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Abstract. The gannet optimization algorithm (GOA) is an effective group intelligence
algorithm inspired by the foraging behavior of gannets. Despite its merits, considerable
potential exists for enhancing its exploration and convergence capabilities. A gannet op-
timization algorithm improved by the quasi-affine transformation evolutionary algorithm,
restart strategy, and elite selection strategy (QRE-GOA) is proposed in this paper. The
algorithm employs the quasi-affine transformation evolutionary algorithm (QUATRE) to
matrix the gannet optimization algorithm to search for optimal solutions more accurately.
The use of a restart strategy and elite selection can be more effective in preventing the
algorithm from falling into local optimal solutions. Comparative experiments were con-
ducted using the CEC2017 benchmark series. A detailed analysis was conducted, we per-
formed a detailed analysis to check the accuracy and convergence speed of the algorithm
search in different dimensions. Subsequently, a comprehensive analysis was undertaken
to assess the accuracy and convergence speed of the algorithm’s search process across
various dimensions. The experimental statistical results show that the new algorithm has
stronger exploration ability and better convergence ability than the original algorithm.
In addition, this paper focuses on process justification so that the experimental results
are reliable, trustworthy, and interpretable. Finally, the newly proposed QRE-GOA al-
gorithm is deployed to address the 3D Coverage challenge in Wireless Sensor Networks.
Experimental findings unequivocally demonstrate the superior performance of QRE-GOA.
These results, underscore its potential for addressing existing limitations in optimization
methods.
Keywords: gannet optimization algorithm, the quasi-affine transformation evolutionary
algorithm, restart strategy, elite selection strategy, 3D Coverage.

1. Introduction. Swarm intelligence algorithms [1–4], are an optimization algorithm in-
spired from the life characteristics or behaviors of organisms in nature [5]. The unique
feature of these algorithms is the use of a nondifferentiable mechanism that eliminates
the need to compute the differentiation of the optimization function, thus simplifying the
computational complexity. Due to these properties, it is possible to apply swarm intel-
ligence algorithms to black-box [6] problems where the optimization function cannot be
determined (problems where there is no direct knowledge of the internal operations). Due
to the versatility and flexibility of these algorithms, they are of practical value in solving
various optimization problems as listed below. They are of great interest and popularity
among researchers because of their profound impact on production and life. These algo-
rithms can simulate the interaction and cooperation between individuals in a group to
achieve group intelligence-like effects and provide new ideas for problem solving. There
have been many group intelligence-related algorithms, such as: genetic algorithm (GA) [7],
arithmetic optimization algorithm (AOA) [8], particle swarm optimization (PSO) [9], sine
cosine algorithm (SCA) [10], gannet optimization algorithm (GOA) [11, 12], differential
evolution (DE) [13], phasmatodea population evolution (PPE) [14], tabu search approach
(TS) [15], quantum genetic algorithm (QGA) [16], etc.

The focus of this paper is on GOA. GOA is a new meta-heuristic optimization algo-
rithm inspired by the foraging behavior of gannets [17, 18]. In the GOA, the predatory
behavior of gannet is simulated and the optimization algorithm is divided into two stages:
exploration and exploitation. The algorithm uses four different types of predatory be-
havior: u-sink, v-sink, sharp turn and random walk. These behavioral patterns allow the
algorithm to perform extensive searches in the search space to find potentially optimal
solutions. In the search phase, the gannets will be faster after entering the water to
develop a strong swimming ability [19, 20]. The algorithm focuses on further potential
solutions found to improve the success of predation. By simulating the predation strategy
of the gannet, the gannet optimization algorithm gives a new and efficient optimization
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algorithm suitable for solving various optimization problems. The uniqueness of this al-
gorithm is that it draws inspiration from biological behavior in nature and translates it
into a search strategy in the optimization process, providing an interesting and innova-
tive approach to solving practical problems [21–23]. However, the gannet optimization
algorithm can easily fall into local optimum problems in high-dimensional and complex
problems, so in order to make it have a stronger ability to search for solutions, we added
the QUATRE algorithm to enhance its disturbance, so that it can easily jump out of lo-
cal optimum. So in this paper, the QUATRE is used to improve the gannet optimization
problem [24,25]. Before the exploration stage and the exploitation stage, we first use the
QUATRE method to matrix the position information of the particles, so that significantly
improve the global search ability and local search ability of particles [26].

The improved GOA can better explore the potential solution space and locate the
optimal solution more accurately by adding QUATRE, restart strategy and elite selection
strategy at the same time. The introduction of the evolutionary matrix increases the
diversity of the population, enabling the algorithm to search more extensively during the
search process, so that it is more likely to find the global optimal solution. At the same
time, the disturbance of the individual’s historical optimal position will help to overcome
the trap of local optimal solution, which will make the algorithm have stronger local search
ability and help to converge to the optimal solution faster in the solution space [27–30].

By combining the evolutionary matrix and the historical optimal position perturbation,
the algorithm can perform a more comprehensive and precise search on both global and
local levels, making the optimization process more efficient and accurate. Therefore, this
improved algorithm has great potential in solving many optimization problems [31,32].

2. Related work. This section describes the original GOA and explains in detail the
need for the inclusion of QUATRE and the hybrid restart strategy and elite selection
strategy.

2.1. Gannet Optimization Algorithm. Gannets, with their stubby, fat bodies and
elongated necks, inhabit lakes and coasts around the world in flocks. Their eyes are very
sharp, even when flying at high altitude, fish swimming in the water cannot escape the
observation of their eyes. Despite being clumsy on land, gannets are remarkably agile in
flight and swimming.

The algorithm process of GOA is mainly divided into two stages, namely exploration
and exploitation, where in the exploration phase, Gannet’s dives are both long and deep
U-shaped dives and short and shallow V-shaped dives. The most important part of its
core formulation is the position update formulation given in Equation (1).

MXi(t+ 1) =

{
Xi(t) + u1 + u2, y ≥ 0.5

Xi(t) + v1 + v2, y < 0.5
(1)

Where u1 is a random number between −a and a, v1 is a random number between −b
and b, and Xi(t) is the i− th individual in the current group.
In the exploitation stage, when the gannets rush into the water in the above two ways,

in order to further develop and utilize the resources in the water, two actions need to be
taken. The cunning fish in the water often change direction suddenly to avoid the chase of
the gannets, which makes the gannets have to expend a lot of energy to catch fast-moving
fish. If the gannet possesses sufficient energy, it will exhibit a high capture capacity and
successfully catch the fish. In the first scenario, the energy of the gannet dwindles over
time, to the point where it may no longer be able to catch the nimble fish. In this case,
the gannet performs a Levy motion to search for the next target in a stochastic manner,
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the core position update formula of which is given in Equation (2). This process allows
gannets to search and find effectively in the water when energy is insufficient for targeted
capture.

MXi(t+ 1) =

{
t · delta · (Xi(t)−XBest(t)) +Xi(t), D ≥ c

XBest(t)− (Xi(t)−XBest(t)) · P · t,D < c
(2)

After many experiments, it is determined that the value of c is 0.2 is the best and
XBest(t) is the best performing individual in the current population. delta is given by the
equation delta = D ∗ |Xi(t) −XBest(t)| and D is the fishing capacity of the gannet. P is
obtained from the levy flight function with the equation P = Levy(dim). The above are
only the two core stages of the GOA. But, there is a need for improvement in the GOA
algorithm concerning local convergence speed and solution diversity. These enhancements
are crucial for boosting the overall performance of the GOA algorithm, enabling it to adapt
more effectively to a variety of problems and complexities. For more details, please refer
to the paper ”Gannet optimization algorithm: A new metaheuristic algorithm for solving
engineering optimization problems”.

2.2. QUATRE. QUATRE draws on the principle of affine transformation in geometric
transformation to realize position update [33]. This process is shown by Formula (3).

Xgen+1 = M ⊗Xgen +M ⊗B (3)

B = Xgbest,gen + F ∗ (Xr1,gen −Xr2,gen) (4)

Among them, Xgen is represented as the position coordinate matrix of the first genera-
tion particles, which is obtained by performing element multiplication. The co-evolution
matrix is composed of matrices B and M . F is generally set at 0.7. Xgbest,gen is composed
of the best individual position vector in the current population. In addition, Xr1,gen and
Xr2,gen are random matrices generated by randomly perturbing Xgen. In addition M is to
reverse the elements of the M matrix, that is, 0 becomes 1, and 1 becomes 0. The above
is the core process of the QUATRE algorithm as follows. As shown in the Formula (6).

Mt =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 ∼


0 0 1 0
0 1 1 0
1 1 1 1
1 1 0 1

 = M (5)

M =


1 1 0 1
1 0 0 1
0 0 0 0
0 0 1 0

 (6)

If there are a total of p particles in the population, the dimension of each particle is dim.
When p > dim, as shown in Formula (7), the first row ∗ dim (row is a positive integer) is
divided into multiple dim ∗ dim sub-matrices according to the dimension, and the same
row and column are performed for each small matrix transformation rules. However,
in the process of matrixing the GOA algorithm using the QUATRE algorithm, matrix
information will be obtained multiple times, resulting in an increase in the execution time
of the algorithm.
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Mt =



1 · · ·
1 1 · · ·

· · ·
1 1 · · · 1
1 · · ·
1 1 · · ·

· · ·
1 1 · · · 1
1 · · ·
1 1 · · ·

· · ·
1 1 · · · 1



∼



1 · · ·
· · ·

1 · · · 1
1 1 · · · 1

· · ·
· · ·
· · ·
· · ·

1 1 · · ·
1 · · ·

1 · · ·
· · ·



= M (7)

2.3. Reboot Strategy and Elite Selection. The restart strategy, periodically dis-
carding some of the results obtained from the current search, reinitializing some of the
searched individuals, and then continuing the search. The purpose of this strategy is to
help the GOA jump out of the local optimal solution and improve its global search ca-
pability. When the algorithm falls into a local optimal solution, the restart strategy will
allow GOA to find a new search direction, so that it is possible to find a better solution.
The restart mechanism is designed to enable the algorithm to move as far as possible from
a local optimal solution, for which we consider the maximum distance within the search
area. We adopted a reasonable approach by computing the diagonal distance of the search
area and using it as the particle’s escape radius. Specifically, we select a particle in the
search space and compute the quarter-diagonal distance in that space. The particles then
have the opportunity to hop in all directions with a radius of that distance [34].

The core basic operation process is as follows. First, the RE initialization Formula is
(8). Then, calculate the diagonal distance of the search area as shown in Equation (9).

RE = Rand× (u− l) + l (8)

D =

√∑dim

i=1
(Ui − Li)

2 (9)

where Rand is a random vector with 1 row dim columns, each element is a random
number uniformly distributed between 0 and 1. u is the upper bound of the search space,
and l is the lower bound of the search space. D is the diagonal distance of the search area
calculated by euclidean, Ui is the upper bound matrix of the search space, Li is the lower
bound matrix of the search space.

The third step is to calculate the euclidean distance between RE and the i− th particle
and judge whether it is less than a quarter of the search space radius. If it is less than
that, reset RE, that is, reset the position information of the i − th particle, as shown
in Equation (10). Finally, RE is reset when the restart condition is met as shown in
Equation (11).

D1 =

√∑dim

i=1
(RE −Xi)

2 (10)

RE = RE + (RE −Xi)×

√∑dim
i (U − L)2

2000
(11)

D1 is the distance between RE and X, and dim is the dimension of the X matrix.
The X matrix stores the position information of the particles, and Xi is the position
information of the i− th particle.
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The advantage of this method is that its design is relatively simple, but it considers
the adaptability of the search area. The escape radius is set based on the characteristics
of the search area, which enables the algorithm to adapt to spaces of different shapes
and dimensions. This maximum distance-based particle escape method can be applied
to various search spaces, making it universal and adaptable. In summary, our restart
mechanism aims to improve the global search ability of the algorithm and avoid falling
into local optimal solutions. By computing the maximum distance of the search region
and applying it to particle escapes, we enable the algorithm to more flexibly explore search
spaces of different shapes and dimensions, thus excelling in solving complex problems.

Elite selection retains the best individuals in the current search process in the group
and directly passes them on to the next generation. In this way, elite selection ensures
that good solutions are retained and not prematurely eliminated. This is very beneficial
for maintaining the dominant solution of the population, and also helps to prevent the
algorithm from falling into a local optimal solution. Since elite selection retains excellent
individuals, the convergence of the entire GOA is improved, and the optimization process
reaches a better solution faster. In this way, elite selection plays a very important role in
GOA and has a positive impact on the performance and efficiency of the algorithm [35].

The basic operation steps of the elite selection strategy are as follows. First, particles
are randomly selected in the particle swarm and σ is initialized, as shown in Equation
(12). The second step is to update the c-th particle in the global optimal solution, as
shown in Equation (13), the third step checks the boundary of the X matrix, and the
fourth step calculates the fitness value of X. Compare the fitness value of X with the
global optimal solution. If the fitness value of X is better than the global optimal solution,
update the global optimal solution. The pseudocode of the elite selection strategy is as
follows Algorithm1.

Algorithm 1 Pseudo-code of the Elite Section Strategy

Input: Dim: dimension; gbest: global optimal solution; pbest: individual optimal solu-
tion; gbestval: global optimal fitness value;

Output: gbest and pbest;
1: while stopping condition is not met do
2: Step1: randomly select an index Rd from Dim;
3: Step2: calculate the variance based on iteration and generation;
4: Step3: generate a value Z using Gaussian membership function and gbest(Rd);
5: Step4: calculate the new Jump value;
6: Step5: create a copy Ju of the current gbest;
7: Step6: evaluate the fitness of Ju;
8: Step7: update gbest and pbest if Jumpfitness is better than gbestval;
9: end while

σ = σu − (σu − σl)
It

M It
(12)

Xc = Xc + (u− l)×Gaussian(µ, σ2) (13)

Where Xc represents the c− th dimension of X, which is a number of Gaussian distri-
bution, and µ is the mean value and is 0. σ is the standard deviation, it represents the
current number of iterations, and M It is the maximum number of iterations.
When the two strategies of restart strategy and elite selection are used in combina-

tion, they can complement each other and further enhance the performance of GOA. The
restart strategy increases the exploratory nature of the algorithm, and the elite selection
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accelerates the convergence of the algorithm, so that GOA can search in the solution space
more effectively and achieve better results. Therefore, the combination of these two strate-
gies brings greater advantages to the swarm intelligence algorithm in solving optimization
problems, and improves the efficiency and effectiveness of the algorithm. While the restart
strategy and elite selection individually contribute significantly to optimizing the GOA al-
gorithm, their combined application is not without potential shortcomings. One potential
drawback lies in the complexity introduced by integrating restart strategies and elite se-
lection. Simultaneously using both strategies increases the overall computational burden,
especially when dealing with large-scale problems or extensive search spaces. Striking
the right balance between global exploration and local exploitation presents challenges,
potentially affecting the overall efficiency and effectiveness of the algorithm in solving
complex problems.

3. QRE-GOA. Through the analysis of many studies on GOA, we can find that avoiding
falling into local extremum is a problem worthy of deep consideration. This paper puts
forward several suggestions for improvement on this issue, the specific process is as follows:

First, in the exploitation phase and exploration phase, we introduce the evolution
matrix of QUATRE into the initial algorithm, and increase the randomness of particle
position updates in the process. This change significantly expands the exploration range
of the algorithm. This improvement helps the algorithm to perform a global search in
the solution space more effectively, thereby avoiding being limited to the local optimal
solution, and significantly improving the global search ability of the algorithm.

Second, in order to further enhance the robustness of the algorithm, we also added a
restart strategy and elite selection before each stage. The restart strategy can restart the
search process by reinitializing the positions of some particles when the algorithm falls
into a local extremum, hoping to find a better solution. The elite selection retains the
individuals who performed well in the historical search process, so that these excellent
individuals can continue to search the solution space and contribute more opportunities
to the global optimization.

Through these improvements, we expect to improve the performance of the GOA in
solving complex optimization problems. The introduction of these strategies makes the
algorithm more adaptive and global search ability, and can better deal with complex
optimization problems such as high-dimensional and nonlinear. The effective combination
of these optimization strategies provides a more potential direction for the application and
promotion of the GOA. The pseudocode of QRE-GOA is as follows Algorithm 2.

4. Experiment and Analysis. To test the optimization ability of QRE-GOA, we com-
prehensively compare it with algorithms such as particle swarm optimization(PSO) [36],
whale optimization algorithm(WOA) [37,38], antlion optimizer algorithm(AOA) and sine
cosine algorithm(SCA) [39]. Since F2 is unstable in CEC2017, we will remove it by de-
fault. Table 1 shows the comparison results we obtained on the 29 test functions of
CEC2017 [40]. In this table, F1, F3 represent unimodal functions, F4-F10 represent mul-
timodal functions, F11-F20 represent mixed functions, and F21-F30 represent combined
functions. Function F2 cannot be tested due to irresistible factors, so we decided to
exclude it from the comparison.

Specifically, we used the above 5 algorithms, each algorithm was run 30 times, and 30
particles were used to test on 29 functions, and each function performed 1000 iterations.
Finally, we evaluate and compare the results by calculating the mean AVG and standard
deviation STD of the errors. In order to show the optimal solution more intuitively, we
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Algorithm 2 Pseudo-code of the QRE-GOA

Input: Dim: dimension; N : population size; M It: total number of iterations;
Output: The fitness value error and position of the gannet;
1: Initialize the population X, y is a random number between 0 and 1;
2: Initializing the memory matrix MX;
3: while stopping condition is not met do
4: Initialize a matrix with N rows and Dim columns; K = N÷Dim;
5: for y = 0:K − 1 do
6: making it a lower triangular matrix Mt;
7: end for
8: Process the rest and become the lower triangular matrix Mt;
9: Randomly swap each row of M ;

10: for t = 1:N do
11: Randomly arrange the columns of each row in the label;
12: end for
13: Randomly swap X rows to get Xr1 and Xr2;
14: Updates position X using Equation (4) and Equation (3);
15: Elite Section Strategy
16: Restart Strategy:
17: Step1: randomly select an index j from p;
18: Step2: apply Restart operation to the selected position;
19: Step3: apply space bound operation to the selected position;
20: if rand > 0.5 then
21: for MXi do
22: Update MXi using Equation (1);
23: Compare MXi and Xi to determine whether to update Xi;
24: end for
25: else
26: for MXi do
27: Update MXi using Equation (1);
28: Compare MXi and Xi to determine whether to update Xi;
29: end for
30: end if
31: end while

use bold font to mark in the table. The research in this paper focuses on the minimization
of the problem.

4.1. Comparison of QRE-GOA with other algorithms on 29 test functions.
Through the running results in Table 1, we can see the comparison between QRE-GOA
and other algorithms, and record the number of wins of QRE-GOA when compared with
other algorithms in a marked way. Among them, not only the old algorithm PSO is
compared, but also three relatively new algorithms WOA, AOA, and SCA, which can
further prove the authority and transparency of the QRE-GOA. And it can be clearly
seen that the superiority of QRE-GOA compared with other algorithms proves that the
QRE-GOA is particularly good, because the average error of the fitness value of the QRE-
GOA compared with other algorithms wins at 28 At the same time, the number of wins of
the standard deviation of the fitness value compared with other algorithms is more than
28 except for SCA.
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In Table 1, we can clearly understand the performance of QRE-GOA on 29 different
functions, as well as the competitive results with other optimization algorithms. These
comparative results will help to evaluate the performance and scope of application of
QRE-GOA, and provide a valuable reference for further research and application.

Table 1. 10 Dim Simulation Results of CEC 2017 Benchmark Function.

Algorithm Measure F1 F3 F4 F5 F6 F7 F8 F9 F10 F11

PSO
AVG 6.24× 1008 1.08× 1003 5.78× 1001 3.30× 1001 1.68× 1001 3.88× 1001 2.59× 1001 1.33× 1002 1.04× 1003 1.18× 1002

STD 1.13× 1009 4.57× 1003 7.19× 1001 1.41× 1001 1.12× 1001 1.45× 1001 9.94× 1000 1.67× 1002 3.94× 1002 9.31× 1001

WOA
AVG 2.67× 1007 2.49× 1003 4.78× 1001 4.79× 1001 3.72× 1001 8.77× 1001 4.45× 1001 4.52× 1002 1.06× 1003 1.18× 1002

STD 9.03× 1007 2.37× 1003 4.53× 1001 2.18× 1001 1.17× 1001 2.37× 1001 1.48× 1001 2.80× 1002 3.32× 1002 7.94× 1001

AOA
AVG 7.80× 1009 1.06× 1004 4.82× 1002 5.77× 1001 3.87× 1001 9.65× 1001 3.07× 1001 5.23× 1002 1.10× 1003 1.42× 1003

STD 3.40× 1009 2.74× 1003 3.15× 1002 1.81× 1001 9.35× 1000 1.58× 1001 7.42× 1000 2.12× 1002 2.50× 1002 1.66× 1003

SCA
AVG 8.88× 1008 1.49× 1003 6.01× 1001 4.89× 1001 1.97× 1001 7.84× 1001 4.02× 1001 1.19× 1002 1.29× 1003 1.27× 1002

STD 2.95× 1008 7.60× 1002 3.10× 1001 6.36× 1000 3.77× 1000 1.04× 1001 7.83× 1000 7.85× 1001 2.15× 1002 5.95× 1001

QRE-GOA
AVG 6.52× 10−12 9.47× 10−15 5.32× 10−05 1.23× 1001 6.22× 10−05 2.28× 1001 1.33× 1001 1.04× 10−08 4.85× 1002 6.07× 1000

STD 1.30× 10−11 1.02× 10−14 1.17× 10−04 6.08× 1000 9.95× 10−05 5.82× 1000 6.13× 1000 5.69× 10−08 2.86× 1002 4.48× 1000

F12 F13 F14 F15 F16 F17 F18 F19 F20 F21

PSO
AVG 1.13× 1006 2.32× 1003 1.00× 1003 1.10× 1003 2.30× 1002 1.12× 1002 1.84× 1004 6.30× 1003 9.07× 1001 2.26× 1002

STD 2.90× 1006 6.81× 1003 4.97× 1003 2.50× 1003 1.49× 1002 6.44× 1001 1.67× 1004 1.26× 1004 5.37× 1001 3.51× 1001

WOA
AVG 5.40× 1006 1.13× 1004 9.10× 1002 9.33× 1003 3.46× 1002 9.39× 1001 1.48× 1004 2.69× 1004 2.14× 1002 2.47× 1002

STD 4.83× 1006 8.62× 1003 1.32× 1003 8.15× 1003 1.53× 1002 3.97× 1001 1.25× 1004 3.59× 1004 7.00× 1001 4.06× 1001

AOA
AVG 3.37× 1007 1.37× 1004 8.21× 1003 1.46× 1004 4.86× 1002 2.13× 1002 1.58× 1004 4.61× 1004 1.59× 1002 2.27× 1002

STD 7.94× 1007 1.06× 1004 8.52× 1003 5.45× 1003 1.81× 1002 1.18× 1002 7.46× 1003 3.62× 1004 7.33× 1001 2.93× 1001

SCA
AVG 1.90× 1007 3.00× 1004 4.02× 1002 1.06× 1003 1.60× 1002 7.92× 1001 2.05× 1005 4.74× 1003 1.05× 1002 1.53× 1002

STD 1.38× 1007 2.10× 1004 2.70× 1002 1.01× 1003 8.11× 1001 1.36× 1001 1.25× 1005 5.10× 1003 3.16× 1001 5.93× 1001

QRE-GOA
AVG 2.47× 1002 9.31× 1000 1.28× 1001 3.35× 1000 1.07× 1002 3.40× 1001 1.55× 1001 2.09× 1000 1.09× 1001 1.82× 1002

STD 1.36× 1002 6.62× 1000 1.01× 1001 2.90× 1000 1.05× 1002 4.22× 1001 9.68× 1000 2.04× 1000 1.11× 1001 5.17× 1001

F22 F23 F24 F25 F26 F27 F28 F29 F30 WIN

PSO
AVG 2.40× 1002 3.45× 1002 3.69× 1002 4.54× 1002 8.54× 1002 4.27× 1002 6.10× 1002 3.54× 1002 9.78× 1005 29
STD 2.86× 1002 1.87× 1001 6.14× 1001 4.29× 1001 5.05× 1002 2.74× 1001 1.16× 1002 7.44× 1001 1.58× 1006 29

WOA
AVG 2.95× 1002 3.46× 1002 3.68× 1002 4.50× 1002 8.97× 1002 4.38× 1002 6.65× 1002 4.97× 1002 1.00× 1006 29
STD 3.75× 1002 2.04× 1001 6.21× 1001 2.68× 1001 5.13× 1002 4.31× 1001 1.32× 1002 1.10× 1002 7.99× 1005 29

AOA
AVG 7.73× 1002 4.32× 1002 4.35× 1002 7.12× 1002 1.34× 1003 5.37× 1002 9.45× 1002 5.31× 1002 2.41× 1007 29
STD 2.86× 1002 2.95× 1001 4.57× 1001 1.30× 1002 3.75× 1002 5.51× 1001 1.41× 1002 1.59× 1002 2.82× 1007 28

SCA
AVG 1.73× 1002 3.59× 1002 3.81× 1002 4.71× 1002 5.03× 1002 4.05× 1002 4.98× 1002 3.42× 1002 1.38× 1006 28
STD 2.79× 1001 5.93× 1000 2.69× 1001 2.44× 1001 6.18× 1001 2.04× 1000 8.24× 1001 4.86× 1001 9.60× 1005 23

QRE-GOA
AVG 9.56× 1001 3.12× 1002 3.29× 1002 4.20× 1002 3.97× 1002 3.99× 1002 4.48× 1002 2.74× 1002 2.74× 1005 /
STD 1.94× 1001 5.47× 1000 6.25× 1001 2.35E × 1001 2.85× 1002 1.12× 1001 1.69× 1002 3.66× 1001 3.91× 1005 /

4.2. Comparison of QRE-GOA and its different components on 29 test func-
tions. At the same time, in order to prove that the GOA (QRE-GOA) after matrixing,
restart strategy and elite selection is superior to the original GOA and its components, we
tested them on 29 test functions in CEC2017, and the results are shown in Table 2 Show.
Compared with the original algorithm GOA, QRE-GOA has 27 wins compared with the
average value of its fitness value error, and 26 wins compared with the standard deviation
of its fitness value error. In addition, after further matrixing with QUATRE and after
restarting the optimized algorithm, the number of wins of the mean value of the fitness
value error and the standard deviation of the fitness value error exceeded 20 times.

GOA with elite selection. The results show that the optimization strategy of each part
in QRE-GOA is effective and necessary. Through the data display in Table 2, we clearly
present the impact of these optimization strategies on the performance of the algorithm.

These test results confirm the effectiveness of the QRE-GOA for us, and further verify
the contribution of matrix partition, restart strategy and elite selection to the algorithm
performance. This has important implications for gaining insight into the benefits of
QRE-GOA and the impact of optimization strategies. Therefore, the results in Table 2
provide solid empirical support for our research and provide a useful reference for future
algorithm improvement and application. AVG represents the average value of fitness
error, STD represents the standard deviation of fitness error. Bold values represent the
smallest fitness error. QGOA represents an improvement to the GOA algorithm, which
only enhances the perturbation characteristics of the original algorithm by introducing
the QUATRE element. QRGOA shows that more comprehensive improvement measures
have been taken in the GOA algorithm. In addition to the introduction of QUATRE,
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a restart strategy is also introduced, which means that the algorithm will be restarted
periodically during the iteration process to explore the search space more actively.

Table 2. Comparison between QRE-GOA algorithm and several improved
GOA.

Algorithm Measure F1 F3 F4 F5 F6 F7 F8 F9 F10 F11

GOA
AVG 2.58× 1003 6.49× 10−05 3.20× 1000 1.88× 1001 1.42× 10−01 2.38× 1001 1.60× 1001 3.30× 1000 7.45× 1002 1.70× 1001

STD 2.70× 1003 7.84× 10−05 1.45× 1000 8.79× 1000 4.39× 10−01 7.55× 1000 7.88× 1000 1.60× 1001 2.87× 1002 3.39× 1001

QGOA
AVG 1.89× 10−15 3.79× 10−15 1.34× 10−09 1.72× 1001 1.28× 10−02 2.70× 1001 1.95× 1001 2.75× 10−01 7.44× 1002 9.73× 1000

STD 4.91× 10−15 2.09× 10−14 7.02× 10−09 7.02× 1000 4.06× 10−02 6.90× 1000 8.27× 1000 4.26× 10−01 3.36× 1002 6.98× 1000

QRGOA
AVG 4.07× 10−13 3.79× 10−15 1.78× 10−05 1.23× 1001 6.52× 10−05 2.49× 1001 1.51× 1001 1.51× 10−02 4.49× 1002 5.50× 1000

STD 2.11× 10−12 1.44× 10−14 3.40× 10−05 6.80× 1000 1.54× 10−04 6.70× 1000 6.59× 1000 8.29× 10−02 2.64× 1002 3.20× 1000

QRE-GOA
AVG 6.52× 10−12 9.47× 10−15 5.32× 10−05 1.23× 1001 6.22× 10−05 2.28× 1001 1.33× 1001 1.04× 10−08 4.85× 1002 6.07× 1000

STD 1.30× 10−11 1.02× 10−14 1.17× 10−04 6.08× 1000 9.95× 10−05 5.82× 1000 6.13× 1000 5.69× 10−08 2.86× 1002 4.48× 1000

F12 F13 F14 F15 F16 F17 F18 F19 F20 F21

GOA
AVG 2.02× 1004 4.84× 1003 4.88× 1001 1.21× 1002 5.21× 1001 3.96× 1001 8.55× 1003 6.94× 1001 4.98× 1001 1.83× 1002

STD 1.88× 1004 6.95× 1003 2.70× 1001 9.17× 1001 7.62× 1001 2.94× 1001 6.78× 1003 1.05× 1002 5.61× 1001 5.39× 1001

QGOA
AVG 2.44× 1002 1.09× 1001 3.51× 1002 4.15× 1000 1.56× 1002 4.47× 1001 1.83× 1001 2.84× 1000 3.69× 1001 1.96× 1002

STD 1.31× 1002 4.74× 1000 1.75× 1003 3.78× 1000 1.35× 1002 5.00× 1001 1.13× 1001 3.73× 1000 4.52× 1001 4.93× 1001

QRGOA
AVG 9.25× 1002 9.34× 1000 1.47× 1001 3.36× 1000 1.09× 1002 3.93× 1001 1.34× 1001 1.91× 1000 1.70× 1001 1.99× 1002

STD 1.22× 1003 4.01× 1000 1.10× 1001 2.91× 1000 1.43× 1002 4.92× 1001 1.09× 1001 1.33× 1000 2.80× 1001 3.97× 1001

QRE-GOA
AVG 2.47× 1002 9.31× 1000 1.28× 1001 3.35× 1000 1.07× 1002 3.40× 1001 1.34× 1001 2.09× 1000 1.09× 1001 1.82× 1002

STD 1.36× 1002 6.62× 1000 1.01× 1001 2.90× 1000 1.05× 1002 4.22× 1001 9.68× 1000 2.04× 1000 1.11× 1001 3.97× 1001

F22 F23 F24 F25 F26 F27 F28 F29 F30 WIN

GOA
AVG 9.56× 1001 3.18× 1002 3.35× 1002 4.32× 1002 4.93× 1002 4.00× 1002 5.37× 1002 2.91× 1002 1.84× 1005 27
STD 2.09× 1001 7.59× 1000 6.44× 1001 2.08× 1001 3.50× 1002 1.42× 1001 1.67× 1002 4.86× 1001 3.67× 1005 26

QGOA
AVG 9.58× 1001 3.16× 1002 3.39× 1002 4.30× 1002 3.54× 1002 4.01× 1002 4.18× 1002 3.06× 1002 2.04× 1005 23
STD 2.34× 1001 8.38× 1000 4.57× 1001 2.22× 1001 2.68× 1002 1.48× 1001 1.67× 1002 6.30× 1001 4.72× 1005 22

QRGOA
AVG 9.93× 1001 3.12× 1002 3.36× 1002 4.20× 1002 4.25× 1002 3.99× 1002 4.61× 1002 2.86× 1002 3.16× 1005 23
STD 1.29× 1001 5.95× 1000 4.55× 1001 2.35× 1001 3.50× 1002 1.12× 1001 1.45× 1002 3.77× 1001 4.68× 1005 20

QRE-GOA
AVG 9.56× 1001 3.12× 1002 3.29× 1002 4.20× 1002 3.97× 1002 3.96× 1002 4.48× 1002 2.74× 1002 2.74× 1005 /
STD 1.94× 1001 5.47× 1000 6.25× 1001 2.35× 1001 2.85× 1002 3.49× 1000 1.67× 1002 3.66× 1001 3.91× 1005 /

4.3. Different dimensions of QRE-GOA compared on 29 test functions. In order
to comprehensively prove that QRE-GOA outperforms the GOA algorithm in all dimen-
sions, this study evaluates its performance on the CEC2017 test function in detail. The
QRE-GOA algorithm introduces innovative elements such as evolutionary matrix, restart
strategy, and elite selection, and these improvements bring significant advantages.

First, the introduction of the evolution matrix endows QRE-GOA with stronger search
capabilities. By referring to the evolution matrix, the algorithm can explore in the solution
space more flexibly, so as to better capture the characteristics of the objective function.
This strategy makes QRE-GOA not only have a very good search ability in low dimensions,
but also has a good search ability in high latitudes.

Second, the restart strategy and elite selection mechanism of QRE-GOA further en-
hance the global search ability of the algorithm. The restart strategy enables the algo-
rithm to jump out of the local optimal solution and re-explore the solution space, which
helps to find a better solution. The elite selection mechanism can retain the current best
solution, so as to ensure that the algorithm will not lose the advantages it has gained dur-
ing the optimization process. These properties are more important in multi-dimensional
problems, because the search in high-dimensional spaces is more difficult and requires
stronger global search capabilities.

On the whole, the advantages of QRE-GOA in different dimensions are mainly re-
flected in stronger search ability, more efficient global search and better local search
jump-out ability. These advantages enable QRE-GOA to better deal with complex, high-
dimensional optimization problems, and show better performance than traditional GOA
algorithms. Through comparative experiments on the CEC2017 test function, we demon-
strate the excellent performance of QRE-GOA in different dimensions, which provides
strong support for its broad potential in practical applications. From Table 3, we can
clearly see that QRE-GOA, compared with the original algorithm GOA in 10 and 30
dimensions, has the average number of wins of the fitness value error as high as 27 times
and the standard deviation of the fitness value error The number of wins is as high as 25,
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and the number of wins compared with the average value of the fitness value error and the
standard deviation of the fitness value error on the 50-dimension has reached more than
19 times, which further shows that QRE-GOA has different latitudes The optimization
of GOA has achieved remarkable results.

Table 3. Comparison of optimization rates between QRE-GOA and GOA
in different dimensions.

Dimension Algorithm Measure F1 F3 F4 F5 F6 F7 F8 F9

D=10
GOA

AVG 2.58× 1003 6.49× 10−05 3.20× 1000 1.88× 1001 1.42× 10−01 2.38× 1001 1.60× 1001 3.30× 1000

STD 2.70× 1003 7.84× 10−05 1.45× 1000 8.79× 1000 4.39× 10−01 7.55× 1000 7.88× 1000 1.60× 1001

QRE-GOA
AVG 6.52× 10−12 9.47× 10−15 5.32× 10−05 1.23× 1001 6.22× 10−05 2.28× 1001 1.33× 1001 1.04× 10−08

STD 1.30× 10−11 1.02× 10−14 1.17× 10−04 6.08× 1000 9.95× 10−05 5.82× 1000 6.13× 1000 5.69× 10−08

D=30
GOA

AVG 4.04× 1003 2.29× 1004 9.36× 1001 1.26× 1002 1.29× 1001 1.88× 1002 1.12× 1002 1.46× 1003

STD 4.53× 1003 9.26× 1003 2.92× 1001 3.26× 1001 6.23× 1000 4.32× 1001 2.56× 1001 7.05× 1002

QRE-GOA
AVG 3.31× 1001 1.61× 1004 8.05× 1001 7.59× 1001 1.63× 1000 1.22× 1002 9.01× 1001 3.13× 1002

STD 7.16× 1001 5.91× 1003 2.46× 1001 2.09× 1001 1.93× 1000 2.30× 1001 2.75× 1001 3.00× 1002

D=50

GOA
AVG 1.78× 1004 1.04× 1005 1.71× 1002 2.61× 1002 3.01× 1001 4.37× 1002 2.70× 1002 7.71× 1003

STD 9.48× 1003 2.26× 1004 5.37× 1001 5.02× 1001 1.06× 1001 8.43× 1001 4.67× 1001 2.54× 1003

QRE-GOA
AVG 6.32× 1003 2.27× 1005 1.61× 1002 2.92× 1002 2.10× 10−02 3.88× 1002 2.96× 1002 1.37× 1002

STD 7.47× 1003 3.99× 1004 5.25× 1001 3.41× 1001 2.29× 10−02 2.66× 1001 2.82× 1001 2.04× 1002

F10 F11 F12 F13 F14 F15 F16 F17

D=10
GOA

AVG 7.45× 1002 1.70× 1001 2.02× 1004 4.84× 1003 4.88× 1001 1.21× 1002 5.21× 1001 3.96× 1001

STD 2.87× 1002 3.39× 1001 1.88× 1004 6.95× 1003 2.70× 1001 9.17× 1001 7.62× 1001 2.94× 1001

QRE-GOA
AVG 4.85× 1002 6.07× 1000 2.47× 1002 9.31× 1000 1.28× 1001 3.35× 1000 1.07× 1002 3.40× 1001

STD 2.86× 1002 4.48× 1000 1.36× 1002 6.62× 1000 1.01× 1001 2.90× 1000 1.05× 1002 4.22× 1001

D=30
GOA

AVG 4.24× 1003 1.20× 1002 1.81× 1006 2.50× 1004 2.16× 1004 3.50× 1003 1.02× 1003 3.88× 1002

STD 8.02× 1002 3.94× 1001 1.42× 1006 1.88× 1004 2.09× 1004 3.04× 1003 2.73× 1002 1.73× 1002

QRE-GOA
AVG 3.08× 1003 8.78× 1001 6.21× 1004 1.13× 1004 1.59× 1003 6.99× 1003 8.60× 1002 4.15× 1002

STD 6.65× 1002 4.42× 1001 3.75× 1004 1.73× 1004 1.61× 1003 8.82× 1003 2.68× 1002 2.08× 1002

D=50

GOA
AVG 7.22× 1003 2.58× 1002 1.47× 1007 1.80× 1004 1.76× 1005 1.59× 1004 1.81× 1003 1.22× 1003

STD 1.59× 1003 7.77× 1001 7.18× 1006 1.22× 1004 1.56× 1005 9.61× 1003 4.40× 1002 2.74× 1002

QRE-GOA
AVG 1.04× 1004 2.71× 1002 7.29× 1006 6.68× 1003 3.97× 1005 6.00× 1003 2.10× 1003 1.16× 1003

STD 7.68× 1002 6.11× 1001 3.35× 1006 7.82× 1003 3.14× 1005 6.68× 1003 3.62× 1002 2.35× 1002

F18 F19 F20 F21 F22 F23 F24 F25

D=10
GOA

AVG 8.55× 1003 6.94× 1001 4.98× 1001 1.83× 1002 9.56× 1001 3.18× 1002 3.35× 1002 4.32× 1002

STD 6.78× 1003 1.05× 1002 5.61× 1001 5.39× 1001 2.09× 1001 7.59× 1000 6.44× 1001 2.08× 1001

QRE-GOA
AVG 1.34× 1001 2.09× 1000 1.09× 1001 1.82× 1002 9.56× 1001 3.12× 1002 3.29× 1002 4.20× 1002

STD 9.68× 1000 2.04× 1000 1.11× 1001 3.97× 1001 1.94× 1001 5.47× 1000 6.25× 1001 2.35× 1001

D=30
GOA

AVG 1.89× 1005 9.99× 1003 4.04× 1002 3.18× 1002 2.15× 1003 4.99× 1002 5.78× 1002 4.02× 1002

STD 1.59× 1005 1.02× 1004 1.94× 1002 3.05× 1001 2.32× 1003 5.60× 1001 5.54× 1001 1.77× 1001

QRE-GOA
AVG 1.13× 1005 1.40× 1003 3.73× 1002 2.89× 1002 2.36× 1003 4.25× 1002 4.91× 1002 3.91× 1002

STD 1.49× 1005 2.81× 1003 1.56× 1002 2.64× 1001 1.71× 1003 2.20× 1001 2.50× 1001 1.35× 1001

D=50

GOA
AVG 1.44× 1006 2.01× 1004 9.71× 1002 4.65× 1002 7.85× 1003 7.69× 1002 8.54× 1002 6.03× 1002

STD 1.35× 1006 1.18× 1004 3.43× 1002 5.89× 1001 2.51× 1003 8.77× 1001 1.25× 1002 2.37× 1001

QRE-GOA
AVG 4.09× 1006 1.00× 1004 1.08× 1003 4.94× 1002 1.04× 1004 7.35× 1002 8.12× 1002 5.60× 1002

STD 2.93× 1006 1.19× 1004 2.86× 1002 3.86× 1001 2.12× 1003 3.51× 1001 2.45× 1001 2.86× 1001

F26 F27 F28 F29 F30 WIN

D=10
GOA

AVG 4.93× 1002 4.00× 1002 5.37× 1002 2.91× 1002 1.84× 1005

D=10

AVG: 27
STD 3.50× 1002 1.42× 1001 1.67× 1002 4.86× 1001 3.67× 1005

QRE-GOA
AVG 3.97× 1002 3.96× 1002 4.48× 1002 2.74× 1002 2.74× 1005 STD: 25
STD 2.85× 1002 3.49× 1000 1.67× 1002 3.66× 1001 3.91× 1005

D=30
GOA

AVG 2.83× 1003 5.47× 1002 4.35× 1002 1.01× 1003 1.28× 1004

D=30

AVG: 27
STD 1.22× 1003 2.42× 1001 2.22× 1001 2.47× 1002 6.92× 1003

QRE-GOA
AVG 1.92× 1003 5.30× 1002 4.02× 1002 7.92× 1002 6.56× 1003 STD: 25
STD 5.77× 1002 1.46× 1001 4.57× 1001 1.85× 1002 3.78× 1003

D=50

GOA
AVG 4.86× 1003 8.80× 1002 5.76× 1002 1.56× 1003 1.40× 1006

D=50

AVG: 19
STD 2.33× 1003 1.17× 1002 3.08× 1001 3.16× 1002 5.13× 1005

QRE-GOA
AVG 3.86× 1003 6.30× 1002 5.17× 1002 1.28× 1003 2.18× 1006 STD: 22
STD 4.54× 1002 5.41× 1001 2.30× 1001 2.85× 1002 1.16× 1006

4.4. Analysis of Algorithm Convergence. In order to further prove the superior-
ity of the optimized new algorithm QRE-GOA compared with the original algorithm
GOA and other algorithms, we compared the convergence of the QRE-GOA with other
7 meta-heuristic algorithms, including the old the algorithm PSO and other emerging
algorithms BOA, SCA, WOA, etc, so it can more comprehensively prove the superiority
of the QRE-GOA. We randomly selected 1 unimodal function, 3 multimodal functions,
2 mixed functions, and 2 combined functions. Among them, the randomly selected uni-
modal function is F1, the randomly selected multimodal functions are F5, F6, and F10,
the randomly selected mixed functions are F16 and F20, and the finally randomly se-
lected combined functions are F21 and F23. The randomness and fairness properties of
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the QRE-GOA are more comprehensively proved. From the following 8 images, it can be
seen that the convergence speed of QRE-GOA is not only faster than that of the GOA on
unimodal functions, multimodal functions, mixed functions, and combined functions, but
also faster than the other 5 algorithms. The convergence speed is fast, which shows that
the elite selection strategy and the QUATRE algorithm we added have played a signifi-
cant role in the convergence of the particle swarm, because the QUATRE algorithm can
quickly search for the optimal solution, and the elite selection strategy can retain some of
the optimal solution. Therefore, QRE-GOA can achieve rapid convergence. In addition,
QRE-GOA can not only achieve rapid convergence, but also realize the trend that the fit-
ness value continues to decline after the iteration ends, which proves that our addition of
the QUATRE algorithm and the restart mechanism play a vital role, which can make the
particles that gradually fall into the local optimal solution escape through the disturbance
of QUATRE and the restart strategy, which greatly reduces the situation of falling into
the local optimal solution. Please see Figure 1 below for specific data. The purpose of
this research is to find a more excellent algorithm based on the GOA, which can improve
its ability to find the optimal solution. We discussed in depth the operating mechanism
of the QUATRE algorithm, the restart strategy and the elite selection strategy, and we
clearly know why the optimized QRE-GOA is better than the original algorithm. And
it is hoped that the improved algorithm can be accurately applied to the 3D coverage of
the wireless sensor network. The above experiments have proved the superiority of the
QRE-GOA from multiple angles and levels [41].

4.5. Analysis of Significant Differences on 29 Test Functions. In order to statis-
tically verify the superior results obtained based on the QRE-GOA. By performing the
friedman test and the wilcoxon signed-rank test [42], we compared it with the original
algorithm GOA and other 4 algorithms, so we can more fully evaluate the performance
differences between QRE-GOA and other algorithms, and determine whether these dif-
ferences are in the statistically significant. Table 4 and Table 5 provide objective data
support for these statistical tests. Among them, we still set the number of particle pop-
ulations to 30, the number of iterations to 1000, and the dimension to 30 dimensions. At
the same time, the data with p value greater than 0.05 are bolded, because their results
were not statistically significant. The data in Table 4 and Table 5 further help us confirm
that the excellent performance of the QRE-GOA algorithm is significant and credible in
practical problems. It is obvious that the significance level of QRE-GOA is far better
than the original algorithm GOA and other algorithms.

5. 3D Coverage. In the context of the three-dimensional wireless sensor network cov-
erage problem, the specification of two coordinates and a radius R defines a spherical
space. The sensor detection area is represented by the surface of this spherical space.
The integration of the QRE-GOA algorithm into the optimization of these coordinates
offers a promising avenue to enhance the coverage capabilities of wireless sensor networks.
Each deployment strategy is metaphorically treated as a ”gannet,” and its configura-
tion is articulated through Equation (14). This method of representation facilitates a
clearer understanding and description of sensor deployment strategies. The utilization of
the QRE-GOA algorithm is anticipated to refine these deployment strategies, ultimately
leading to an improvement in the overall coverage performance.

[Gan1
1, Gan2

1, Gan1
2, Gan2

2, · · · , Gan1
i , Gan2

i , · · · , Gan1
N , Gan2

N ] (14)

i represents the index of the sensor node, and N signifies the total count of sensor nodes.
The term Gan1

i corresponds to the first-dimensional value of the i − th node, while the
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(g) (h)

Figure 1. Convergence curves of F1, F5, F6, F10, F16, F20, F21 and F23
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Table 4. Friedman’s test for other comparative algorithms.

Function Sum of squares Degree of freedom Mean squares p-value

F1 1392.4 5 278.48 1.67308× 10−21

F3 1268.8 5 253.76 1.69318× 10−19

F4 1326.5 5 265.30 1.96471× 10−20

F5 1126.1 5 225.22 3.43763× 10−17

F6 1147.5 5 229.50 1.55163× 10−17

F7 1238.7 5 247.74 5.20190× 10−19

F8 1073.9 5 214.78 2.38776× 10−16

F9 1175.4 5 235.08 5.49616× 10−18

F10 1209.7 5 241.94 1.53271× 10−13

F11 1231.4 5 246.28 6.82855× 10−19

F12 1360.9 5 272.18 5.43317× 10−21

F13 1358.8 5 271.76 5.87684× 10−21

F14 1039.9 5 207.98 8.42298× 10−16

F15 1152.7 5 230.54 1.27882× 10−17

F16 1075.8 5 215.16 2.22525× 10−16

F17 1073.3 5 214.66 2.44151× 10−16

F18 1039.1 5 207.82 8.67640× 10−16

F19 1135.7 5 227.14 2.40607× 10−17

F20 996.7 5 199.34 4.16983× 10−15

F21 1111.9 5 222.38 5.82604× 10−17

F22 938.0 5 187.60 3.64862× 10−14

F23 1292.7 5 258.54 6.94062× 10−20

F24 1353.1 5 270.62 7.27223× 10−21

F25 1340.8 5 268.16 1.15156× 10−20

F26 1296.3 5 259.26 6.06793× 10−20

F27 1298.3 5 259.66 5.63142× 10−20

F28 1326.4 5 265.28 1.97207× 10−20

F29 1204.6 5 240.92 1.85333× 10−18

F30 1306.0 5 261.20 4.22450× 10−20

second-dimensional value of the i−th node is also referred to as the ”Gan2
i ”. The coverage

rate for the i− th round can be computed using Equation (15).

rat(k) =
1

H

H∑
e=1

(
N∑

f=1

F (Pf , Ce)) (15)

Here, H denotes the number of pixels representing target objects in the 3D terrain. N
refers to the total number of sensor nodes. The function F (Pf , Ce) signifies whether the
pixel e is covered by node f . If the Euclidean distance between node P and target object
C is less than the radius R, then F (Pf , Ce) is set to 1, otherwise, F (Pf , Ce) is set to 0.

5.1. Parameter settings. To verify the efficacy of the QRE-GOA in 3D space, the study
used the algorithm to solve the 3D coverage problem, and demonstrates its advantages
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Table 5. Wilcoxon signed rank test compared with other algorithms.

Function GOA PSO WOA AOA SCA

F1 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F3 0.0720 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F4 0.1264 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F5 3.9388× 10−07 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F6 7.8980× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F7 2.5960× 10−05 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F8 2.7451× 10−04 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F9 3.4156× 10−07 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F10 2.2220× 10−04 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F11 1.4400× 10−02 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F12 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F13 00.6600× 10−02 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F14 5.2269× 10−07 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F15 0.6359 6.7956× 10−08 9.1728× 10−08 3.4995× 10−06 6.7956× 10−08

F16 0.8400× 10−02 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F17 0.0679 1.6571× 10−07 9.1728× 10−08 6.7956× 10−08 7.8980× 10−08

F18 0.3300× 10−02 6.7956× 10−08 7.8980× 10−08 6.7956× 10−08 6.7956× 10−08

F19 1.2300× 10−02 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F20 0.2616 1.0646× 10−07 7.8980× 10−08 1.5757× 10−06 2.5629× 10−07

F21 4.6007× 10−04 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F22 3.6000× 10−02 2.9598× 10−07 5.2550× 10−05 6.7956× 10−08 2.9598× 10−07

F23 1.4438× 10−04 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F24 2.5629× 10−07 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F25 2.0700× 10−02 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F26 1.2505× 10−05 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F27 2.9400× 10−02 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F28 3.1500× 10−02 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

F29 0.0565 6.7956× 10−08 7.8980× 10−08 6.7956× 10−08 6.7956× 10−08

F30 1.6098× 10−04 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08 6.7956× 10−08

in this field through different parameter settings. Specifically, in this study, we apply the
QRE-GOA to solve the coverage problem in a three-dimensional area, that is, how to
efficiently deploy wireless sensors to cover the entire area. To ensure a fair comparison,
we set the number of particles of PSO, APSO, FMO and QRE-GOA to 100, and made
multiple settings for the number of nodes (N), which were 30, 35, 40, and 45, respectively.
In addition, we also adjusted the radius of the sensor and tried different values, including
3, 7 and 10. The comparison results are shown in Table 6. In these experiments, the
dimension (D) of the number of nodes is twice the number of nodes, D = N ∗ 2. In order
to simulate the real situation, we randomly arranged wireless sensors [43] in a 50Ö50
mountain area. Through these experiments, we aim to demonstrate the effectiveness and
advantages of the QRE-GOA in solving 3D coverage problems [44, 45]. The simulation
results are shown in Figure 2.

5.2. Results. In order to ensure the accuracy of the experimental results, each algorithm
was run independently 10 times, and its average value was calculated in Table 6. The
results for different number of nodes (N) and coverage radius (R) are listed in the table.
Among them, N represents the number of nodes, and R represents the coverage radius.
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Table 6. Coverage of different algorithms.

N R PSO(%) APSO(%) FMO(%) QRE-GOA(%)

30 3 14.46 13.61 14.99 15.51
5 46.61 40.97 46.51 48.66
7 74.51 63.62 74.27 77.33
10 94.82 85.23 94.86 96.87

35 3 17.32 15.60 17.25 18.02
5 51.93 45.72 51.47 53.67
7 79.18 67.60 79.16 82.14
10 96.61 87.57 96.69 98.32

40 3 19.34 17.30 19.35 20.23
5 56.35 49.23 56.32 58.25
7 82.94 73.53 83.13 86.04
10 97.96 90.00 98.01 98.96

45 3 21.44 19.18 21.44 22.39
5 60.16 53.24 60.30 62.37
7 86.24 76.89 86.32 88.54
10 98.68 92.22 98.68 99.38

Figure 2. The simulated 3D terrain

By comparing the experimental results, we can see that the QRE-GOA has obvious advan-
tages in 3D coverage. These results will help to verify the effectiveness of the QRE-GOA
in practical applications, and provide a new perspective for the solution of 3D coverage
problems.
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6. Conclusions. In this paper, we present a series of improvements to GOA aimed at
improving its optimization performance. First, we introduce new elements, including
the QUATRE algorithm, restart strategy, and elite selection. These improvements dra-
matically change the position change strategy of the particles and allow the algorithm
to explore the solution space more flexibly, thus further improving its optimization ca-
pability. In addition, to study the optimization performance of the new algorithm, we
also conducted a comparative analysis with other well-known algorithms in 29 different
types of test functions, thus affirming the strong competitiveness of the new algorithm.
Finally, we apply QRE-GOA to solve the 3D coverage problem and demonstrate through
simulation that QRE-GOA achieves significantly higher coverage compared with other
algorithms.
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