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Abstract. In a deregulated electricity market, participants need accurate electricity
price forecasting tools in order to maximize their profits and utility. However, accu-
rate electricity price prediction has become a challenging task with increasing renewable
energy penetration and the extension of the power system scale. The complexity of elec-
tricity market information and insufficient model training limit the prediction accuracy
of the existing electricity price forecasting methods. This article proposes a Sequence-to-
Sequence Attention algorithm based on the Double Deep Q Network optimization method
for short-term electricity price prediction. The article first conducts the maximum infor-
mation coefficient correlation analysis to select the input sequence from historical elec-
tricity price and electrical load. Then, the Sequence-to-Sequence Attention model is pro-
posed for short-term electricity price interval prediction. Finally, the hyperparameters
of the model are optimized by the Double Deep Q Network method, which improves the
prediction accuracy and the generalization ability of the prediction model. Simulations
are carried out on Pennsylvania–New Jersey–Maryland market data and the New South
Wales electricity market to validate the proposed method. Numerical results show that
the proposed interval prediction method of electricity price has improved the prediction
interval coverage probability by up to 10.98% and reduced the prediction interval nor-
malized average width by up to 42.87% compared to four benchmark models. The results
suggest that the proposed interval prediction method has good prediction accuracy and
generalization ability, providing a powerful decision-making basis for market participants
and regulators.
Keywords: Deep learning; Sequence to Sequence; Attention mechanism; Quantile re-
gression; Probabilistic forecasting
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1. Introduction. The introduction of competition and the establishment of a compet-
itive electricity market benefit the rational distribution of energy resources, which has
become the tendency of the international electric power industry. In the electricity mar-
ket environment, accurate electricity price prediction is an essential basis for market
participants to adjust bidding strategies and hedge against financial risks [1]. However,
large-scale renewable energy integration has increased the uncertainty of the power sys-
tem and brought significant challenges to adequate supervision and safe operation of the
electricity market [2, 3]. An advanced forecasting model can undoubtedly increase elec-
tricity price forecasting (EPF) accuracy [4]. Furthermore, the interval prediction results
can help market participants to predict the power system operating conditions.

The traditional electricity price forecast studies are mainly based on point forecasting.
Chinnathambi et al. [5] presented a Multi-Layered Perceptron deep neural network for
the day-ahead EPF and the proposed method is verified in the Iberian market. Chen et al.
[6] proposed a bidirectional long short-term memory (LSTM) model for EPF. But point
forecast error is difficult to avoid, and it is difficult to realize the quantitative analysis
and estimation of forecast error fluctuation range [7]. Therefore, research on probabilistic
EPF is propelled [8]. Short-term probabilistic EPF provides a method to assess prediction
uncertainty and provide more comprehensive information on future electricity prices. The
probabilistic forecasting results of electricity price enable market participants to measure
the reliability of the forecast results and prevent possible prediction errors, which plays a
vital role in decision-making [9, 10].

Probabilistic forecasting can be divided into the statistical model and the artificial in-
telligence model [11]. However, most statistical methods are based on linear modeling and
have inferior simulation ability for complex nonlinear relations, while artificial intelligence
models have attracted attention due to their superior performance in nonlinear prediction
[12, 13, 14]. Rafiei et al. [15] proposed a hybrid model for probabilistic EPF, consisting
of the clonal selection algorithm and the extreme learning machine combined with the
wavelet preprocess. Nowotarski and Weron [16] proposed a Quantile Regression Averag-
ing (QRA) method for constructing prediction intervals. The individual point forecasts
are combined in a probabilistic setting using QRA. He et al. [17] proposed a model based
on the Nadaraya-Watson estimator, and calculated the predictive densities of electricity
price distribution. Brusaferri et al. [18] proposed a novel method for probabilistic EPF
based on Bayesian deep learning techniques, and the neural network model is designed to
support heteroscedasticity in order to avoid the common homoscedastic assumption.

Despite the existing works in the field, there are still the following research gaps. Firstly,
the electricity price is affected by various factors, the multivariate price interval predic-
tion model is worth discussing. However, the increase in the complexity of input data of
the probabilistic prediction model brings dimensional disasters, and too much redundant
data will also reduce the reliability of interval prediction. Secondly, advanced artificial
intelligence technologies such as deep learning and reinforcement learning are developing
rapidly, but the application of emerging artificial intelligence technologies in probabilistic
EPF remains to be explored. Finally, the prediction accuracy and generalization ability
are contradictory to a certain extent. To address the issues mentioned above, a Sequence-
to-Sequence (Seq2Seq) Attention network based on the Double Deep Q Network (DDQN)
optimization prediction model and the corresponding interval prediction method are pro-
posed for short-term EPF. The main contributions of this article are presented as follows:

(1) The maximum information coefficient is used to evaluate the correlation between
future electricity price and the historical electricity price and the electric load. Then, the
data with high correlation are selected to form the final input sequence of the prediction
network. The input data selection based on maximum information coefficient (MIC) can
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effectively offer suitable multivariate input data for the prediction model and effectively
improve the performance of the proposed model.

(2) A Sequence-to-Sequence Attention network (Attention-Seq2Seq) is designed to per-
form short-term EPF. Moreover, the interval prediction of electricity prices is realized by
combining the Quantile Regression (QR) method. Interval prediction can offer a range of
possible values of future electricity prices and provide a more comprehensive analysis of
uncertainty.

(3) The DDQN is adapted as the model optimization method. It can automatically
optimize the model’s hyperparameters to improve the model’s prediction accuracy and
model’s generalization. The adaptive hyperparameters make the proposed model obtain
superior results in different scenarios.

The remainder of this paper is arranged as follows: Section 2 introduces the previous
studies of electricity price forecasting. Section 3 describes the proposed DDQN opti-
mized Attention-Seq2Seq (DDQN-Attention-Seq2Seq) electricity price interval prediction
method. In Section 4, the experimental results and analysis are given, and the conclusions
are provided in Section 5.

2. Related Work. To describe the future situation of electricity price, researchers have
proposed effective prediction methods, which can be divided into two types depending on
the type of prediction result: point prediction and probability prediction. Point prediction
can obtain the possible numerical values of electricity prices in the future, while probability
prediction can provide the fluctuation range of future electricity prices with a certain
confidence level or the probability density distribution of electricity prices, reflecting the
potential uncertainty of the prediction results.

At present, machine learning methods have shown excellent performance in the field
of electricity price prediction and have been applied to both point prediction and prob-
ability prediction. Gao et al. [19] proposed a Elman Neural Network (ENN) combined
with enhanced shark smell optimization algorithm for electricity price point forecasting,
and the suggested prediction model is evaluated in various approaches. Sencan et al. [20]
proposed a deep learning method introducing discrete average true range and wavelet
transform. The proposed method analyzed the multiple time scale of input series to
extract the electricity price characteristics. The experimental results show that the pro-
posed model has superior prediction accuracy. In previous study [21], an two-stage deep
learning method is presented to achieve electricity price forecasting. The integrated spike
calibration method efficiently improves the prediction accuracy. Mousa et al. [22] used
a deep Gabor Convolutional Network (GCN) for the electricity price probability density
function prediction.

Researchers trying to optimize the prediction models to improve the prediction accu-
racy of electricity price. The existing studied about electricity price prediction model
optimization mainly focus on preprocessing the input data and optimizing the parame-
ters of the prediction models. Ghayekhloo et al. [23] processed the input data using game
theoretic method and Harmonic analysis approach, combined with the Bayesian recurrent
neural network, to achieve electricity price prediction. Qu et al. [24] used the similar day
selection approach for input data selection, and a quantile neural network is proposed
to obtain the electricity price probabilistic forecasting results. Naz et al. [25] optimized
the enhanced extreme learning machine using the gray wolf algorithm and conducted
experiments on two datasets, verifying the effectiveness of the proposed model.

3. Electricity Price Interval Prediction Model. In this part, the related technolo-
gies of the DDQN-Attention-Seq2Seq interval prediction model of electricity prices are
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presented. The structure of the proposed model and the interval prediction processes of
electricity prices are introduced.

3.1. Maximum Information Coefficient Correlation Analysis of Electricity Price
and Electrical load. Many factors influence the price of electricity, such as climate,
economy, fuel prices, transmission capacity, regulatory structure, and load demand [26,
27, 28]. In addition, the electricity price has a daily and weekly cyclical pattern. Feature
selection of electricity price and the electrical load is helpful in eliminating feature re-
dundancy. Since the relationship between these factors and electricity price is nonlinear,
MIC is used to analyze the correlation among influence variables. More precisely, MIC is
achieved based on Mutual Information (MI), which measures the nonlinear dependence
degree between variables. Moreover, the MIC overcomes inconvenience of calculating mu-
tual information among continuous variables. It can better reveal the degree of correlation
between characteristics and electricity price [29]. The scatter plot of two variables is par-
titioned into i columns and j rows, and the maximum MI between partitions is calculated.
Then, The maximum value of MI at different partition scales is normalized and taken as
the MIC value. The formula is as follows:

MIC[X, Y ] = max
|X||Y |<B(n)

(
I[X, Y ]

log2min(|X|, |Y |)

)
(1)

B(n) = 0.6 ∗ n (2)

Where I[X, Y ] represents the maximum MI, B(n) means the function of the sample size,
which represents the constraint of grid X and Y partition, n is the sample size. The MIC
value ranges from 0 to 1. Here, a larger value of mutual information means that the two
variables have a stronger correlation with electricity price, respectively.

3.2. Attention-Seq2Seq Forecasting Model of Electricity Price. The Sequence-to-
Sequence (Seq2seq) model is formed by an encoder and a decoder [30, 31]. Seq2Seq model
encodes the input sequences into uniform feature vectors and then decodes them. Thus,
the feature vector c is required to include the complete information in the original input
sequences of electricity price and electrical load. When the input sequence is too long,
it is difficult to include all information in a feature vector, which raises information loss
inevitably. Therefore, the attention mechanism [32] is introduced to strengthen the critical
information and weaken the useless information. Meanwhile, LSTM [33, 34] network has
advantages in temporal sequence processing, so this article chooses it as the basic unit
of the encoder and decoder. The structure of the Attention-Seq2Seq model is shown in
Figure 1. Where x0, x1, ..., xn are the input electricity price and load, y0, y1, ..., yn are the
output electricity price, h0, h1, ..., hn are the hidden states of encoder, d0, d1, ..., dn are the
hidden states of decoder. Explicit expressions for the Attention-Seq2Seq model are as
follows:

ht = LSTMenc(xt, ht−1) (3)

dt = LSTMdec(ŷt, dt−1) (4)

aij = softmax(eij) (5)

eij = V tanh(WA[ht, dj]) (6)

cj =

TX∑
i=1

aijhi (7)
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Figure 1. Attention-Seq2Seq Model

Where ŷi means the predicted electricity price, aij is the attention weight between the
ith hidden state and the jth output, eij is the related parameters of the encoder and
decoder’s hidden layer state, cj is the feature vector, V,Wa is the weight matrix.

3.3. Quantile Regression. The volatility and uncertainty of electricity prices are in-
evitable for the existence of power systems’ uncertainty (especially with new energy), limi-
tations of model performance, and the unpredictability of market participants’ behaviour.
Therefore, this article proposed an interval prediction model based on the combination
of DDQN-Attention-Sqe2Sqe model and quantile regression. The interval prediction re-
sult describes the uncertainties in EPF. Quantile regression studies the linear relationship
between the independent variable X and the conditional probability of the dependent
variable Y. It establishes the corresponding regression model by the conditional quantile
of the dependent variable from the independent variable of electricity price [35]. The
relevant formulas are as follows:

QY (τ | X) = α0(τ) + α1(τ)X1 + ...+ αm(τ)Xm = Xα(τ) (8)

Where τ is quantile, which is between 0 and 1, Q(τ | X) is the estimate of the response
variable corresponding to the variable X under the quantile condition.
α(τ) = [α0(τ), α1(τ), ..., αm(τ)]

T is the quantile regression coefficient defined as:

min
N∑
i=1

ρt(Yi −XT
i β(τ)) =min

β

∑
i|Yi≥XT

i β(τ)

τ |Yi −XT
i β(τ)|+

min
β

∑
i|Yi<XT

i β(τ)

(1− τ)|Yi −XT
i β(τ)|

(9)

Where N is the sample size, ρ denotes the loss function.
When the loss function reaches the minimum value, β(τ) comes to the best estimate.

Then, the estimate of the response variable at any quantile can be calculated, and the
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probability density distribution of the response variable is obtained. The functions for ρ
are as follows:

ρτ (u) =

{
τu u ≥ 0

(τ − 1)u u < 0
(10)

3.4. Double Deep Q Network. DDQN is developed based on Deep Q Network (DQN).
Compared with DQN, DDQN improves the objective function of the algorithm, which
reduces the overestimation and makes Q value closer to the true value [36]. The corre-
sponding function of Q value is as follows:

Qπ(s, a) = Eπ

[
∞∑
t=0

γtRt | s0 = s, a0 = a

]
(11)

Where π is the policy. s is the current status of the agent. a is actions that the agent
can take. γ ∈ [0, 1] is the discount factor that measures the importance of immediate
and later rewards. Rt is the reward at time t. The optimal value under the policy π is
Qπ(s, a) = maxπ Q

π(s, a).
DDQN objective function and parameter update formula are as follows:

yDDQN
t = Rt+1 + γQ (st+1, (argmin)Q(st+1, a, θ), θ

′) (12)

θ = θ + al

(
yDDQN
t −Q(s, a, θ)

)
▽Q(s, a, θ) (13)

Where yDDQN
t denotes the objective function. st+1 represents the next state. θ means the

weights of the reinforcement learning network. θ′ expresses the parameters of the target
network. al is the learning rate.

In this paper, the hyperparameters of the Attention-Seq2Seq model are optimized by the
DDQN algorithm. The search ranges of hyperparameters are set based on the empirical
values of the state space, as shown in Equation (14). The action space contains three
actions: increase, decrease, and remain the same.

η ∈ [0.001, 0.1] p ∈ [0.1, 0.3] nh ∈ [1, 128] (14)

Where η is the learning rate. p represents the dropout rate. nh means the hidden layer
neurons number of decoder.

The appropriate reward function has a significant influence on the performance of the
model. For the prediction problem studied in this paper, the coefficient of determination
R2 shown in Equation (15) is selected as the reward, and the flowchart of the DDQN
optimization process is shown in Figure 2.

R2 = 1−

{∑N
i=1(yi − ŷi)

2∑N
i=1(yi − yi)

2

}
(15)

Where yi denotes the corresponding actual electricity price, ŷi means the predicted elec-
tricity price, yi expresses the mean value of the actual electricity price.

3.5. DDQN-Attention-Seq2Seq Quantile Regression Model for Electricity Price
Interval Prediction. The quantile regression model is linear. However, the actual elec-
tricity price curve is a complex nonlinear form. Deep learning can simulate the nonlin-
ear structure from input to output and effectively solve nonlinear problems. Therefore,
this paper combines quantile regression with the DDQN-Attention-Seq2Seq deep learning
method for the nonlinear short-term electricity price prediction. According to the selected
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Figure 2. Flowchart of hyperparameter optimization by the DDQN algo-
rithm for the short-term electricity price interval forecasting model

quantile, the quantile loss function assigns different penalty values to the overestimated
and underestimated predicted values. The quantile loss function is expressed as follows:

loss(y, ŷ) =
∑
yi<ŷi

(τ − 1)|yi − ŷi|+
∑
yi≥ŷi

τ |yi − ŷi| (16)

Where τ denotes the quantile.
The conditional quantile estimation of Y is as follows:

QY (τ | X) = f [X,W (τ), V (τ)] (17)

Where W (τ), V (τ) are the weight coefficients.
In conclusion, the proposed DDQN optimized Attention-Seq2Seq model for short-term

EPF is shown in Figure 3, and the specific procedure is as follows: Step1: Data pre-
processing. Calculate the MIC between the candidate input series and the target series
of electricity price, extract the series with higher MIC values as the model’s input, and
then normalize the selected input data. Step2: Constructing and training the DDQN-
Attention-Seq2Seq model. Initialize the weight matrices and biases of the Attention-
Seq2Seq model. The weight matrices and biases are updated through iterations. And
the hyperparameters of the model are optimized by DDQN. Step3: Reach the Electricity
price interval prediction result. Specifically, obtain the PIs of electricity price at 40% and
90% confidence levels by combining the proposed model with quantile regression.

4. Simulation Results and Analysis. In this part, the proposed model is used for
electricity price interval prediction, and the model’s interval prediction performance is
evaluated as well. Finally, the generalization ability of the proposed model is discussed.
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Figure 3. Schematic diagram of the proposed short-term electricity price
forecasting methodology

4.1. Experimental Setup. In this study, the Pennsylvania–New Jersey–Maryland (PJM)
data set and New South Wales (NSW) data set are introduced in the forecasting experi-
ments to verify the effectiveness of the proposed algorithm. The first experiment dataset
comes from the PJM market data from April 1, 2019 to April 1, 2021, including the
electricity price and electric load, and one hour is selected as the time scale. Here,17544
time-period data are sampled to construct the training and testing sample set. 60% of the
dataset is taken as the training set, 20% of the dataset is taken as the validation set, and
the rest 20% is selected as the test set. The NSW market data from April 1, 2020 to April
1, 2021- nearly 8785 period data is introduced to evaluate the generalization ability of the
proposed algorithm. The algorithm simulation environment and computer configuration
are shown in Table 1.

Table 1. The computer configuration

CPU Intel Core CPU i3-8100 3.60 GHz
Environment Python3.6+tensorflow
Internal storage 16G

Training set
10526 time-steps (PJM)/
5271 time-steps (NSW)

Validation set
3509 time-steps (PJM)/
1757 time-steps (NSW)

Test set
3509 time-steps (PJM)/
1757 time-steps (NSW)

4.2. Evaluation Metrics of Electricity Price Forecasting. To assess the interval
prediction validity of the proposed forecasting method, two metrics, including Prediction
Interval Coverage Probability (PICP) and Prediction Interval Normalized Average Width
(PINAW), are selected in this paper. PICP reflects the possibility that the actual value
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falls within the predicted interval, which estimates the model’s reliability. The PINAW
reflects the sharpness of the PIs for electricity prices. The corresponding formulas are as
follows:

PICP =
1

N

N∑
i=1

λi (18)

PINAW =
1

NR

N∑
i=1

(Ui − Li) (19)

Where N is the number of prediction points, λ is 0 or 1, when the ith electricity price
value falls within the prediction interval, λ = 1, otherwise, λ = 0. R is the difference
between the maximum and minimum predicted values of electricity price, which is the
baseline value for normalization. Ui, Li are the upper and lower bounds of the prediction
interval.

4.3. Input Data Selection for Prediction Model based on MIC. In this paper,
the hourly electricity price and load data of the PJM power market from April 1, 2019 to
April 1, 2021 are selected as the input candidate of the proposed network, and the data
correlation between the inputs and the output electricity price is analyzed. The MIC
analysis results of 288 time periods (hour) are shown in Figure 4. The horizontal axis is
the period that the input variable lags behind the target electricity price, and the vertical
axis is the MIC values between the input variable and the target electricity price.
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Figure 4. MIC between the target variable of electricity price and the
candidate variables of electricity price and electrical load

In general, the MIC between the candidate variables and the target variable decreases
with increasing time distance. The closer the period, the higher the correlation of elec-
tricity prices. That is to say, adjacent periods of electricity price appear to have a higher
correlation through MIC analysis. It is mainly because any period of electricity price
contains the correlated fluctuation information of the adjacent period. A similar trend is
observed when performing MIC analysis between the electrical load and the target elec-
trical price. The blue curve in Figure 4 indicates that electricity price is tightly linked to
the electrical load. Both two MIC curves show a similarly close tendency. In addition,
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the MIC values between the target electricity price series and the candidate input series
show an obvious cyclical pattern. The electricity price in the same period of the day has
a higher MIC than the price in other time periods, showing a strong daily periodicity of
the electricity price. The MIC values reflect the correlation between the target electricity
price and the candidate variables of electricity price and electrical load. Therefore, con-
sidering the suitable input size, this article selects the electricity price and electric load
data of 8 time periods as the input sequence according to the MIC correlation analysis,
including 1-6 hours before the prediction time, 24 hours before the prediction time, and
168 hours before the prediction time.

4.4. Comparison Results of Interval Prediction for Electricity Price. Figure 5
shows the interval prediction results of short-term electricity prices under the high confi-
dence level (90%) and low confidence level (40%) in 120 hours. The prediction intervals
(PIs) under the two confidence levels and the actual electricity price have similar trend
curves. The actual value of electricity price mainly falls within the high confidence level
interval of 90% and locates close to the low confidence level interval of 40%. Moreover,
the range of prediction intervals is wider at the peak and valley than at the increasing or
decreasing period of the actual electricity price curve. This reflects the higher uncertainty
of electricity prices during the peak and valley periods. Therefore, the prediction interval
of electricity price can track the change of electricity price and well represent the fluctua-
tion of electricity price. In summary, Figure 5 realizes the visualization of the uncertainty
of future electricity prices.
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Figure 5. Interval prediction results under the high confidence level (90%)
and low confidence level (40%)

The interval forecasting results of each model under different confidence levels are given
in Table 2 to confirm the performance of the proposed method in interval prediction. The
results under 90% confidence level of the LSTM model and our proposed model in a week
are shown in Figure 6. As shown in Table 2 and Figure 6, the proposed model achieves
a superior performance of interval forecasting. In both cases of high confidence level
(90%) and low confidence level (40%), the model presented in this paper has a smaller
interval average bandwidth and a higher interval coverage. It is proved that the model
presented in this paper has improved the accuracy of short-term electricity price interval
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prediction. Although the PICP of the DDQN-Attention-Seq2Seq is close to Seq2Seq, it
has obvious superiority in PINAW, which means that the proposed method has a smaller
interval bandwidth with a similar coverage probability of prediction intervals. Therefore,
the validity of the proposed method in interval prediction is verified.

Table 2. The interval prediction results of different forecasting models
with different confidence levels

Method confidence level PICP PINAW

BPNN
40% 37.43 0.1304
90% 83.69 0.1436

LSTM
40% 37.17 0.0886
90% 85.64 0.1268

Attention-LSTM
40% 38.69 0.0986
90% 88.13 0.1214

Seq2Seq
40% 40.05 0.0967
90% 89.26 0.1016

DDQN-Attention-
Seq2Seq

40% 41.25 0.0745
90% 91.10 0.0917

 DDQN-Attention-Seq2Seq
 actual value

Figure 6. Electricity price interval prediction results of different forecast-
ing models with 90% confidence level

4.5. Comparison Results of Electricity Price Forecasting in NSW Electricity
Market. To verify the proposed model’s generalization ability, the proposed model is
tested on a different data set. The hourly power price and the regional load of NSW
from April 1, 2020 to April 1, 2021 are selected for the experiment. The forecasting
results of electricity prices are shown in Table 3. According to Table 3, the DDQN-
Attention-Seq2Seq model achieved excellent performance in the NSW data set. Our
proposed method has the maximum PICP and the minimum PINAW in the NSW data
set compared with other methods. The above results illustrate that the DDQN-Attention-
Seq2Seq interval forecasting model has higher prediction accuracy compared with other
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Table 3. The interval prediction results of different forecasting models in
the NSW electricity market

Method confidence level PICP PINAW

BPNN
40% 31.49 0.1501
90% 79.06 0.2438

LSTM
40% 35.23 0.1387
90% 83.37 0.2038

Attention-LSTM
40% 37.36 0.1366
90% 84.19 0.1894

Seq2Seq
40% 37.05 0.1264
90% 88.26 0.1714

DDQN-Attention-
Seq2Seq

40% 39.63 0.1165
90% 90.20 0.1667

methods in different markets. Accordingly, the effectiveness of model hyperparameter
optimization by DDQN is demonstrated.

Furthermore, compared with the PJM market, the overall electricity price prediction
error in the NSW market is significantly larger than in PJM with the same model. The
NSW market in Australia is highly volatile, and the correlation between the input se-
quences and the target electricity price is low. However, the PJM market data set has
less volatility and a higher correlation between input sequences and the target electricity
price. Analysis shows that the prediction error is closely related to the characteristics of
the data set.

5. Conclusions. This paper presents a short-term electricity price interval prediction
model based on the Attention-Seq2Seq network optimized with DDQN. Specifically, this
article mainly introduces the input selection technology, a Seq2Seq model combined with
the attention mechanism, the hyperparameter optimization algorithm, and the proba-
bilistic forecasting strategy. The results of MIC correlation analysis reflect the daily
periodicity of electricity price and provide the basis for model input selection. The pro-
posed prediction model of electricity price is estimated in PJM and NSW electricity
market, with two evaluation metrics and four benchmark models. In summary, the pro-
posed DDQN-Attention-Seq2Seq model shows superior forecasting reliability, sharpness,
and generalization in interval prediction compared with other electricity price interval
prediction methods. In future work, we will study multi-task forecasting or multi-scale
forecasting of electricity price. Besides, the impact of micro-grid connection on electricity
market is also an interesting topic.
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