
Journal of Network Intelligence ©2024 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 9, Number 1, February 2024

Improved PBFT Algorithm Based on Credit
Evaluation

Zheng-Yi Tang

School of Computer Science and Mathematics
Fujian University of Technology

Xuefu South Road, Fuzhou City, Fujian Province, 350118, China
Key Laboratory of Hunan Province for Mobile Business Intelligence

Hunan University of Technology and Business
Yuelu Road, Changsha City, Hunan Province, 410205, China

tangzy84@126.com

Tian-Wei Ma

School of Computer Science and Mathematics
Fujian University of Technology

Xuefu South Road, Fuzhou City, Fujian Province, 350118, China
mtw8704@gmail.com

Jin-Shui Wang∗

School of Computer Science and Mathematics
Fujian University of Technology

Xuefu South Road, Fuzhou City, Fujian Province, 350118, China
Key Laboratory of Hunan Province for Mobile Business Intelligence

Hunan University of Technology and Business
Yuelu Road, Changsha City, Hunan Province, 410205, China

wangjinshui@fjut.edu.cn

Jia-Huan Huang

School of Computer Science and Mathematics
Fujian University of Technology

Xuefu South Road, Fuzhou City, Fujian Province, 350118, China
huangjiahuan6@163.com

∗Corresponding author: Jin-Shui Wang

Received April 6, 2023, revised July 25, 2023, accepted September 30, 2023.

51



52 Z.-Y. Tang, T.-W. Ma, J.-S. Wang and J.-H Huang

Abstract. As blockchain technology advances rapidly, its core component, the consen-
sus algorithm, has been widely applied. Despite the widespread use of the PBFT algorithm
in consortium blockchains, it has several issues, such as arbitrary selection of the pri-
mary node, insensitivity to node network changes, high communication overhead, and
low consensus efficiency. To address these issues, an improved Byzantine fault-tolerant
algorithm (DC-PBFT) is proposed. Firstly, a dynamic node adjustment mechanism is
established to enable the system to respond to node joining and leaving. Furthermore, a
hierarchical analysis model is constructed to score the comprehensive strength of nodes,
and reliable nodes are selected as consensus nodes according to the scores. The VRF
algorithm is introduced to elect backup primary nodes and a primary node to ensure
the randomness and unpredictability of the primary node. Finally, the PBFT consen-
sus process is simplified to reduce communication overhead between nodes. Experimental
findings demonstrate that the DC-PBFT outperforms the PBFT algorithm in fault tol-
erance, communication overhead, latency, and throughput, boasting increased consensus
efficiency and stability. As a result, it is suitable for consortium blockchain with high
transaction volume.
Keywords: Blockchain; Consensus algorithm; Byzantine fault-tolerant algorithm; Con-
sortium blockchain; VRF algorithm

1. Introduction. In 2008, the emergence of Bitcoin [1] not only set off a wave of digi-
tal currency but also brought new technical ideas to distributed systems. Blockchain [2]
originated from Bitcoin and integrates technologies such as cryptography [3], consensus
algorithm, P2P network, and smart contract [4]. Its essence is a distributed ledger, where
each block body is equivalent to a ledger, and the transaction data on the chain is recorded
in each distributed ledger. Blockchain is a data structure that is closely connected accord-
ing to the actual order. The blocks in the chain represent the transmission transactions
between users in chronological order. Cryptography is the foundation of blockchain tech-
nology, and it plays a key role in IoT devices and cloud computing [5], healthcare environ-
ments [6], and secure smart home environments [7], etc., helping blockchain technology
to ensure information security in blocks. Currently, the application areas of blockchain
include digital currencies, financial transactions, supply chain [8], and information secu-
rity. Blockchain technology has greatly improved many research work. such as, Chen
et al. [9] developed a novel medical data sharing plan that uses blockchain to integrate
the resources of each hospital and provide a secure distributed environment to avoid
single-point attacks. Mei et al. [10] proposed a secure and effective blockchain-enabled
privacy-preserving authentication scheme, which supports unconditional anonymity and
data batch integrity verification while greatly simplifying key management issues. Com-
bining the characteristics of the blockchain, Chen et al. [11] proposed a new signature
exchange protocol called DFSE, which improves the fair transaction problem in metaverse.

Blockchain can be divided into three types based on their openness and application
scenarios: public blockchain, consortium blockchain, and private blockchain. In public
blockchain, nodes can freely join or exit at will without additional verification. It usually
using the proof-of-work (POW) [12] consensus algorithm, which is utilized by Bitcoin,
realizes complete decentralization. But it requires a lot of computing power, leading to
resource waste and low consensus efficiency. Private blockchain is typically applied within
enterprises which is a closed system. The write permissions of each node are controlled
internally. Consortium blockchain is used for several organizations or enterprises with
mutual interests, where the blockchain is maintained jointly by the consortium. Each
member node’s joining or exiting requires an audit. Although member nodes have the
same goal, there may be Byzantine nodes among them, which lead them to distrust each



Improved PBFT Algorithm Based on Credit Evaluation 53

other. So the commonly used consensus algorithms include Practical Byzantine Fault
Tolerance (PBFT) [13, 14], Paxos [15] , Raft [16], and Gossip [17].

In 2015, the Linux Foundation launched the open-source project Hyperledger, which
utilizes the PBFT algorithm as its consensus mechanism. While this algorithm has
proven effective in addressing Byzantine problems in distributed systems within con-
sortium blockchain. However, it also has many limitations. Firstly, as the algorithm
necessitates all nodes in the consortium blockchain to participate in the consensus, an in-
crease in node count leads to a significant rise in consensus delay and network bandwidth
requirements. Moreover, the classic PBFT algorithm also cannot dynamically sense node
addition or departure. Secondly, the primary node is selected based on the view number
and the node counts. Malicious nodes have a chance to become the primary node, which
affects system security and causes frequent view changes. Finally, the three-phase proto-
col in the PBFT algorithm requires multiple rounds of communication between consensus
nodes, leading to low communication efficiency and poor scalability. Consequently, the
PBFT algorithm is not well-suited for scenarios with numerous nodes. To address these
issues, this paper proposes an improved Byzantine fault-tolerant algorithm, with the main
focus of the research outlined as follows:

(1) A mechanism for dynamically adjusting nodes has been designed, enabling nodes
to join and exit the network freely. The system can dynamically sense and make corre-
sponding process adjustments to ensure that the new nodes will not affect the consensus
process.

(2) The Analytic Hierarchy Process (AHP) is employed to assess node credibility, with
nodes classified into two categories: backup nodes and consensus nodes based on their
ranking. In the consensus nodes, the Verifiable Random Function (VRF) is utilized to
select the backup primary node, and the highest-scoring backup primary node becomes
the primary node. Once primary node responds with timeout or behaves maliciously,
the highest-scoring backup primary node will assume the role of the new primary node
immediately, avoiding triggering view change.

(3) The consensus protocol is optimized by excluding backup nodes from the consensus
process and simplifying the commit phase, thereby reducing communication complexity.

The rest of the paper is organised as follows. Section 2 reviews related research on
improved PBFT algorithm. The following section discusses the consensus process of the
PBFT algorithm. Section 4 outlines the proposed improvements to the PBFT algorithm,
which includes the dynamic node adjustment mechanism and trust mechanism. In section
5, the performance test and security analysis of PBFT and DC-PBFT algorithms are
carried out respectively. The last section draws conclusions and analyzes direction of
future work.

2. Related Work. Currently, many researchers have proposed improvement methods
for the shortcomings of consensus algorithms. Gao et al. [18] proposed selecting a group
of primary nodes from the consensus nodes based on trust values, replacing a single pri-
mary node, which reduces the probability of view change and optimizes communication
complexity. However, it is vulnerable for attackers to add a great number of nodes to forge
trust scores, leading to the group controlled by the attacker and disrupting the consensus
process. Zhang et al. [19] combined ring signatures technology with consensus algorithms
and used associated ring signature to ensure the privacy of members in the consortium
blockchain. However, the encryption and decryption process of ring signatures increases
the time delay, leading to a decrease in consensus efficiency. Liu et al. [20] improved
response mode. He combined DPoS with PBFT to optimize the composition of consensus
nodes and improve algorithm performance. However, due to limited network bandwidth,



54 Z.-Y. Tang, T.-W. Ma, J.-S. Wang and J.-H Huang

consensus efficiency is still affected by network congestion. Fang et al. [21] introduced
a rating mechanism to classify nodes into three categories, simplifying the confirmation
phase in the consistency protocol, and reducing communication overhead. Although the
performance of the algorithm has been optimized, the sending and confirmation of mes-
sages are controlled by the primary nodes, weakening the multi-center feature of the
consortium blockchain. Aublin et al. [22] achieved the reliability of consensus through
resource redundancy. And introduced the concept of random numbers which weakens the
authority of the primary node. Nevertheless, the algorithm’s application scope is limited.
When the primary node broadcasts information, the consensus nodes require a lot of time
to verify the response, resulting in low efficiency.

Tang et al. [23] introduced a trust rating mechanism and simplified the pre-prepare
phase to make the algorithm suitable for high-frequency trading scenarios. Li et al. [24]
grouped the nodes into different layers and limited the intra-group communication to
reduce communication complexity. Xie et al. [25] elected the primary node based on the
Probabilistic Language Term Set (PLTS) to improve consensus efficiency. Jiang et al. [26]
proposed a scalable Byzantine fault tolerance algorithm based on a tree topology network
(STBFT), which can take different steps to reach consensus according to the abnormal
situation of the system. Wang et al. [27] combined the ideas of DPoS and PBFT to design
a local blockchain network consensus algorithm (LBNC) to achieve on-chip consensus,
which increases the number of nodes that the system can accommodate by processing
transactions in parallel with multiple shards. Wang et al. [28] proposed an improved
practical Byzantine fault-tolerant consensus mechanism VPBFT based on Verifiable Delay
Function (VDF), which improves the problems of unreasonable selection of main nodes and
high transaction latency. However, these improvement methods mostly focus on improving
consensus efficiency and increasing scalability, and rarely consider fault tolerance and
dynamic adjustment of node status.Therefore, according to the improvement measures of
the above researchers, this paper proposes a credit evaluation based PBFT algorithm.

3. PBFT algorithm. The Byzantine Generals Problem refers to the consistency proto-
col problem. It arises when the generals of the Byzantine army are required to reach a
unanimous decision about whether to launch an attack against an opposing army, while
some of the generals are traitors. When the identity of the traitors is known, the task of
the loyal generals is to agree on a course of action without succumbing to the influence of
the traitors, thus forming the Byzantine Generals’ Problem. The PBFT Algorithm was
developed to resolve this problem in distributed systems. It can handle up to f Byzantine
nodes in a network of N nodes. The system is considered safe and reliable when f is less
than N/3. Figure 1 shows the operation of the PBFT algorithm.
1. Request phase: The client initiates this phase by sending a request to the primary

node.
2. Pre-prepare phase: Upon receiving the request, the primary node broadcasts it to

the replica nodes. The replica nodes then enter the pre-prepare phase where they agree
on the request’s order and create a digest of it.

3. Prepare phase: In this phase, the replica nodes send a prepare message to each other
to validate the request’s digest and confirm their agreement on its order.

4. Commit phase: Once a node receives prepare messages from 2f replica nodes (f
being the number of faults the network can tolerate), it enters the commit phase. In this
phase, nodes send a commit message to each other to confirm their agreement on the
request’s content.

5. Reply phase: Once a node receives commit messages from 2f + 1 replica nodes, it
executes the request and sends a final result to the client.



Improved PBFT Algorithm Based on Credit Evaluation 55

Figure 1. PBFT algorithm consensus flow chart

4. Improve the consensus mechanism. In order to provide a consensus algorithm
that can dynamically adjust nodes and has high scalability, low latency and high through-
put, so that it can adapt to the high transaction volume environment of the consortium
blockchain. This paper proposes an improved PBFT algorithm based on dynamic adjust-
ment and credit election– DC-PBFT. Its main flow is illustrated in Figure 2.

The DC-PBFT algorithm evaluates the initial scores of the nodes through several eval-
uation indicators and then categorizes them according to their ranking. The top-ranked
nodes are chosen as consensus nodes to take part in the consensus process. Within the
consensus nodes, the VRF algorithm is employed to select the backup primary node and
the primary node, which solves the problem of arbitrary selection of the primary node
and easily triggering view change, thus ensuring consensus efficiency and security. After
consensus is complete, the primary node evaluates the node’s honesty and adjusts their
scores. After every 50 rounds of consensus, the node classification will be readjusted to
ensure that more reliable nodes participate in the consensus.

4.1. Node dynamic adjustment. Due to the inability of the PBFT algorithm to dy-
namically perceive the joining or leaving of each node, it has significant limitations in a
high transaction volume environment. This paper designs a node dynamic adjustment
mechanism to address this problem.

4.1.1. Dynamically add nodes. Consensus nodes and backup nodes are two types of nodes
in the network. To avoid affecting the consensus process, newly added nodes are first
classified as backup nodes. The joining of new nodes needs to go through four phases,
which are illustrated in Figure 3:

Join-Request phase: The new node sends a joining message to all nodes in the system,
including the identity information, IP address, timestamp, and signature of the new node.

Check phase: The consensus node will verify the identity of new node, check whether
the node has any bad or illegal behavior, and broadcast messages to other consensus nodes
after the verification is passed. When the consensus node receives 2f + 1 messages, it
proceeds to the next phase.



56 Z.-Y. Tang, T.-W. Ma, J.-S. Wang and J.-H Huang

Figure 2. Algorithm flow chart

Figure 3. Node dynamic addition flow chart



Improved PBFT Algorithm Based on Credit Evaluation 57

Confirm phase: The consensus node broadcasts the authentication passing information
to the backup node and the new node, and the primary node will add log information to
the confirmation information so that the new node can synchronize.

Synchronization phase: The new node synchronizes with the network based on the log
content broadcast by the primary node. After synchronization, it broadcasts to all nodes.
The new node officially joins the system network and is classified as a backup node.

4.1.2. Node exit. Consensus node and backup node have different procedures for exiting.
The consensus node needs to switch to a backup node before exiting, which can be divided
into three phases, as shown in Figure 4:

Figure 4. Node active exit flow chart

Switch-request phase: The node actively requests to switch to the backup node, and
broadcasts the request to all nodes. Before fully confirming the switching of the backup
node, it still needs to continue to complete the consensus.

Check phase: The consensus node broadcasts to other consensus nodes to confirm
receipt of a switch request.

Confirm phase: Upon receiving f+1 confirmation requests, the primary node broadcasts
the node i switching success information to all nodes and switches it to a backup node.
Upon receiving the information, each node updates its local log accordingly.

The exit of the backup node is divided into two phases:
Quit-request phase: The backup node sends an exit request to all nodes.
Reply phase: The node that received the request updates the log. The content includes:

deleting the information of the exit node, updating the overall number of nodes, and
changing the view number to v+1. After updating, broadcast a reply message to the exit
node. The exit node that receives the reply officially exits the network.

4.2. Trust mechanism. This paper proposes the DC-PBFT algorithm. The nodes’
overall strength is evaluated using the AHP, which results in their classification into
backup nodes and consensus nodes according to their respective scores. Then the backup



58 Z.-Y. Tang, T.-W. Ma, J.-S. Wang and J.-H Huang

primary node is selected from the consensus nodes through the VRF algorithm. The
backup primary node with the highest score will be the primary node. The remaining
backup primary nodes not only require participating in the consensus but also need to use
the same view to record the pre-generated blocks. When the primary node responds with
timeout or acts maliciously, the backup primary node with the highest score is selected
to take over which will not trigger view change. The nodes do not need to ensure that
2f + 1 nodes believe prepared(m, v, n, i) is true through the commit phase.

4.2.1. Node initial score. The consortium blockchain is composed of members from a
specific industry, such as insurance, banking, and securities. For this type of blockchain,
there are certain differences in the Generated Blocks (GB), Transaction Processing Time
(TPT), Social Reputation (SR), Historical Reliability (HR), and Processed Transactions
(PT) of different member nodes. Therefore, the comprehensive strength of nodes can be
evaluated according to multiple indicators. The paper argues that the stronger the nodes’
overall strength, the higher their security and stability, and the less likely they are to
behave maliciously. The initial score calculation steps are as follows:

(1) Determine the regulatory node. The system assigns numbers 1, 2, ..., N to each
node in the consortium blockchain, and then generates a random number between these
numbers. The node with the assigned number corresponding to the random number is
selected as the regulatory node.

(2) Rating. The node scores other nodes in the chain on the five indicators of ”GB,
PT, TPT, SR, and HR”. The scoring range is 1-10. If there is no intersection with some
nodes, the score is directly set to 5. After scoring, the results will be stored in the local
log and sent to the regulatory node. After the regulatory node collects all node data,
calculate the mean value according to Equation (1).

x̂k
i =

∑N
j=1 x

k
j→i

N
(1)

Where x̂k
i is the mean value of the k-th index for the i-th node. For the k-th index, xk

j→i

is the score given by the j-th node to the i-th node. N is the total number of nodes.
(3) Build hierarchical model [29]. The target layer is the initial score of the node, and

the criterion layer is divided into ”GB, TP, TPT, SC, HR” five indicators, the solution
layer is each node in the consortium blockchain. The hierarchical structure is shown in
Figure 5.

Figure 5. Hierarchy model



Improved PBFT Algorithm Based on Credit Evaluation 59

(4) Establish a comparison matrix. It is formed by comparing five indicators in pairs,
using the 1-5 point scale method, and using aij to represent the scale. As shown in Table
1.

Table 1. Comparison matrix

i
j

GB PT TPT SC HR Weight

GB 1 5 3 2 3 0.4121
PT 1/5 1 1/2 1/3 1/3 0.0682
TPT 1/3 2 1 1/2 1/2 0.1181
SC 1/2 3 2 1 1 0.2078
HR 1/3 3 2 1 1 0.1938

The higher the value of aij, the more important the index i is than the index j. If aij
equal to 1, the index i and the index j are equally important. After generating the matrix,
the weight allocation is checked for its validity using Equation (2-3). If CR < 0.1, it is
determined that the weight allocation meets the consistency requirements. Otherwise the
data in the matrix needs to be adjusted.

CI =
λmax − n

n− 1
(2)

CR =
CI

RI
(3)

Where λmax is the largest eigenvalue, CR is the consistency ratio, CI and RI are the
consistency index and random consistency index, respectively. n is the order of the matrix.

(5) Compute the initial score. The regulatory node will calculate the initial scores of
each node based on the Equation (4).

X̂i =

∑5
k=1 x̂

k
i · wk

5
(4)

Where X̂i is the initial score of the i-th node. wk is the weight of the k-th indicator.
After obtaining the initial scores, the regulatory node will classify the nodes according

to the scores, and send the scores and the data calculated in each phase to other nodes. If
there are nodes that have doubts about the final results, they can ask all nodes for their
own scores to check. If there is a node malicious score, the regulatory node will check the
log information to determine whether the node’s score is honest. If the regulatory node
behaves maliciously and tampers with the data, it will be removed from the consortium
blockchain once confirmed, and the system will recalculate the initial scores according to
the above process.

4.2.2. Node allocation and update. In the DC-PBFT algorithm, consensus nodes and
backup nodes are two types of nodes with different roles in the consortium chain. A
small subset of consensus nodes is chosen to serve as backup primary nodes and primary
nodes, as shown in Figure 6.

The backup nodes are used to receive and synchronize the data broadcast by the pri-
mary node, but they do not engage in the consensus process. For newly added nodes, they
are directly assigned to the backup nodes to maintain the consensus process and prevent



60 Z.-Y. Tang, T.-W. Ma, J.-S. Wang and J.-H Huang

Figure 6. Hierarchy model

it from being affected. The consensus nodes participate in the block consensus, are re-
sponsible for receiving the transaction information transmitted by the primary node and
verifying the received information to prevent any malicious behavior from other nodes.

The primary node handles the client’s request by receiving it, assigning a sequence
number, and packaging the transaction into a pre-generated block. In addition to par-
ticipating in the consensus, the backup primary node also needs to package transactions
into its own pre-generated blocks. If the primary node responds with timeout or behaves
maliciously, the highest-scoring backup primary node will assume the role of the new
primary node, completing the consensus without triggering a view change.

Nodes are ranked based on initial scores, and the top a(0 < a ≤ 1) of nodes will
be placed in the consensus domain. a represents the ratio of the number of nodes in the
consensus domain to the total nodes. Nodes outside this domain are designated as backup
nodes, and the consensus domain must have at least N ≥ 3F +1, where F is the number
of Byzantine nodes within the consensus domain. In the context of consortium blockchain
applications, the number of consensus nodes is set at half the total node count. But in
the actual application process, the proportion of consensus nodes and backup nodes can
be adjusted according to network node count and credibility.

After each consensus is completed, the primary node will broadcast the consensus result
to all nodes and update the node’s scores. For nodes whose broadcast messages during
the consensus process are consistent with the final message, the scores will be increased by
0.01, and if they are inconsistent, the scores will be reduced by 0.05. If the primary node
fails or is successfully challenged by other nodes, its scores will be reduced by 5 and will be
directly demoted to the backup node, while the score of the challenging node is increased
by 0.02. After every 50 rounds of consensus, the backup nodes and consensus nodes will
be readjusted, and new backup primary nodes and primary node will be selected. The
above process is shown in algorithm 1. In this way, the number of nodes participating in
the consensus can be reduced, the blockchain consensus process can be accelerated and
significantly enhances the network’s dynamism and robustness.

4.2.3. Primary node selection. The traditional PBFT algorithm selects the primary node
according to the view number and node count. The identity of the primary node is easily
predicted by malicious nodes, which will be attacked and destroy the stability of the
network. The DC-PBFT algorithm uses VRF [30] to select the primary node among the



Improved PBFT Algorithm Based on Credit Evaluation 61

Algorithm 1: Update scores

Input: Node scores Xi, Consensus result R, Broadcast message set M
Output: Updated scores X ′

i

1 if primary node completes consensus then
2 broadcast R to all nodes
3 for each mi ∈M do
4 if mi == R then
5 X ′

i ← Xi + 0.01;
6 else
7 X ′

i ← Xi − 0.05;
8 end
9 end

10 if primary node response timeout or is successfully challenged by node i then
11 X ′

p ← Xp − 5.00 // Xp is the score of primary node

12 backup node ← primary node
13 X ′

i ← Xi + 0.02
14 re-select new primary node from backup primary nodes
15 add the backup node with the highest score to the consensus domain
16 end
17 return X ′

i

18 end
19 if consensus rounds == 50 then
20 readjust the node classification according to the X ′

i

21 end

consensus nodes. The VRF ensures that malicious nodes cannot know the identity of the
primary node before the consensus starts, which enhances the security of the algorithm.
The selection process is as follows:

(1) All consensus nodes execute the primary node selection algorithm. The input of
the algorithm is the node private key SK and the random seed s. The output is hash
value and zero-knowledge proof, as follows:

s = hash(PK, block − height) (5)

result = V RF Hash(SK, s) (6)

(r, p) = V RF proof(SK, s) (7)

Among them, PK is the public key, block− height is the height of the current block, r is
a random number, and p is a zero-knowledge proof.
(2) The node judges whether it is a backup primary node according to the Equation

(8).


yes,

hash(r)

2hashlen
< λ

no,
hash(r)

2hashlen
≥ λ

(8)

Among them, λ is the threshold, and its value range is dynamically adjusted according to
the number of nodes. hashlen is the length of the output result of the SHA-256 algorithm.



62 Z.-Y. Tang, T.-W. Ma, J.-S. Wang and J.-H Huang

(3) Nodes that meet the threshold requirements broadcast (r, p, yes, rank) to other
nodes, where rank is the initial score ranking. The nodes that receive the message will
verify according to Equation (9).

hash(r)

2hashlen
< λ && V erify(r, s, p, PK) (9)

Upon successful verification, the node will compare the rank of the backup primary node
and choose the highest-ranked node as the primary node. Subsequently, the node sends
an acknowledgment message to the main node. After receiving f + 1 acknowledgment
messages, the backup primary node confirms its role as the primary node and initiates
the consensus process by packaging transactions into a new block.

4.3. DC-PBFT consensus process. After scoring the nodes, divide the consensus do-
main and start to execute the 4-phase consensus protocol of DC-PBFT algorithm, as
shown in Figure 7.

Figure 7. DC-PBFT algorithm consensus flow chart

1. Request phase: The client sends a request message < REQUEST, o, t, c > δc to the
primary node, where o represents the operation, t represents the timestamp, c represents
the client, and δc represents the client’s signature.
2. Pre-prepare phase: In this phase, the primary node will assign a sequence number

n to the request message, and broadcast the pre-prepare message to the consensus node.
The content of the pre-prepare message is << PRE − PREPARE, v, n, d, x > δp,m >,
among them, d is the request digest, x is the initial score, δp is the primary node’s
signature, and m is the details of the request.

3. Prepare phase: In this phase, the backup primary node will use the same view to
temporarily record the pre-generated blocks. If the primary node responds with timeout
or behaves maliciously, the highest-scoring backup primary node will assume the role
of the new primary node immediately. The node that receives the pre-prepare message
will verify it. The verification content includes: whether the signature of the message
is forged; whether the request sequence number n is between the waterline h and H;



Improved PBFT Algorithm Based on Credit Evaluation 63

whether the sequence number n is assigned to only one request in the current view. After
the verification, the node will broadcast a prepare message < PREPARE, v, n, d, i, x > δi
to other members in consensus domain.

4. Reply phase: Once consensus nodes received more than 2/3 prepare messages, it will
send a reply message < REPLY, v, t, c, i, x, r > δi to the primary node, where r represents
the reply result of node i. If the primary node receives f + 1 identical execution results,
including the same r and t in the message, it means that the consensus is reached. The
primary node will broadcast the consensus result to the client and all nodes.

5. Experiment analysis. The experimental analysis of the PBFT and DC-PBFT algo-
rithms from four perspectives: fault tolerance, communication overhead, consensus delay,
and throughput. We have simulated the performance of the PBFT and DC-PBFT algo-
rithms using Go, and created clients and nodes with different addresses locally by opening
multiple ports. The experimental environment is Intel Core i5-7300HQ CPU, Windows
10 operating system, 16GB memory, and 256GB SSD.

5.1. Fault Tolerance Analysis. The rate of Byzantine fault tolerance plays a crucial
role in determining the system’s stability, as the number of Byzantine nodes directly
impacts the success of the consensus. In a network with a total number of nodes of N ,
(N − 1)/3 is the maximum number of Byzantine nodes allowed in the PBFT algorithm.
Section 4.2.2 shows that the DC-PBFT algorithm selects the top a(0 < a ≤ 1) of nodes in
the initial integral ranking as consensus nodes, allowing it to tolerate (aN−1)/3 Byzantine
nodes within the consensus nodes, where a is the proportion of consensus nodes. Assuming
that all nodes outside consensus domain are Byzantine nodes, then DC-PBFT algorithm
can tolerate (3N − 2aN − 1)/3 Byzantine nodes. The maximum tolerance ratios of the
two algorithms for Byzantine nodes are shown in Equation (10):

F =
3N−2aN−1

3
N−1
3

=
3N − 2aN − 1

N − 1
(10)

For consensus nodes with different proportions, a visualized three-dimensional graph
has been generated generated using Python, as shown in Figure 8:

Among them, the value of a are 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 respectively. And N
ranges from 10 to 100, increasing by 0.1 for each experiment. The results show that for
values of a less than 1, the F value is always greater than 1, indicating that the DC-PBFT
algorithm consistently has a higher fault tolerance. This demonstrates that the system
employing the DC-PBFT algorithm is more stable.

5.2. Communication overhead. Communication overhead pertains to the average num-
ber of times a consensus node performs information interaction. Assuming there are N
nodes in the network, and the probability of primary node failure is P . The communi-
cation times of each phases in the PBFT algorithm are (N − 1),N(N − 1),N(N − 1), N
respectively. The communication times during a view change upon primary node failure is
N(N−1), so the communication overhead of the PBFT algorithm is 2N2−1+P (N2−N).
The DC-PBFT algorithm selects aN(0 < a ≤ 1) nodes to complete consensus. Then

the communication times for pre-prepare, prepare and reply are (aN − 1), aN(aN − 1)
and (aN − 1) , respectively. After reply phase, the primary node needs to disseminate
N consensus message to all nodes and client. When the primary node fails, the backup
primary node with the highest score broadcasts (N−1) election certification message to all
nodes. The remaining nodes confirm (N −1)(N −1) interactively, and then reply (N −1)



64 Z.-Y. Tang, T.-W. Ma, J.-S. Wang and J.-H Huang

Figure 8. Comparison of fault tolerance between DC-PBFT and PBFT

to the new primary node. The total communication times is a2N2+N(a+1)+P (N2−N).
The communication overhead ratio is shown in Equation (11):

C =
a2N2 +N(a+ 1)− 2 + P (N2 − 1)

2N2 − 1 + P (N2 −N)
(11)

The DC-PBFT algorithm sets a to 0.5, and the visualized three-dimensional graphics
of Equation (11) are obtained through Python, as shown in Figure 9:

Figure 9. Comparison of communication overhead between DC-PBFT
and PBFT

Regardless of the variations in the number of nodes and the primary node’s failure
probability, the figure shows that the ratio of communication times is always less than 1.



Improved PBFT Algorithm Based on Credit Evaluation 65

This indicates that the DC-PBFT algorithm has fewer communication overhead, which
can better improve consensus efficiency.

5.3. Consensus Latency. Consensus latency signifies the duration from the instant
a client submits a transaction request to the primary node until the client obtains the
transaction confirmation. Latency serves as a crucial metric for assessing the performance
of a consensus algorithm. A shorter delay corresponds to a quicker consensus completion
and heightened system efficiency. In this experiment, the node count (N) escalated from 4
to 49. For the DC-PBFT consensus algorithm, the consensus node count was configured at
N and 0.5N . The consensus latency for both PBFT and DC-PBFT algorithms underwent
multiple tests, with the average value representing the final outcome. The results are
displayed in Figure 10:

Figure 10. Comparison of consensus delay between DC-PBFT and PBFT

The experimental findings indicate that the DC-PBFT algorithm outperforms the
PBFT algorithm concerning delay. This superiority is primarily attributed to the DC-
PBFT algorithm’s optimization of the consensus process, which decreases communication
volume and the quantity of consensus nodes. As the number of nodes expands, the DC-
PBFT algorithm with a consensus node number of 0.5N has a more gradual growth trend
and higher stability, and is suitable for large consortium blockchain environments with
multiple members.

5.4. Throughput. Throughput, a crucial metric for evaluating a system’s transaction
processing capacity, denotes the quantity of transactions executed per time unit. In
blockchain applications, it reflects the total number of transactions from transaction
sending to transaction confirmation within a certain period of time under certain net-
work conditions, expressed as TPS. In this experiment, the consensus node count ranges
from 5 to 50 in increments of 5. For different numbers of nodes, 1000 transaction requests
are sent for each test, and the time to complete the transaction is recorded under differ-
ent numbers of nodes. Subsequently, the number of transactions finalized per second is
calculated. Figure 11 illustrates the results.

The figure illustrates that as the consensus node count escalates, the throughput of
both algorithms progressively declines. The DC-PBFT algorithm’s average throughput is



66 Z.-Y. Tang, T.-W. Ma, J.-S. Wang and J.-H Huang

Figure 11. Comparison of throughput between DC-PBFT and PBFT

359 TPS, while the PBFT algorithm’s is 301 TPS, with the DC-PBFT algorithm consis-
tently surpassing the PBFT algorithm in throughput. When the node quantity exceeds
40, the declining trend of the DC-PBFT algorithm is more gentle. Therefore, the DC-
PBFT algorithm can better improve transaction efficiency in the consortium blockchain
environment.

6. Conclusions. To address the excessive redundancy of the three-phase protocol, the
inability of the system to dynamically sense node joining and quitting, and the overly
arbitrary primary node selection method. This article proposes DC-PBFT algorithm.
Firstly, the DC-PBFT algorithm designs a node adjustment mechanism, enabling the
system to dynamically recognize nodes joining and leaving. Secondly, the algorithm uses
a trust mechanism to score and classify nodes and introduces a VRF algorithm to select
the primary and backup nodes in the consensus nodes, ensuring the unpredictability of
the primary node selection. Finally, the three-phase protocol is improved by selecting
reliable nodes for consensus participation and simplifying the communication mechanism.
Experimental outcomes demonstrate that the DC-PBFT algorithm is superior to the
PBFT algorithm in many aspects such as fault tolerance, delay, and throughput, and has
significantly improved consensus efficiency and system stability. DC-PBFT algorithm is
more suitable for consortium blockchain with high transaction volume. In future research,
the node scoring rules will be more detailed, the consensus protocol will be optimized,
and the consensus efficiency and stability will be further improved. Explore how to make
PBFT safe and correct under the asynchronous network model, that is, in the presence of
message loss, out-of-order or delay. And extend the PBFT algorithm to new application
scenarios, such as the Internet of Things or edge computing.

Acknowledgment. This work is partially supported by Natural Science Foundation of
Fujian Province (No. 2020J01877), and Open Research Fundation of Key Laboratory of
Hunan Province (No. 2015TP1002). The authors also gratefully acknowledge the helpful
comments and suggestions of the reviewers, which have improved the presentation.



Improved PBFT Algorithm Based on Credit Evaluation 67

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized business review, 2008,
[online]. Available: http://www.bitcoin.org/bitcoin.pdf.

[2] Y. Yuan, and F.-Y. Wang, “Blockchain: The State of the Art and Future Trends,” Acta Automatica
Sinica, vol. 42, no. 4, pp. 481–494, 2016.

[3] T. M. Fernandez-Carames, and P. Fraga-Lamas, “Towards post-quantum blockchain: A review on
blockchain cryptography resistant to quantum computing attacks,” IEEE Access, vol. 8, pp. 21091–
21116, 2020.

[4] W. Zou, D. Lo, and P. S. Kochhar, “Smart contract development: Challenges and opportunities,”
IEEE Transactions on Software Engineering , vol. 47, no. 10, pp. 2084–2106, 2019.

[5] T.-Y. Wu, F. Kong, Q. Meng, S. Kumari, and C.-M. Chen, “Rotating Behind Security: An en-
hanced authentication protocol for IoT-enabled devices in distributed cloud computing architecture,”
EURASIP Journal on Wireless Communications and Networking , vol. 2023, pp. 36, 2023

[6] T.-Y. Wu, Q. Meng, L. Yang, S. Kumari, and M.P. Nia, “Amassing the Security: An Enhanced
Authentication and Key Agreement Protocol for Remote Surgery in Healthcare Environment,” Com-
puter Modeling in Engineering and Sciences , vol. 134, no. 1, pp. 317–341, 2023

[7] T.-Y. Wu, Q. Meng, Y.-C. Chen, S. Kumari, and C.-M. Chen, “Toward a secure smart-home IoT
access control scheme based on home registration approach,” Mathematics , vol. 11, no. 9, pp. 2123,
2023

[8] C.-Y. Jiang, and C. Ru, “Application of blockchain technology in supply chain finance,” in 2020 5th
International Conference on Mechanical, Control and Computer Engineering (ICMCCE) , IEEE,
2020, pp. 1342–1345.

[9] C.-M. Chen, X.-T. Deng, S. Kumar, S. Kumari, and S.K. Islam, “Blockchain-based medical data
sharing schedule guaranteeing security of individual entities,” Journal of Ambient Intelligence and
Humanized Computing , 2021. [Online]. Available: https://doi.org/10.1007/s12652-021-03448-7

[10] Q. Mei, H. Xiong, Y.-C. Chen, and C.-M. Chen, “Blockchain-enabled privacy-preserving authenti-
cation mechanism for transportation cps with cloud-edge computing,” IEEE Transactions on Engi-
neering Management , 2022. [Online]. Available: https://doi.org/10.1109/TEM.2022.3159311

[11] J.-H. Chen, H. Xiao, M.-C. Hu, C.-M. Chen, “A blockchain-based signature exchange protocol for
metaverse,” Future Generation Computer Systems , vol. 142, pp. 237–247, 2023

[12] M. Jakobsson, and A. Juels, “Proofs of work and bread pudding protocols,” in Secure Information
Networks: Communications and Multimedia Security IFIP TC6/TC11 Joint Working Conference
on Communications and Multimedia Security (CMS’99) , Springer, 1999, pp. 258–272.

[13] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM Transactions on
Programming Languages and Systems, vol. 4, no. 3, pp. 382–401, 1982.

[14] M. Castro, and B. Liskov, “Practical Byzantine fault tolerance,” in Proceedings of the 3rd Symposium
on Operating Systems Design and Implementation, 1999, pp. 173–186.

[15] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed Computing Column), vol. 32,
no. 4, pp. 51–58, 1999.

[16] D. Ongaro, and J. Ousterhout, “In search of an understandable consensus algorithm,” in TAnnual
Technical Conference. 2014, pp. 305–319.

[17] Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-based ad hoc routing,” in Proceedings. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE, 2002, pp.
1707-1716.

[18] S. Gao, T.-Y. Yu, J.-M. Zhu, and W. Cai, “T-PBFT: An EigenTrust-based practical Byzantine fault
tolerance consensus algorithm,” China Communications, vol. 16, no. 12, pp. 111–123, 2019.

[19] L.-S. Zhang, “Research on blockchain consensus algorithm based on Byzantine fault tolerance,” M.S.
dissertation, University of Electronic Science and Technology of China, 2020.

[20] X.-F. Liu, “Research on performance improvement of blockchain based on dynamic byzantine fault
authorization tolerance consensus algorithm,” M.S. dissertation, Zhejiang University, 2017.

[21] Y.-B. Fang, C.-M Zhou, S. Li, Y.-F Song, N. Gao, and T. Liu, “Improvement of practical Byzantine
fault algorithm in alliance blockchain,” Computer Engineering and Applications, vol. 58, no. 3, pp.
135–142, 2022.

[22] P. L. Aublin, S. B. Mokhtar, and V. Quéma, “Rbft: Redundant byzantine fault tolerance,” in 2013
IEEE 33rd International Conference on Distributed Computing Systems. IEEE, 2013, pp. 297–306.

[23] S. Tang, Z.-Q. Wang, J. Jiang, S. Ge, and G.-F. Tan, “Improved PBFT algorithm for high-frequency
trading scenarios of consortium blockchain,” Scientific Reports, vol. 12, no. 1, pp. 4426, 2022.



68 Z.-Y. Tang, T.-W. Ma, J.-S. Wang and J.-H Huang

[24] W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and A.-I. Muhammad, “A scalable multi-layer PBFT
consensus for blockchain,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 5,
pp. 1146–1160, 2020.

[25] M.-Y. Xie, J. Liu, S.-Y. Chen, G.-X. Xu, and M.-W. Lin, “Primary node election based on probabilis-
tic linguistic term set with confidence interval in the PBFT consensus mechanism for blockchain,”
Complex & Intelligent Systems, 2022. [Online]. Available: https://doi.org/10.1007/s40747-022-
00857-9

[26] W.-X. Jiang, X.-X. Wu, M.-Y. Song, J.-W. Qin, and Z.-H. Jia, “A Scalable Byzantine Fault Tolerance
Algorithm Based on a Tree Topology Network,” IEEE Access, vol. 11, pp. 33509–33519, 2023.

[27] Q. Wang, J.-W. Ma, and J.-X. Luo “A blockchain sharding scheme in edge computing,” Chinese
Journal on Internet of Things, vol. 7, no. 2, pp. 1–13, 2023.

[28] C.-D. Wang, X. Jiang “Improved practical Byzantine fault-tolerant algorithm based on verifiable
delay function,” Journal of Computer Applications , 2023. [Online]. Available: 10.11772/j.issn.1001-
9081.2022111708

[29] A. Rodŕıguez, F. Ortega, and R. Concepción, “A method for the evaluation of risk in IT projects,”
Expert Systems with Applications, vol. 45, pp. 273–285, 2016.

[30] S. Micali, M. Rabin, and S. Vadhan, “Verifiable Random Function,” in 40th Annual Symposium on
Foundations of Computer Science (cat. No. 99CB37039), IEEE, 1999, pp. 120–130.


