2, · · ·, n
ZDT6 2 n = 10, 0 ≤ xi ≤ 1, i = 1, · · ·, n
Deb1 2 0 ≤ x1, x2 ≤ 1
Deb2 2 0 ≤ x1, x2 ≤ 1
Deb3 2 0 ≤ x1, x2 ≤ 1

Viennet1 3 −2 ≤ x, y ≤ 2
Viennet2 3 −4 ≤ x, y ≤ 4
Viennet3 3 −3 ≤ x, y ≤ 3
Viennet4 3 −3 ≤ x, y ≤ 3
DTLZ1 3 n = 7, 0 ≤ xi ≤ 1, i = 1, · · · , n
DTLZ2 3 n = 12, 0 ≤ xi ≤ 1, i = 1, · · · , n
DTLZ3 3 n = 12, 0 ≤ xi ≤ 1, i = 1, · · · , n
DTLZ4 3 n = 12, 0 ≤ xi ≤ 1, i = 1, · · · , n
DTLZ5 3 n = 12, 0 ≤ xi ≤ 1, i = 1, · · · , n
DTLZ6 3 n = 12, 0 ≤ xi ≤ 1, i = 1, · · · , n
DTLZ7 3 n = 12, 0 ≤ xi ≤ 1, i = 1, · · · , n

4.2. Comparison with classical MOEAs. MOFA-TEM was compared with 5 classical
MOEAs, and the algorithm parameters are specified in Table 2. The inverted generation
distance (IGD) [37] is an evaluation metric used to assess algorithm convergence and
diversity. A smaller IGD indicates better comprehensive performance of the algorithm.
The results of the experiment were statistically calculated by Friedman’s test to see if there
was a significant difference between the methods. Npop is 50, Rep is 100, MaxIt is 300,
the algorithm is executed in 30 independent runs, and the mean (Mean) and standard
deviation (Std) are recorded, shown in Table 3. Where Total denotes the number of
optimal times, Ranking denotes the ranking mean obtained by Friedman’s test, Final
rank denotes the ranking of the algorithm, and the shaded data in the table denote the
optimal value.

Table 2. Algorithm parameter setting

Algorithm Parameter setting Reference

PESA-II w = 0.4, c1, c2 = rand[0, 1] Corne 2001

MOPSO
pCrossover = 0.5

nCrossover = 2 ∗ round, pCrossover ∗Npop/2
Colleo 2004

MOEA/D γ = 0.5 Zhang 2007

MOFA
pCrossover = 0.5, β = 1, γ = 2

nCrossover = 2 ∗ round[pCrossover ∗Npop/2]
Yang 2013

NSGA-III α = 0.2, β0 = 1, γ = 1 Deb 2014
MOFA-TEM alpha(1) = 0.2, alpha(t) = 0.9 · alpha(t− 1), β0 = 1, γ = 1
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As shown in Table 3, for the ZDT, Deb, and Viennet test sets, MOFA-TEM obtains the
IGD optimum, and on the ZDT test set not only the IGD optimums were obtained, but
they were all 1-2 orders of magnitude higher than the suboptimal values. For the DTLZ
test set, MOFA-TEM obtains the IGD optimum on the DTLZ5-DTLZ7 test functions.
On the DTLZ1 and DTLZ4 test problems, MOFA-TEM did not obtain optimal values,
but its mean IGD values: 1.76E+02 and 7.39E-01, are of the same order of magnitude
(102,10−1 ) as the optimal mean IGD values: 1.47E+02 and 1.05E-01, indicating that there
is not much difference between the values. Among them, PESA-II and NSGA-III each
obtained 1 IGD optimum, MOFA obtained 2 IGD optimums, and neither MOPSO nor
MOEA/D obtained one IGD optimum. MOFA-TEM obtained the smallest Ranking value
of 1.84, indicating a more significant overall performance of MOFA-TEM on these test
functions. In summary, from the IGD and Friedman test results, MOFA-TEM has better
overall performance compared to the comparison algorithms, and better convergence and
diversity of solutions can be obtained in solving the MOPs.

Table 3. Comparison of MOFA-TEM and 5 classical MOEAs on IGD

Instances PESA-II MOPSO MOEA/D

Mean±Std. Mean±Std. Mean±Std.

ZDT1 1.33E-01±1.93E-02 1.09E-02±2.32E-03 3.14E-01±1.24E-01
ZDT2 1.03E-01±2.34E-02 7.28E-01±8.78E-01 1.45E+00±5.16E-01
ZDT3 1.49E-01±3.07E-02 5.00E-02±7.28E-02 5.17E-01±2.55E-01
ZDT4 1.48E+00±7.31E+00 5.48E+00±6.40E+00 4.95E+00±2.03E+00
ZDT6 1.33E-02±5.85E-03 1.02E-01±1.44E-01 2.85E+00±1.15E+00
Deb1 9.55E-03±1.47E-03 8.37E-03±9.03E-04 1.56E-02±3.28E-03
Deb2 9.60E-03±1.30E-03 8.64E-03±4.57E-04 8.06E-02±4.47E-02
Deb3 8.12E-03±1.33E-03 7.42E-03±5.76E-04 3.19E-02±1.76E-02

Viennet1 1.58E-01±7.37E-03 1.55E-01±6.84E-03 4.69E-01±4.74E-02
Viennet2 1.93E-02±3.85E-03 2.15E-02±2.46E-03 1.38E-01±6.22E-02
Viennet3 9.53E-02±1.65E-02 7.03E-02±1.01E-02 2.41E+00±1.77E-01
Viennet4 1.96E-01±2.38E-02 2.21E-01±2.17E-02 8.47E-01±1.64E-01
DTLZ1 1.71E+02±4.12E+00 1.71E+02±2.77E+00 1.57E+02±5.43E-01
DTLZ2 8.80E-02±2.76E-03 9.52E-02±3.56E-03 1.08E-01±1.22E-02
DTLZ3 1.68E+02±2.31E+01 1.99E+02±5.24E+00 1.32E+02±3.69E+02
DTLZ4 1.05E-01±1.01E-021.05E-01±1.01E-021.05E-01±1.01E-02 1.06E-01±9.37E-03 5.58E-01±7.00E-04
DTLZ5 7.14E-01±8.36E-02 7.01E-01±1.26E-01 1.28E+00±2.95E-01
DTLZ6 3.88E+00±5.23E-01 1.89E+00±1.00E+00 3.17E+00±5.17E-01
DTLZ7 3.05E-01±6.65E-02 8.31E-02±5.68E-03 2.19E+00±1.03E+00
Total 1 0 0

Ranking 3.29 3.03 5.21
Final 3 2 6
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Instances MOFA NSGA-III MOFA-TEM

Mean±Std. Mean±Std. Mean±Std.

ZDT1 2.62E-02±3.69E-03 4.70E-02±7.06E-03 3.87E-03±1.55E-053.87E-03±1.55E-053.87E-03±1.55E-05
ZDT2 4.37E-02±2.14E-02 1.35E-01±3.40E-01 3.94E-03±3.88E-053.94E-03±3.88E-053.94E-03±3.88E-05
ZDT3 3.35E-02±1.04E-02 7.65E-02±3.77E-02 4.44E-03±3.02E-054.44E-03±3.02E-054.44E-03±3.02E-05
ZDT4 1.73E-01±1.52E-01 1.98E+00±8.02E-01 3.85E-03±2.95E-053.85E-03±2.95E-053.85E-03±2.95E-05
ZDT6 2.63E-01±5.01E-02 1.47E-01±1.93E-01 4.30E-03±1.20E-054.30E-03±1.20E-054.30E-03±1.20E-05
Deb1 1.82E-02±5.15E-03 1.81E-02±9.46E-03 3.85E-03±2.75E-063.85E-03±2.75E-063.85E-03±2.75E-06
Deb2 1.46E-02±1.16E-03 3.79E-02±1.98E-02 3.85E-03±2.75E-063.85E-03±2.75E-063.85E-03±2.75E-06
Deb3 1.64E-02±3.46E-03 1.66E-02±8.87E-03 3.97E-03±1.89E-043.97E-03±1.89E-043.97E-03±1.89E-04

Viennet1 1.67E-01±4.94E-03 3.09E-01±5.43E-02 1.30E-01±2.42E-031.30E-01±2.42E-031.30E-01±2.42E-03
Viennet2 3.42E-02±3.39E-03 2.94E-02±6.03E-03 1.21E-02±1.36E-041.21E-02±1.36E-041.21E-02±1.36E-04
Viennet3 9.77E-01±6.33E-01 2.36E+00±4.15E-01 6.44E-02±1.02E-026.44E-02±1.02E-026.44E-02±1.02E-02
Viennet4 2.57E-01±2.66E-02 2.69E-01±1.90E-02 1.71E-01±6.41E-031.71E-01±6.41E-031.71E-01±6.41E-03
DTLZ1 1.47E+02±1.66E+001.47E+02±1.66E+001.47E+02±1.66E+00 1.56E+02±4.37E+00 1.76E+02±2.59E+00
DTLZ2 6.87E-02±1.41E-036.87E-02±1.41E-036.87E-02±1.41E-03 1.27E-01±2.49E-02 3.11E-01±2.98E-02
DTLZ3 9.40E+01±4.19E+01 1.12E+01±4.27E+001.12E+01±4.27E+001.12E+01±4.27E+00 1.23E+02±9.50E+00
DTLZ4 7.81E-01±1.31E-01 3.62E-01±3.34E-01 7.39E-01±2.00E-02
DTLZ5 5.95E-01±1.09E-01 8.35E-01±4.17E-01 5.04E-01±4.87E-025.04E-01±4.87E-025.04E-01±4.87E-02
DTLZ6 7.68E+00±4.91E-01 5.22E+00±3.34E+00 6.69E-01±1.22E-016.69E-01±1.22E-016.69E-01±1.22E-01
DTLZ7 1.48E-01±3.18E-02 2.44E-01±1.36E-01 6.05E-02±6.69E-046.05E-02±6.69E-046.05E-02±6.69E-04
Total 2 1 15

Ranking 3.47 4.16 1.84
Final 4 5 1

To more visually compare the convergence and distribution of MOFA-TEM with PESA-
II, MOPSO, MOEA/D, MOFA, and NSGA-III, Pareto front fitting plots were plotted,
as in Figure 2-Figure 14. where the red circles denote the solution sets obtained by the
corresponding algorithms and the black regions denote the Pareto front. The closer the
red circles are to the black region, the better the algorithm converges, and the more
evenly the red circles are distributed over the black region, the better the algorithm is
distributed. From the figure, MOFA-TEM has better optimization performance compared
to all other algorithms in obtaining PS with higher accuracy and uniform distribution on
different test functions.

(a) PESA-II (b) MOPSO (c) MOEA-D
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(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 2. Frontier fitting plot for ZDT1

(a) PESA-II (b) MOPSO (c) MOEA-D

(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 3. Frontier fitting plot for ZDT2

(a) PESA-II (b) MOPSO (c) MOEA-D
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(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 4. Frontier fitting plot for ZDT3

(a) PESA-II (b) MOPSO (c) MOEA-D

(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 5. Frontier fitting plot for ZDT4

(a) PESA-II (b) MOPSO (c) MOEA-D
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(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 6. Frontier fitting plot for ZDT6

(a) PESA-II (b) MOPSO (c) MOEA-D

(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 7. Frontier fitting plot for Deb1

(a) PESA-II (b) MOPSO (c) MOEA-D
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(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 8. Frontier fitting plot for Deb2

(a) PESA-II (b) MOPSO (c) MOEA-D

(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 9. Frontier fitting plot for Deb3

(a) PESA-II (b) MOPSO (c) MOEA-D
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(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 10. Frontier fitting plot for Viennet1

(a) PESA-II (b) MOPSO (c) MOEA-D

(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 11. Frontier fitting plot for Viennet2

(a) PESA-II (b) MOPSO (c) MOEA-D
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(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 12. Frontier fitting plot for Viennet3

(a) PESA-II (b) MOPSO (c) MOEA-D

(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 13. Frontier fitting plot for Viennet4

(a) PESA-II (b) MOPSO (c) MOEA-D
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(d) MOFA (e) NSGA-III (f) MOFA-TEM

Figure 14. Frontier fitting plot for DTLZ7

To visualize the search performance of MOFA-TEM, the convergence curves of MOFA-
TEM with MOPSO, NSGA-III, MOEA/D, PESA-II and MOFA are plotted as shown
in Figure 15. Where the horizontal coordinate represents the number of evaluations of
the algorithm and the vertical coordinate represents the convergence accuracy of the
algorithm, and the vertical coordinate is logarithmic for ease of observation. From the
figure, due to the different characteristics of different functions, the speed and accuracy of
the algorithms are different, but MOFA-TEM has higher accuracy and faster optimization
search speed. Because MOFA-TEM adopts a learning strategy with more comprehensive
population information, it prevents fireflies from conducting ineffective searches in other
directions and wasting evaluation times, which makes MOFA-TEM converge faster in the
early iterations. When other algorithms stagnate, MOFA-TEM triggers a tolerance-based
firefly state judgment mechanism to keep the population in the right search direction and
continuously search for the optimal solution. This demonstrates the better ability of
MOFA-TEM to consistently seek optimization and jump out of local extreme.

(a) ZDT1 (b) Deb2

(e) Viennet3 (f) DTLZ7

Figure 15. Convergence curves of the 6 MOEAs
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4.3. Comparison with recent MOEAs. MOFA-TEM was compared with 7 recent
MOEAs to verify the validity and competitiveness of the algorithm. Among them, the
parameter settings of HVMA-M, CFMOFA, MOEA/D-ACD and MONSFA are taken
from the related literature, and the remaining algorithm parameters are consistent with
the PlatEMO platform, shown in Table 4. For the 2-objective function, Npop is 100, Rep
is 100, MaxIt is 300; For the 3-objective function, Npop is 200, Rep is 200, MaxIt is 600.
The algorithm was run independently for 30 times and the experimental results are shown
in Table 5.

Table 4. Algorithm parameter setting

Algorithm Parameter setting

NSGA-II-SDR [32]

Top [34]
Adoption of the Parameter Settings

within the PlatEMO Platform
DGEA [35]

MONSFA [30] alpha = 0.25, β0 = 1, γ = 1

MOEA/D-ACD [31]
CR = 1.0, F = 0.5, pm = 1/n,
ηm = 20, T = 20, δ = 0.9, nr = 2

CFMOFA [33] α = 0.2, β0 = 1, γ = 1
HVMA-M [36] α = 0.2, β0 = 1, γ = 1

MOFA-TEM
alpha(1) = 0.2, alpha(t) = 0.9
alpha(t− 1), β0 = 1, γ = 1

Table 5. Experimental results of MOFA-TEM and 7 recent MOEAs on
IGD

Instances MONSFA MOEA/D-ACD NSGA-II-SDR NSGA-II-SDR

Mean±Std. Mean±Std. Mean±Std. Mean±Std.

ZDT1 2.62E-02±3.69E-03 4.70E-02±7.06E-03 3.87E-03±1.55E-05 2.60E-02±4.18E-03
ZDT2 4.37E-02±2.14E-02 1.35E-01±3.40E-01 3.94E-03±3.88E-05 9.13E-03±1.14E-03
ZDT3 3.35E-02±1.04E-02 7.65E-02±3.77E-02 4.44E-03±3.02E-05 1.36E-02±4.25E-03
ZDT4 1.73E-01±1.52E-01 1.98E+00±8.02E-01 3.85E-03±2.95E-05 8.90E-03±1.03E-03
ZDT6 2.63E-01±5.01E-02 1.47E-01±1.93E-01 4.30E-03±1.20E-05 1.88E-02±1.31E-02
DTLZ2 6.87E-02±1.41E-036.87E-02±1.41E-036.87E-02±1.41E-03 1.27E-01±2.49E-02 3.11E-01±2.98E-02 5.41E-02±9.46E-04
DTLZ3 9.40E+01±4.19E+011.12E+01±4.27E+001.23E+02±9.50E+001.23E+02±9.50E+001.23E+02±9.50E+003.74E+01±1.27E+00
DTLZ4 7.81E-01±1.31E-01 3.62E-01±3.34E-013.62E-01±3.34E-013.62E-01±3.34E-01 7.39E-01±2.00E-02 1.43E-01±4.55E-02
DTLZ5 5.95E-01±1.09E-01 8.35E-01±4.17E-018.35E-01±4.17E-018.35E-01±4.17E-01 5.04E-01±4.87E-02 5.99E-01±2.65E-02
DTLZ6 7.68E+00±4.91E-01 5.22E+00±3.34E+00 6.69E-01±1.22E-01 8.29E-01±2.16E-01
DTLZ7 1.48E-01±3.18E-02 2.44E-01±1.36E-01 6.05E-02±6.69E-04 5.90E-02±5.28E-03
Total 1 2 1 0

Ranking 4.50 4.55 3.91 4.45
Final rank 4 5 2 3
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Instances Top DGEA HVMA-M MOFA-TEM

Mean±Std. Mean±Std. Mean±Std. Mean±Std.

ZDT1 5.41E-02±2.01E-02 1.17E-01±1.02E-01 1.18E-02±4.19E-03 3.88E-03±1.23E-053.88E-03±1.23E-053.88E-03±1.23E-05
ZDT2 1.32E-01±4.94E-02 8.91E-03±5.55E-03 1.25E-02±5.30E-03 3.83E-03±5.40E-063.83E-03±5.40E-063.83E-03±5.40E-06
ZDT3 1.55E-01±5.81E-02 3.00E-01±1.38E-01 1.15E-02±2.15E-03 4.49E-03±8.58E-054.49E-03±8.58E-054.49E-03±8.58E-05
ZDT4 1.01E+01±5.01E+00 9.44E-01±6.67E-01 9.40E-03±1.47E-03 3.89E-03±6.68E-053.89E-03±6.68E-053.89E-03±6.68E-05
ZDT6 3.82E-03±1.92E-04 3.10E-03±9.74E-073.10E-03±9.74E-073.10E-03±9.74E-07 1.34E-01±9.31E-02 3.96E-03±1.50E-04
DTLZ2 5.83E-02±1.77E-03 3.93E-02±5.66E-04 1.97E-01±6.78E-02 1.27E-01±1.83E-03
DTLZ3 2.53E+00±5.06E+006.95E+01±5.66E+012.34E+01±1.44E+017.82E+01±4.61E+00
DTLZ4 5.99E-02±2.24E-03 4.15E-02±4.73E-03 2.73E-01±7.86E-02 5.47E-01±9.78E-02
DTLZ5 4.06E-03±2.37E-04 4.19E-02±1.96E-03 7.39E-01±6.45E-02 4.16E-01±3.47E-02
DTLZ6 2.62E-03±1.07E-042.62E-03±1.07E-042.62E-03±1.07E-04 2.51E-02±4.60E-03 3.33E+00±2.72E+00 5.06E-01±2.01E-03
DTLZ7 1.09E-01±8.44E-02 1.31E-01±1.26E-01 2.17E-01±1.11E-02 3.99E-02±3.82E-053.99E-02±3.82E-053.99E-02±3.82E-05
Total 1 1 0 5

Ranking 4.50 4.73 5.55 3.82
Final rank 4 6 7 1

In Table 5, MOFA-TEM obtained better results on ZDT1-ZDT4 and DTLZ7 respec-
tively, with a total of 5 optimums. Among them, MOEA/D-ACD obtained 2 optimums on
DTLZ4 and DTLZ5, MONSFA obtained 1 optimum on DTLZ2, NSGA-II-SDR obtained
1 optimum on DTLZ3, Top obtained 1 optimum on DTLZ6, and DGEA obtained 1 op-
timum on ZDT6, whereas CFMOFA and HVMA-M were both obtained. On ZDT6, the
IGD mean value of MOFA-TEM: 3.96E-03 has the same order of magnitude (10−3) as the
optimal IGD mean value: 3.10E-03, indicating that the difference between the two values
is small. Secondly, MOFA-TEM obtained the smallest Ranking value of 3.82, indicating a
more significant global performance of MOFA-TEM. From IGD and Friedman test results,
MOFA-TEM obtained optimal results in Total, Ranking and Final rank, which verified
its validity and competitiveness in the recent MOEAs.

5. Conclusion. Individuals in a classical MOFA are updated mainly by learning the
global optimum individual, which causes the population to stagnate in evolution when
the global optimum individual falls into a local optimum, and the algorithm will converge
prematurely. Especially when the MOPs become complex, the phenomenon of prema-
ture convergence of MOFA will be more and more frequent. When facing optimization
problems with complex search space such as nonconvex and discontinuous, the classical
MOFA cannot solve such problems effectively, so this paper proposes a tolerance-based
elite mutation firefly algorithm (MOFA-TEM). MOFA-TEM changes the single learning
object approach of learning only from the optimal individual, and reduces the ineffective
search of the population in unfavorable directions by learning from gbest , which con-
tains the population’s flight experience, and pbest , which has its own flight experience.
To prevent premature population stagnation, a tolerance-based judgment mechanism for
firefly status is introduced. As the number of firefly stagnation increases, the tolerance
probability increases exponentially, and when it exceeds rand() , it indicates that the cur-
rent learning object is worthless as a reference, and it will stop learning from the current
elite leader gbest , and utilize the elite mutation strategy to update gbest and produce a
new elite leader gbest∗ . By comparing MOFA-TEM with five classical as well as seven
recent MOEAs by on IGD and Friedman test, and plotting Pareto frontier fitting graphs
and convergence curves, it is verified that MOFA-TEM obtains better results when deal-
ing with different problems, which fully demonstrates the effectiveness and superiority of
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the algorithm. MOFA-TEM can be used to solve complex optimization problems in the
future.
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