
Journal of Network Intelligence ©2024 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 9, Number 1, February 2024

Generative Adversarial Networks Based on
Cooperative Games

Lie Luo

College of Computer and Information Engineering
Xiamen University of Technology

600 Polytechnic Road, Houxi Town, Xiamen City, Fujian Province, China
luo.lie@foxmail.com

Jiewei Cai

School of Economics and Management
Xiamen University of Technology

600 Polytechnic Road, Houxi Town, Xiamen City, Fujian Province, China
2063568463@qq.com

Zouyang Fan

School of Economics and Management
Xiamen University of Technology

600 Polytechnic Road, Houxi Town, Xiamen City, Fujian Province, China
143631998@qq.com

Yumin Chen

College of Computer and Information Engineering
Xiamen University of Technology

600 Polytechnic Road, Houxi Town, Xiamen City, Fujian Province, China
ymchen@xmut.edu.cn

Hongbo Jiang∗

School of Economics and Management
Xiamen University of Technology

600 Polytechnic Road, Houxi Town, Xiamen City, Fujian Province, China
hbjiang@xmut.edu.cn

∗Corresponding author: Hongbo Jiang

Received June 14, 2023, revised August 12, 2023, accepted October 16, 2023.

88



Generative Adversarial Networks Based on Cooperative Games 89

Abstract. Generative adversarial networks (GANs) have become a hot research topic
in recent years, representing an unsupervised learning method based on zero-sum games.
Due to the high complexity of real samples, GANs still face challenges in training stability
and the quality of generated samples. Mode collapse is a common problem in GANs. To
overcome the drawbacks of mode collapse, this paper introduces a novel approach called
Cooperative-GAN (Coop-GAN) by incorporating a beating discriminator system instead
of the original discriminator model. Cooperative games, which differ from zero-sum
games, are employed in Coop-GAN. Unlike traditional GANs’ zero-sum games, Coop-
GAN incorporates the concept of cooperative games, which involve non-adversarial in-
teractions, distinguishing it from traditional GANs’ adversarial nature. In cooperative
games, the overall benefits of the game system increase, and all parties can benefit from
cooperation, achieving a win-win or mutually beneficial outcome.This collaborative frame-
work forms the foundation of Coop-GAN. In Coop-GAN, the discriminator model learns
the real data distribution exclusively by assigning high scores to real samples and refrain-
ing from assigning low scores to generated samples. This cooperative mode enables the
discriminator model to better guide the generator, enhancing the discriminator’s capa-
bilities without increasing the generator’s loss. Through mutual cooperation, Coop-GAN
achieves an overall gain in the cooperative game, contributing to improved diversity and
authenticity of the generated samples. The beating discriminator system in Coop-GAN
reduces the frequency of rejecting generated samples, introducing a new cooperative mode
where the beating discriminator system and the generator model mutually collaborate and
learn together. Through multiple experiments on the Fashion-MNIST dataset, the results
demonstrate that Coop-GAN satisfies superadditivity in cooperative games. As the batch
size increases, the proposed Coop-GAN model exhibits greater stability compared to tra-
ditional GANs. Particularly, when the batch size is 512, Coop-GAN exhibits outstanding
performance, reducing the FID value by 10% and increasing the IS score by 4% compared
to the multi-discriminator model GMAN.In conclusion, Coop-GAN generates samples
with lower FID values and fewer mode collapse phenomena compared to various other
GAN models.
Keywords: Cooperative game theory, Generative adversarial networks, Image genera-
tion,

1. Introduction. Generative adversarial networks (GAN) [1], proposed by Goodfellow
et al. in 2014, are a type of generative model. Inspired by zero-sum games in game
theory [2], GAN models consist of a generator and a discriminator, both of which can be
implemented using deep neural networks [3].

The generator model in GANs does not directly estimate or fit the distribution of real
samples. Instead, it samples data from an implicitly defined distribution [4]. During the
training process, the generator model learns to transform a simple input noise distribu-
tion (e.g., uniform distribution, multivariate normal distribution) into the target image
space distribution. By using this transformation, the generator model generates synthetic
samples from the noise distribution. The goal is to generate samples that closely resemble
real samples, making it difficult for the discriminator model to distinguish between real
and generated samples. The discriminator model aims to learn to distinguish real samples
from generated samples, guiding the generator model in generating samples that approxi-
mate the real sample distribution [5]. In this way, the generator and discriminator models
compete with each other. Over time, the discriminator model becomes better at distin-
guishing real and generated samples, while the generated samples become increasingly
similar to real samples. Overall, both the generator and discriminator models minimize
their own losses, and their ultimate goal is to achieve a Nash equilibrium [6].

Mode collapse [7] is a common problem in the process of image generation with gener-
ative adversarial networks. It occurs when the generator model produces a single output
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that the discriminator model consistently classifies as real, even before the discriminator
model has learned effective discrimination.

Batch size is an important parameter during training as it can affect the level and
speed of model optimization. As batch size gradually increases, training time decreases
and computation becomes more stable. However, excessively large batch sizes can lead to
a decline in model performance [8]. As shown in Figure 1, when the batch size exceeds a
certain threshold, convergence to sharp minima becomes more likely, while smaller batch
sizes are more likely to converge to flat minima. Additionally, smaller batch sizes intro-
duce more randomness and exploration during training, which can enhance the network’s
generalization ability [9]. Training with excessively large batch sizes often leads to mode
collapse issues.

Figure 1. A Conceptual Sketch of Flat and Sharp Minimizers

To address the issue of training instability in GANs, researchers have proposed various
improvements to the training process. For example, Topology-aware GAN (TopoGAN)
[10] and Focal Frequency Loss GAN (FFLGAN) [11] introduced new loss functions to
replace the original GAN’s cross-entropy loss. DRAGAN incorporated a novel gradient
penalty algorithm during training. In terms of structural improvements, GMAN [12]
integrated multiple discriminator models within the GAN framework, while BE-GAN [13]
replaced the discriminator with an autoencoder to enhance the final generation results.
Most of these modifications focus on the objective function or network structure, rather
than specific training strategies.

Traditional GANs employ a zero-sum game strategy, which belongs to non-cooperative
games. In a zero-sum game, the gains of one player result in the losses of the other player,
and the sum of their gains and losses is always zero. Therefore, the objective of each
player is to maximize their own gain by increasing the other player’s loss. In contrast,
cooperative games [14] are characterized by non-adversarial interactions, where multiple
parties can benefit or at least have their interests increased. As a result, the overall
benefits of the game system increase.

To address the issue of mode collapse, this paper introduces a novel type of Genera-
tive Adversarial Network called Cooperative-GAN (Coop-GAN). Coop-GAN differs from
traditional GANs in its adversarial mode by incorporating a new cooperative approach.
In this approach, the discriminator model learns the real data distribution exclusively
by assigning high scores to real samples and refraining from assigning low scores to gen-
erated samples. This cooperative mode allows the discriminator model to better guide
the generator, thereby enhancing the discriminator’s capabilities without increasing the
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generator’s loss. Through mutual cooperation, Coop-GAN achieves an overall gain in the
cooperative game, contributing to improved diversity and authenticity of the generated
samples.

Additionally, this paper introduces a beating discriminator system, inspired by the
density variation of neurons in the human brain as a person ages [15]. During the training
process of Coop-GAN, the size of the beating discriminator system’s discriminator model
varies periodically. Since different-sized discriminator models fit functions with varying
complexities, this design helps to avoid the generator being consistently identified as real,
thereby reducing the likelihood of mode collapse.

By incorporating cooperative mode and the beating discriminator system, Coop-GAN
exhibits significant differences from traditional GANs in the adversarial generation process
and effectively overcomes the problem of mode collapse, leading to improved quality and
diversity of generated samples.

The contributions of this paper are as follows: 1. Designed a novel Generative Ad-
versarial Network, Cooperative-GAN (Coop-GAN), based on cooperative game theory,
enabling better guidance of the generator by the discriminator model. 2. Introduced
the beating discriminator system, inspired by the growth pattern of the human neural
system, with periodically varying discriminator model size to prevent mode collapse. 3.
Experimental results demonstrate that Coop-GAN shows significant improvements in IS
(Inception Score) and FID (Fréchet Inception Distance) values compared to other tradi-
tional structured GAN networks.

2. Related Work.

2.1. Generative adversarial network. A Generative Adversarial Network (GAN) con-
sists of a generator model (G) and a discriminator model (D), and it is an unsupervised
learning method. In GANs, the discriminator model is used to distinguish between real
and generated samples, while the generator model generates target images and aims to
deceive the discriminator model. The payoff for the discriminator model is denoted as
V (θ(G), θ(D)) and the payoff for the generator model is −V (θ(G), θ(D)), Both the generator
and discriminator models strive to maximize their own payoff during training, resulting
in the following optimization objective:

G∗ = argminmax
G

max
D

V (G,D)

Here, pdata(x) represents the data distribution of real images, pzrepresents the input noise
variable, and V (θ(G), θ(D))is defined as:

V (θ(G), θ(D)) = Ex∼pant(x)[logD(x)] + Ez∼px(z)[log (1−D
(
G(z)

)
)]

The structure and update process of a traditional GAN are illustrated in Figure 2.
The training of a GAN involves several steps: 1) Fix the parameters of the generator
model G and optimize the parameters of the discriminator model D to find that maxi-
mizes V (θ(G), θ(D)), i.e., max

D
V (G,D) 2) Fix the parameters of the discriminator model

D and optimize the parameters of the generator model G to find G∗ that minimizes
maxD V (G,D), i.e., minGmaxD V (G,D) 3) Repeat steps (1) and (2) in a cycle, alternat-
ing between training the generator and discriminator models.

2.2. Progress in adversarial generative networks. The training process of GANs is
unstable and prone to model collapse. The optimization objective of traditional GANs
can be derived as minimizing the Jensen-Shannon (JS) divergence between the generated
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Figure 2. The structure of traditional GAN and the update process

data distribution pg and the real data distribution pdata. However, when the JS diver-
gence becomes a constant, the gradient of the generator model becomes zero, causing the
network to stop updating [16]. Wasserstein GAN (WGAN) [17, 18] addresses this issue by
using the Earth-Mover (EM) distance, which is a more smoothly varying similarity mea-
sure compared to the relative JS divergence and Kullback-Leibler (KL) divergence [19].
WGAN-GP [20] further improves upon WGAN by replacing weight clipping with a gradi-
ent penalty and introducing Gaussian noise in the generator model. It also uses the Adam
optimizer [21] instead of RMSProp to enhance the stability of GAN training. Energy-
Based GAN (EB-GAN) treats the discriminator model as an energy function, assigning
low energy to real samples and high energy to generated samples during training. Bound-
ary Equilibrium GAN (BE-GAN) introduces the concept of boundary equilibrium and
uses an autoencoder as the discriminator. It minimizes the reconstruction error between
real and generated samples as the training objective. Least Squares GAN (LSGAN)[22]
replaces the original cross-entropy loss function with the least squares loss function. DRA-
GAN proposes a new gradient penalty algorithm and views the GAN training process as
regret minimization rather than traditional consistent minimization. It aims to address
mode collapse phenomenon caused by local equilibrium in non-convex situations. GMAN
[12] integrates multiple discriminator models in GANs to improve the quality of generated
samples. TopoGAN (Topology-aware GAN) algorithm introduced by Wang et al. incor-
porates new loss functions in the topological feature space. FFLGAN (Focalfrequency
loss GAN), proposed by Jiang et al., effectively measures the distribution of generated
and real images in the data space. Additionally, DCLAGAN (Dual contrastive loss and
attention for GAN) [23] by Yu et al. generalizes image representations and enhances
the discriminative power of the discriminator, indirectly improving the image generation
capability of the generator.

DCGAN (Deep Convolutional GANs) [24], introduced by Alex Radford et al. in 2016,
attempts to understand and visualize the learning process of GANs by incorporating deep
convolutional neural networks (CNNs) into GANs. DCGAN (Deep Convolutional GANs)
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has made the training process of GANs more stable. It introduces convolutional neural
networks (CNNs) without pooling layers, which are utilized in both the discriminator and
generator models. Furthermore, to address the issue of overfitting caused by the large
number of parameters and computational complexity of fully connected layers, DCGAN
removes the fully connected layers altogether. Batch normalization is employed to map
the input sample data to a range with zero mean and unit variance, making the training
process easier and faster. Additionally, DCGAN incorporates various activation functions
instead of using a single fixed activation function. The generator structure of DCGAN is
illustrated in Figure 3.

Figure 3. The generator structure of DCGAN

2.3. Cooperative game. Cooperative game theory is a theoretical framework within
game theory. It is based on the exchange of information among multiple players and
involves enforceable constraints. It establishes mechanisms for cooperation, mutual trust,
and mutual constraints. In cooperative games, participants form alliances and cooper-
ate, which can increase the benefits for the cooperating parties as well as the overall
system. The cooperative surplus generated in cooperative games can be shared among
the participants. The establishment of cooperative game mechanisms primarily requires
the following four points: 1) The participants in the game share common interests. 2)
The participants in the game need necessary information exchange. 3) The participants
in the game engage voluntarily, on equal footing, and with mutual benefits. 4) The game
requires a binding contract or agreement. Cooperative game theory can be represented
by a binary tuple (N, v), where N is a set consisting of a finite number of participants,
and v : 2N → R represents the payoff function for all possible cooperative combina-
tions S. In the game G = (N, v) if for any S, T ⊂ N , and S ∩ T = ∅, it holds that
v (S ∪ T ) ≥ v (S) + v(T ), then the game is said to be superadditive.

3. Cooperative Game-Based Generative Adversarial Networks (Coop-GAN).
The traditional generative adversarial network consists of a generative model and a dis-
criminative model. The discriminant model continuously denies the images generated by
the generative model. The generation model makes it impossible for the discriminant
model to distinguish the generated samples from the real ones. The models in the gener-
ative adversarial network learn by increasing each other’s losses. They are prone to the
problem that one side of the model has zero loss and the other has too much loss during
the training process.
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This paper proposes a cooperative game-based generative adversarial network structure
that uses a cooperative model to train the models in the generative adversarial network. In
the traditional generative adversarial network, the discriminative model needs to deny the
samples generated by the generative model continuously. In the cooperative model, the
discriminative model learns the real samples first. After which, the discriminative model
guides the generative model to learn the distribution of the real samples. Compared
with the traditional generative adversarial network, this network can effectively train the
generative and discriminative models.

In Coop-GAN, the discriminative model is a beating discriminative model system, which
further reducing the possibility of mode collapse. The overall architecture of the network
is shown in Figure 4.

Figure 4. The Coop-GAN structure. Dbeating is the discriminative model
system of beating.

3.1. Overall network architecture. The Coop-GAN model structure is divided into
three parts including the beating discriminative model system, the generative model, and
the cooperative loss.

The beating discriminant model system consists of two discriminative models of differ-
ent sizes. The input samples (real samples x or generated samples x′) enter the beating
discriminant model system. After that, the discriminant models of different sizes within
the beating discriminant model system periodically alternate receiving input samples and
updating the network according to the loss function. The network depth of the two dis-
criminant models is different, and their functional ability to fit real samples is inconsistent.
This pairing reduces the cases where the generative models fall into a single generative
pattern, thereby reducing the possibility of mode collapse.

The generative model first augments the random input vector by a multilayer per-
ceptron, after which the generative samples are obtained using transpose convolution,
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regularization, and activation functions. The loss of the generative model is calculated by
the beating discriminant model system. The generative model is updated based on the
computed loss.

The beating discriminant model system in Coop-GAN periodically cooperates with
the generative model. In the cooperative model, the beating discriminant model system
only learns the probability distribution of the real samples without denying the images
generated by the generative samples. The beating discriminant model system learns the
probability distribution of the real samples. The generative model continuously learns
from the beating discriminant model system to make its distribution close to the dis-
tribution of the beating discriminant model system. In this way, the generative model
indirectly learns the probability distribution of real samples. The characteristic based
on the cooperative game can avoid the problem that one party loses a lot and the other
party loses nothing in a zero-sum game. The experiments show that the final sample
effect obtained by the Coop-GAN is better than that of the full adversarial model. The
Coop-GAN satisfies the superadditivity in the cooperative game.

3.2. A discriminative model system of beating. The discriminative model system
of beating can consist of several discriminative models with different depths. This paper
uses two discriminant models of different depths in the discriminant model system of
beating. The two models are the primary discriminant model Dbig and the secondary
discriminant model Dsmall. In the beating discriminator system, these two discriminator
models alternately receive image inputs and output corresponding judgment scores. The
frequency of alternation is determined by a hyperparameter.

In the Fashion-MNIST[25] dataset (the image size is 28*28), the discriminant model
system of beating is shown in Figure 5.

Figure 5. A discriminative model system of beating. Discriminators of dif-
ferent sizes alternate in receiving image inputs and outputting their judging
scores during network training. The frequency of alternation is a hyperpa-
rameter.

When using Dbig as the discriminant model, the following operations are available. 1)
The input sample of size (28,28,1) is passed through a convolutional layer (conv1) with a
convolutional kernel size of 4x4 and a step size of 2 to obtain a 3D tensor of size (14,14,16).
2) The (14,14,16) tensor inputs to a convolution layer (conv2) with a convolution kernel
size of 4x4 and a step size of 2, resulting in a 3D tensor of size (7,7,128). 3) Reshape
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the (7,7,128) tensor into a one-dimensional tensor of size 6272. 4) A one-dimensional
tensor size 6272 is used as input to the fully connected layer (linear1). A tensor of size
1024 is output. 5) A one-dimensional tensor of size 1024 is used as the input of the fully
connected layer (linear2). The output quantity of size 1 is the evaluation score of the
discriminant model on the input samples.

When using Dsmall as the discriminant model, the following operations are available.
1) The input sample of size (28,28,1) is passed through a convolutional layer (conv1)
with a convolutional kernel size of 8x8 and a step size of 4 to obtain a 3D tensor of size
(7,7,128). 2) Reshape the tensor of (7,7,128) into a one-dimensional tensor of size 6272.
3) A one-dimensional tensor of size 6272 as input to the fully connected layer (linear1)
and an output tensor of size 1024. 4) A one-dimensional tensor of size 6272 is used as
the input of the fully connected layer (linear2), and the output quantity of size 1 is the
evaluation score of the discriminant model on the input samples.

By introducing two discriminator models with different depths, namely Dbig and Dsmall,
in the beating discriminator system, the diversity of the model is increased. In this study,
since Dbig has an additional convolutional layer compared to Dsmall, the two discriminator
models have different capabilities in fitting functions. This structure helps reduce the
occurrence of mode collapse in the generator by providing diverse feedback and guidance
during the training process. The generative model training process may occasionally find
distributions that make the discriminative model consistently identify as correct. This
problem can trigger the phenomenon of mode collapse. In the beating discriminant model
system, the discriminant models are multiple models with different fitting capabilities.
Thus the likelihood of mode collapse is less than that of a single discriminant model.
Indeed, such design features make Coop-GAN more stable and capable of generating
more diverse and realistic samples.

3.3. Cooperative loss. This paper adopts a different way of calculating loss from the
traditional GAN. According to the cooperative game model, the original loss based on
zero sum game is improved. The loss of this paper includes three parts, which are the
discriminative model adversarial loss Lconf , the discriminative model cooperative loss Lcoop

and the generative model loss LG. The structure is as follows in Figure 6.

3.4. Model training of the coop-GAN. The task of the discriminant model is not
only to distinguish the real samples from the generative samples but also to learn the
real samples. After that, the generative model learns the distribution of the discriminant
model. This approach can achieve the purpose of the discriminative model leading to
generative learning. When the model is adversarial, the discriminant model loss is:

V (D) = Ex∼pdata(x) [logD(x)] + EZ∼pz(z)

[
log(1−D

(
G(z)

)
)
]

When the model is cooperative, the discriminant model no longer adds the evaluation
scores of the generated model to the loss, but only learns the distribution of the true
samples. The objective of the discriminant model at this point is

max
D

V (D) = Ex∼pdata(x) [logD(x)]

The algorithm of Coop-GAN is in Algorithm 1.

4. Experimental Results and Analysis.
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Figure 6. Cooperative loss. In the adversarial model, the discriminative
model system loss Lconf is the sum of the discriminative errors for the real
and generated images. In the cooperative model, the discriminative model
system loss Lcoop is only the score of the true image. Regardless of whether
the model is cooperative or adversarial, the goal of the generative model is
always to try to discriminate the model to determine the generative model
as the true sample.

4.1. Experimental environment and data set. The operating system of this paper
is Ubuntu Server 20.04 LTS, the CPU is 12-core Intel(R) Xeon(R) Silver 4310 CPU @
2.10GHz, and the GPU is GRID A100-40C. The deep learning framework used is PyTorch,
and the programming environment is python. The images of experimental training and
comparison tests were obtained from the Fashion-MNIST dataset. The Fashion-MNIST
dataset is an image dataset used as an alternative to the MNIST[10] dataset, which
contains grayscale images of 70,000 different products in 10 categories, with image sizes
(28,28,1).

4.2. Fashion-MNIST experiment. The network architecture used in the training pro-
cess is shown in Figure 4, and the parameters are set as follows: 1) Batch is 32, 128, 512 2)
Epoch set to 100 3) The Adam optimizer’s learning rate is 0.0002. The exponential decay
rate of first-order moment estimation is 0.5. The exponential decay rate of second-order
moment estimation is 0.999. 4) The generating models using the Tanh function as the
activation function for the last layer and the ReLU as the activation function for the other
layers. 5) The last layer of the discriminant model in the discriminant model system of
beating all use the Sigmoid function as the activation function. The other layers use the
Leaky ReLU as the activation function. 6) Batch normalization is used for each layer to
normalize the input of the hidden layer in batches. FID [26] (Fréchet Inception Distance)
quantifies the difference between the final generated samples and the real samples using
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Algorithm 1 The Coop-GAN training process.

Set the default valuesm=512, α=0.0002, β1=0.5, β2=0.999, j=1/10, t=1/2, epoch=100
Specify: m is the batch size, α is the learning rate, β1 and β2 are the Adam hyper-
parameter, j is the beating frequency, t is the cooperation frequency, and epoch is the
number of iterations.
for t = 1 to epoch do
countcoop = 0
countconf = 0
for the number of training iterations do
Sampling from real distributions {x(i)}mi=1 ∼ pdata(x)
Obtaining noise samples {z(i)}mi=1 ∼ pg(x)
if (countcoop ∗ t)%1 == 0 then
countcoop = countcoop + 1
if (countcoop ∗ t ∗ j)%1 = 0 then
ωDsmall

← Adam(∇ωD

1
m

∑m
i=1 log (Dsmall(x

(i))))

ωG ← Adam(∇G
1
m

∑m
i=1 log(1−Dsmall(G(z(i)))))

else
ωDbig

← Adam(∇ωDbig

1
m

∑m
i=1 log(Dbig(x

(i))))

ωG ← Adam(∇G
1
m

∑m
i=1 log (1−Dbig(G(z(i)))))

end if
else
countconf = countconf + 1
if (countconf ∗ j)%1 == 0 then
ωDsmall

← Adam(∇ωDsmall

1
m

∑m
i=1 log

(
Dsmall(x

(i)) + log
(
1−Dsmall

(
G
(
z(i)

))))
)

ωG ← Adam(∇G
1
m

∑m
i=1 log (1−Dsmall(G(z(i)))))

else
ωDbig

← Adam(∇ωDbig

1
m

∑m
i=1 log

(
Dbig(x

(i)) + log
(
1−Dbig

(
G
(
z(i)

))))
)

ωG ← Adam(∇G
1
m

∑m
i=1 log (1−Dbig(G(z(i)))))

end if
end if

end for
end for

different beating frequencies versus different cooperation frequencies. The FID is a met-
ric used to calculate the distance between the feature vectors of the real and generated
images, which is calculated as follows:

d2((m,C), (mw, Cw)) = ∥m−mw∥22 + Tr(C + Cw − 2(CCw)
1/2)

The FID score is denoted as d2, which represents its distance as a squared term. Where
m is the feature mean of the real image. mw is the feature means of the generated image.
C and Cw are the covariance matrices of the feature vectors of the real image and the
generated image, respectively. In the measured results, the image quality is better when
the FID is lower.

4.2.1. Superadditivity verification. In the structure of generative adversarial network based
on cooperative game, the Dbig, Dsmall and G form a participant set N , which is of size 3.
The FID value of the final sample is taken as its payoff function v. Since the more minor
the FID value, the better the effect, let the final payoff be:
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f = 100− FID

The FID values of the final generated samples under different cooperation strategies are
shown in Table 1.

Table 1. The Fid Values Of The Final Generated Samples Under Different
Cooperation Strategies

Cooperation Strategy Final Benefits f
v(Dbig) + v(Dsmall) + v(DG) 79.56
v(Dsmall ∪G) + v(Dbig) 80.38
v(Dbig ∪G) + v(Dsmall) 80.65
v(Dbig ∪Dsmall ∪G) 82.03

v(Dbig ∪Dsmall ∪G) indicates that cooperative loss is used among G, Dsmall and Dbig.
v(Dbig ∪ G) + v(Dsmall) indicates that cooperative loss is used between G and Dbig and
not between G and Dsmall. v(Dsmall ∪G) + v(Dbig) indicates that cooperative loss is used
between G and Dsmall and not between G and Dbig. v(Dbig)+v(Dsmall)+v(DG) indicates
that cooperative loss is not used between any of G, Dsmall and Dbig. The experiment show
that this method satisfies:

v(Dbig ∪Dsmall ∪G) > v(Dsmall ∪G) + v(Dbig) > v(Dbig) + v(Dsmall) + v(DG)

v(Dbig ∪Dsmall ∪G) > v(Dbig ∪G) + v(Dsmall) > v(Dbig) + v(Dsmall) + v(DG)

The experiment show that gains in the cooperative state are higher than gains in the
adversarial state. The gains are higher for large alliances than for small alliances. They
are satisfied with the game G = (N, v), in which the payoffs are higher for any S, T ⊂ N ,
and S ∩ T = ∅, both have v (S ∪ T ) ≥ v (S) + v(T ). Therefore the method satisfies
superadditivity.

4.2.2. Fashion-MNIST experimental results. The experiment to change the cooperation
frequency and beating frequency in the Coop-GAN. Explore the influence on the quality
of image generation and the process of image generation. In this paper, we take the
cooperation frequency as 1/2, 1/3, 1/5, 1/10, 0, and the beating frequency as 1/2, 1/3,
1/5, 1/10, 0, respectively, under each batch size, for a total of 3*5*5 combinations. The
smaller the cooperation frequency, the fewer times the cooperative approach is used to
update the network. The cooperative loss is not used when the cooperative frequency and
beating frequency are zero.

Table 2 shows the FID values of the final generated images for different combinations
of cooperation frequency and different beating frequencies. It can be seen from Table 2
that when the batch size increases, the FID value of the samples generated by the orig-
inal GAN network becomes larger and larger. The appropriate cooperation and beating
frequency can significantly reduce the FID value. For example, at the batch size of 512,
using the Coop-GAN with a cooperation frequency of 1/2 and a beating frequency of 1/10
can reduce the FID value by 24.2%. The FID values of the generated images with batch
sizes 32, 128, and 512 are 18.48, 20.24, and 22.98, respectively. The optimal FID values of
the Coop-GAN are 16.96, 17.35, and 17.43. With different combinations of cooperation
frequency and beating frequency, there are different proportions of the Coop-GAN outper-
forming the traditional GAN in generating the final sample FID values. The proportions
are 12.5%, 75%, and 100% for batch sizes of 32, 128, and 512, respectively.
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Table 2. Fid Values Of The Final Generated Samples With Different
Batch Sizes, Beating Frequency, And Cooperation Frequency

Batch size Beating frequency
Cooperation frequency

1/2 1/3 1/5 1/10 0

32 1/2 22.60 18.87 19.99 20.74 19.02

1/3 19.57 19.14 19.55 19.14 20.11

1/5 21.74 18.18 16.96 19.24 18.90

1/10 18.06 18.59 21.92 20.83 21.86

0 19.94 20.90 19.51 20.44 18.48

128 1/2 18.05 18.75 19.63 17.74 25.15

1/3 19.93 18.19 21.80 19.42 20.57

1/5 17.76 19.73 18.99 18.36 19.52

1/10 18.95 17.35 17.39 20.36 20.31

0 20.29 19.43 19.52 18.72 20.25

512 1/2 20.28 18.94 17.73 19.95 21.19

1/3 19.98 18.10 20.11 18.45 20.51

1/5 18.16 19.53 18.76 21.09 21.15

1/10 17.43 20.45 21.78 17.88 18.27

0 19.01 19.08 20.17 20.91 22.99

Figure 7(a) represents the traditional GAN discriminant model loss. In terms of trend,
the loss of traditional GAN decreases rapidly, and the loss values mostly converge to zero.
The traditional GAN network discriminator can always distinguish the generative samples
from the real ones. The over-excellent discriminative model makes it difficult to update
the generative model.

Figure 7(b) denotes the Coop-GAN primary discriminant model loss in the adversarial
model. The losses show periodic fluctuations. When the primary discriminant model
performs too well, large but manageable fluctuations in losses occur due to perturbations
in the jump structure. It can achieve the effect of facilitating model training.

Figure 7(c) shows the loss of the Coop-GAN secondary discriminant model in the
cooperative model. The cooperative loss indicates that the generative model does not
fight against the discriminant model and only learns the loss of the real samples. Its
role is to learn the distribution of the real samples and pass it to the generative model.
The secondary discriminant model refers to the discriminant model with a simpler model
structure in the beating discriminant model system. The loss value of the secondary
discriminant model is smaller and more stable.

The loss of the traditional GAN network generation model is shown in Figure 7(d),
which shows high loss and oscillates dramatically. Figure 7(e) shows the loss of the Coop-
GAN generation model. As the discriminative model system beats, its loss function also
beats regularly within a range, and the extreme difference is much smaller than that of the
traditional GAN. Due to the characteristics of the Coop-GAN structure, the generative
model does not only fight with the discriminative model system during the learning process
but also cooperates with the discriminative model system periodically. Therefore, the
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(a) The traditional GAN discriminant model loss (b) The Coop-GAN primary discriminant model
loss in the adversarial model

(c) The loss of the Coop-GAN secondary discrimi-
nant model in the cooperative mode

(d) The generating model loss of the traditional
GAN

(e) The Coop-GAN generating model loss

Figure 7. Losses Of Various Models

Coop-GAN generative model loss has a similar periodicity to the Coop-GAN primary
discriminant model cooperative loss. In the process of continuous cooperation to promote
each other’s learning. The beating structure makes the discriminant model not fall into
a single discriminant model, thus reducing the problem of model collapse.

Figure 8 show the final generated samples of various GANs with the batch size of 512,
in which mode collapse and poor sample quality are found. Figure 8(i) shows the final
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(a) BEGAN (b) EBGAN (c) LSGAN

(d) DRAGAN (e) WGAN (f) WGAN-GP

(g) GAN (h) GMAN (i) CoopGAN

Figure 8. Final Generated Samples Of Different GANs With The Batch
Size Of 512

generated sample of the Coop-GAN, which has richer diversity and less mode collapse
compared with other Gans.

To comprehensively evaluate the stability and quality of the generated samples, two pri-
mary metrics, Fréchet Inception Distance (FID) and Inception Score (IS) [27], are utilized
in this study. FID is a metric used to measure the difference between the distributions of
the generated and real samples. It calculates the statistical distance between the features
extracted from the Inception network for real and generated samples. A lower FID value
indicates that the generated samples are closer to the real samples, indicating higher sam-
ple quality. IS is employed to assess the diversity and realism of the generated samples. A
higher IS value indicates better diversity in the generated samples and that the classifier
perceives the generated samples as more realistic. The computation of IS involves using
the Inception network to evaluate the class and probability distribution of the generated
samples.



Generative Adversarial Networks Based on Cooperative Games 103

Table 3. FID AND IS COMPARISON

GAN model FID IS

BEGAN 24.40 3.4±0.05

EBGAN 20.17 4.58±0.13

DRAGAN 19.58 4.13±0.14

LSGAN 20.75 4.24±0.14

WGAN 21.14 4.11±0.06

WGAN-GP 19.51 4.39±0.07

GMAN 20.76 4.56±0.12

Coop-GAN 18.67 4.75±0.11

From the results in 3, it can be observed that Coop-GAN performs exceptionally well
in both FID and IS values. The FID value is 18.67, which is lower than all other GAN
models, indicating that the samples generated by Coop-GAN have a smaller distribution
difference from the real samples and higher quality. Furthermore, Coop-GAN exhibits an
IS value of 4.75 ± 0.11, which is higher than all other GAN models, indicating that the
generated samples from Coop-GAN possess better diversity and realism.

In summary, to comprehensively evaluate the stability and quality of the generated
samples, this study employs two primary metrics, FID and IS. Coop-GAN demonstrates
excellent performance in both FID and IS values. The lower FID value indicates the high
quality of generated samples, while the higher IS value suggests improved diversity and
realism.

Based on the experimental results above, Coop-GAN outperforms other popular GAN
examples in terms of FID and IS values, which can be attributed to the design features
of Coop-GAN and the advantages of using a cooperative game mode.

Firstly, Coop-GAN introduces a beating discriminator system, which includes two dis-
criminator models of different depths, increasing model diversity and reducing the like-
lihood of mode collapse. Secondly, Coop-GAN adopts a cooperative loss, different from
the traditional GAN’s zero-sum game-based loss. In the cooperative mode, the objective
of the discriminator model is solely to evaluate real samples, and the evaluation scores
for the generated samples are no longer included in the loss. This cooperative loss allows
the discriminator model to focus more on the distribution of real samples under the co-
operative mode, rather than merely distinguishing between real and generated samples.
This loss design enables the discriminator model to provide more meaningful feedback
to the generator, helping the generator better mimic the real data distribution, further
enhancing the quality and realism of the generated samples.

However, simultaneously, due to the introduction of the beating discriminator system,
the resource requirements for training have increased. The inclusion of two discriminator
models of different depths has certainly improved model diversity and reduced the likeli-
hood of mode collapse, but it comes at the cost of additional computational resources.

Combining the above two points, the innovative design of Coop-GAN and the coopera-
tive game mode enable the generator and discriminator to cooperate and learn together,
thereby enhancing the diversity and quality of the generated samples. The generated
samples are closer to the distribution of real samples and exhibit better diversity and
realism. This contributes to Coop-GAN’s outstanding performance in terms of FID and
IS values.
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5. Improving StyleSwin Network With Coop-GAN Structure. The Coop-GAN
network structure can be applied to almost any generative adversarial network, using
StyleSwin [28] as an example. StyleSwin is a GAN network that builds upon the struc-
ture of StyleGAN2 [29] but replaces its basic building blocks with Swin Transformer [30].
It incorporates multi-head self-attention (MSA) [31] within non-overlapping windows to
create the GAN network. Its discriminative model can be replaced with a skipping dis-
criminative model. The improved Coop-StyleSwin is shown in Figure 9.

Figure 9. Coop-StyleSwin structure

Figure 10 shows the experimental comparison of three networks on the task of gener-
ating 64*64 size face images in the CelebA dataset using FID value. The three networks
are StyleSwin and two Coop-StyleSwin networks with different collaboration and skipping
frequencies. The experiment shows that the FID values of images generated by Coop-
StyleSwin continue to oscillate and quickly drop to around 18.5, which is better than the
StyleSwin network with the same training time.

Figure 10. Comparison of FID values for image generation using
StyleSwin and Coop-StyleSwin on the CelebA dataset
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6. Experimental Results and Analysis. In this paper, the GAN network structure
is improved based on the characteristics of cooperative games and the use of a beating
structure. The cooperative loss can make the discriminative model and generative model
learn image distribution from adversarial to cooperative The beating discriminative model
system prevents the discriminative model from falling into a single discriminative model.
Experiments show that the Coop-GAN satisfies the superadditivity of cooperative games.
The gains from using cooperative model is higher than that from using only adversarial
model. The Fashion-MNIST dataset performs better as the batch size increases. When
the batch size is 512, the FID value of the final sample generated by the Coop-GAN
is lower than that of the traditional GAN. The appropriate combination of cooperation
frequency and beating frequency can significantly reduce the FID value at each batch
size. The Coop-GAN has the best FID and IS values compared to the other exemplified
popular GANs.

However, the research on Coop-GAN still faces some potential limitations or challenges.
For instance, its generalizability may require further validation and exploration, especially
when applied to larger-scale and more complex datasets. Additionally, due to the use of
multiple discriminator models, Coop-GAN may demand higher computational resources.
Lastly, the selection of beating frequency and cooperation frequency is not fixed and needs
adjustment based on different tasks, increasing the number of hyperparameters that need
to be tuned.

To further develop and enhance Coop-GAN, future research can explore the effects of
different ranges of beating frequency and cooperation frequency by investigating various
parameter combinations. Moreover, it is possible to study adaptive methods for adjusting
the cooperation frequency and beating frequency to achieve more flexible model learning.
Furthermore, incorporating other advanced GAN techniques such as attention mecha-
nisms, adaptive normalization for the generator and discriminator, can further improve
the performance and stability of Coop-GAN.

Overall, as a generative adversarial network based on cooperative game theory and
a beating structure, Coop-GAN demonstrates potential in terms of generated sample
quality and diversity. However, its development is still in its early stages, requiring further
research and exploration to address existing limitations and promote its advancement and
application in broader domains.
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