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Abstract. The density peak clustering algorithm shows good clustering performance
by rapidly determining each cluster division with a high-density region as the kernel.
However, the cut-off distance (dc) as the only parameter of the algorithm usually needs to
be specified manually, so it is limited in practical applications. In order to automatically
select the optimal value of the cut-off distance parameter, a Density Peak Clustering
(DPC) algorithm based on Improved Tuna Swarm Optimization (ITSO) was designed.
To begin, the ITSO algorithm introduces multi-strategy chaotic mapping initialization
and a self-adaptive factor, which boosts tuna swarm search performance, and conducts
simulation experiments on 8 benchmark functions, with the results demonstrating that the
ITSO algorithm outperforms other comparison algorithms; then the cut-off distance in the
DPC is optimized using the ITSO algorithm, and the objective function is developed based
on the accuracy index. In order to evaluate the effectiveness of the ITSO-DPC algorithm,
five synthetic datasets and three UCI standard datasets were chosen for experiments. The
results of the experiments demonstrate that the proposed algorithm can automatically
select a better cut-off distance value and guarantee a higher clustering accuracy.
Keywords: density peak clustering; cut-off distance; tuna swarm optimization; multi-
strategy

1. Introduction. Artificial intelligence technologies have become more and more signif-
icant in a variety of industries in recent years. AI technologies are revolutionizing our
lives and work in a variety of ways, including speech recognition [1], image processing [2],
natural language processing [3], and intelligent recommendation systems. Cluster anal-
ysis is one of the key AI technologies, and the application range of these technologies is
growing along with the amount of data and advancements in computing power.
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Clustering techniques group data samples according to the potential relationships be-
tween them: data samples within the same group are more correlated, and data samples
between different groups are less correlated [4]. Currently, clustering analysis is widely
used in machine learning [5], computer vision, image analysis [6], and biology. Based on
different data grouping rules, the existing clustering algorithms are mainly divided into
partition-based clustering methods [7], hierarchy-based clustering methods [8], density-
based clustering methods [9], and grid-based clustering methods [10], etc. Cluster analysis
still has several issues, despite the fact that it has been frequently employed to solve prac-
tical issues [11, 12]. For instance, the number of clusters is typically unknown in real-world
issues, while k-means [13] and hierarchical clustering algorithms [14] in cluster analysis
typically require defining the number of clusters. Furthermore, because clustering analysis
algorithms are so sensitive to noise and outliers, the quality of the clustering results can
be impacted.

New cluster analysis algorithms are constantly being proposed to solve these problems.
In 2014, Rodriguez and Laio [15] proposed Density Peaks Clustering (DPC). The algo-
rithm can quickly discover the class cluster centers of arbitrarily shaped datasets; it does
not need to determine the number of class clusters in advance; it can quickly assign data
samples other than the class cluster centers; it is effective in detecting outliers; and it is
suitable for large-scale datasets. Despite DPC has the above-mentioned advantages, it will
suffer some limitations when manually setting the cut-off distance dc in real applications.
The exact dc selection will affect the clustering capability of DPC.

In the problem of finding the optimal solution, metaheuristic algorithms provide good
solutions, such as genetic algorithm [16], particle swarm optimization algorithm [17], phas-
matodea population evolution algorithm [18], etc. In order to select the dc parameter of
DPC more precisely, it can be transformed into an optimization problem. Based on the
good performance of Tuna Swarm Optimization (TSO) [19] in convergence performance
and optimization accuracy, this paper studies the selection of the dc parameter. The
creation of the TSO algorithm was motivated by the foraging strategies of two distinct
tuna species, and the algorithm demonstrated good performance in terms of sensitivity,
scalability, and robustness. For reasons of efficiency and ease of use, this paper introduces
multi-strategy hybrid initialization and a self-adaptive factor into the TSO algorithm to
help further improve convergence performance, whereby the Density Peaking Clustering
Algorithm Based on Improved Tuna Swarm Optimization (ITSO-DPC) algorithm is pro-
posed. Stronger global search capabilities and quicker convergence speed are advantages
of the modified TSO algorithm, and the algorithm is able to find globally optimal cut-off
distances on different datasets and solve the problem of setting the parameters of the
DPC algorithm.

2. Related work. DPC has the advantages of simple implementation, fast clustering,
no need to determine the number of cluster centers, and few parameters. Benefiting from
the above advantages, the DPC algorithm quickly became a research hotspot after it
was proposed, and a large number of improved algorithms emerged. Mehmood Rashid
[20] provides a non-parametric approach for determining the probability distribution of
a specified dataset using thermal diffusion. The algorithm introduces diffusion partial
differential variance on the one hand, using the kernel density prediction as a particular
solution to its equation, and narrows the sensitivity of the cut-off distance through the
time parameter of the thermal diffusion equation on the other hand. Unfortunately, the
algorithm is under a high computational cost due to the inherent limitations of kernel
density estimation. In order to boost the effectiveness of the DPC algorithm, Chen et
al. [21] designed a fast-density peak clustering algorithm that is appropriate for handling
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huge amounts of data and distinguishing between local and non-local density peaks using
fast KNN retrieval. In order to overcome the difficulties of variable density clustering
and joint assignment error, Liu et al. [22] developed a density peak clustering based on
shared nearest neighbors, redefined local density and distance, and incorporated shared
neighbour and local density data between points. In order to fix the problem of uneven
density computation in the DPC algorithm, Xie et al. [23] devised a fuzzy weighted KNN
density peak clustering algorithm (FKNN-DPC), which tries to find the clustering center
and recreates the local density of points through KNN. To enhance the efficiency of the
DPC algorithm on outliers, Jiang et al. [24] designed a density peak clustering based on
gravity theory, which uses universal gravity theory to boost the effectiveness of the DPC
algorithm for anomaly detection.

The aforementioned algorithms have generated good clustering accuracy and efficiency
results, although the DPC algorithm’s dc parameter still needs to be manually determined.
Dc is very sensitive to the value and small changes may have a large impact on the
clustering results. To automate the process of obtaining the optimal dc parameter, In
order to achieve automatic determination of dc, Gao et al. [25] designed an adaptable
density peaking clustering algorithm utilizing the Gini index as the objective optimization
function and solved by an extended pattern search algorithm. In order to optimize the
dc parameter, Zhao et al. [26] devised a DPC algorithm based on firefly optimization by
using Rand Index as the objective function. Zhou et al. [27] used the Silhouette Validity
Index as the clustering objective function to optimize the Silhouette Validity Index using
the fruit fly optimization algorithm and obtained better dc value in the experiment. It can
be observed that the meta-heuristic optimization algorithm is more effective in optimizing
the dc parameter. To eventually get trustworthy image segmentation findings, Zhu et al.
[28] merged the Fruit Fly Optimization Algorithm with the DPC algorithm and employed
the image entropy, which responds to the whole image information, as the smell objective
function.

3. Density Peaking Clustering Algorithm Based on Improved Tuna Swarm
Optimization. This paper focuses on three main improvements: firstly, the population
is initialized by a mixture of Piecewise chaos mapping and cubic chaos mapping fused with
a reverse refraction mechanism; secondly, the parameter β is updated using an adaptive
inertial weight coefficient formula; and finally, the dc value in the DPC algorithm is
optimized using the stronger optimization-seeking performance of ITSO.

3.1. Density Peaks Clustering. The main goal of the DPC algorithm is to find high-
density districts split by low-density districts. The method makes the assumption that
the density of the class cluster centroid must be higher than the density of its immediate
neighbors and that there must be a significant distance between the class cluster cen-
troid and higher-density sites. Therefore, DPC has two main variables that have to be
calculated: the local density and the distance to the higher-density locations.

For a given dataset {x1, x2, . . . , xN}, the Euclidean distance between the datasets xi

and xj can be expressed as dij = dist(xi, xj). The cut-off kernel can determine the local
density of any point xi as:

ρi =
∑
j

χ(dij − dc) (1)

where:

χ(x) =

{
1, x < 0
0, otherwise

(2)
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Local densities can also be calculated from the Gaussian kernel as follows:

ρi =
∑
j

exp(−dij
2

dc
2 ) (3)

δi is determined by the shortest distance between xi and every other point of higher
density, as showed in the Equation (4) is shown.

δi =

 max
j

(dij) ρ = max(ρ1, ρ2, ..., ρn)

min
j:ρj<ρi

(dij) otherwise
(4)

Based on the predicted local densities ρ and distances δ, a decision map is produced.
The relatively larger values of ρ and δ are manually selected from the decision diagram
as the cluster centers. To automatically determine the cluster centers, the metric γ is
proposed to consider both ρ and δ. As the Equation (5) is indicated.

γi = ρiδi (5)

Finally, after the DPC algorithm assigns labels to the clustering centers according to
a one-step label assignment strategy, the rest of the points are then distributed to the
centers with greater density than them and closest to them to get their labels.

3.2. Tuna Swarm Optimization. The Tuna Swarm Optimization algorithm is charac-
terised by fast convergence and high solution accuracy of single-objective problems, and
its design idea is based on two collaborative foraging behaviors of tuna swarms: spiral
foraging and parabolic foraging.

3.2.1. spiral foraging. Swarms of tuna hunt their prey by closely enclosing each other in
a spiral pattern. In addition to this, swarms of tuna transmit important information to
each other, and as the heads and tails of the tuna are connected, the swarms can share
information. The mathematical formula of spiral foraging created according to the above
concepts is as follows:

X t+1
i =


α1(X

t
rand + β |X t

rand −X t
i | ) + α2X

t
i , i = 1

α1(X
t
rand + β |X t

rand −X t
i | ) + α2X

t
i−1, i = 2, 3, ..., N

if rand < t
tmax

α1(X
t
best + β |X t

best −X t
i | ) + α2X

t
i , i = 1

α1(X
t
best + β |X t

best −X t
i | ) + α2X

t
i−1, i = 2, 3, ..., N

if rand ≥ t
tmax

(6)

α1 = a+ (1− a)
t

tmax

(7)

α2 = (1− a)− (1− a)
t

tmax

(8)

β = eblcos (2πb) (9)

l = e3 cos(((tmax+1/t)−1)π) (10)

In Equation(6), t is the current count of cycles, tmax is the highest iteration threshold
and N is the count of individual tuna; X t+1

i is the position of the ith individual after the
t+ 1st iteration; X t

rand and X t
best denote the current random individual and the optimal

individual, respectively. α1 and α2 are weighting factors that constrain the individual tuna
to swim to the best position; a is a constant used to constrain the tuna to follow a life
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pattern in the early stages. β is related to the random individual or the best individual.
An evenly spaced random value within [0,1] makes up variable b.

3.2.2. parabolic foraging. When parabolic hunting of prey is carried out, the swarms of
tuna form a parabolic pattern with the prey as the target of the attack to feed or by
searching around itself for food, at which point the specific mathematical model of the
position of the population can be described as:

X t+1
i =

{
X t

best + rand(X t
best −X t

i ) + TFp2(X t
best −X t

i ) if rand < 0.5
TFp2X t

i if rand ≥ 0.5
(11)

p =

(
1− t

tmax

)(t/tmax)

(12)

In Equation(11), TF is a randomly generated integer of 1 or −1, which determines the
direction of population exploitation; p is an important parameter that varies adaptively
with the number of iterations and affects the range of population exploitation.

Tuna forage cooperatively through the two foraging strategies described above. The
TSO algorithm will eventually return the best tuna and its relative fitness by continuously
updating the individual positions. Each tuna will either choose a foraging strategy to hunt
its prey or be relocated to the spatial location where it is located by probability z in each
iteration of the TSO algorithm.

The following is the specific design process of the TSO algorithm:
Step 1: Set tmax, t, and the population size NP , and randomly initialize the tuna

swarms.
Step 2: Assign a and z, calculate the fitness value of each individual by the objective

function, and update X t
best.

Step 3: Update the weight coefficients α1 and α2 and the key parameter p. Update the
location of the individual according to the obtained value of the rand.

When rand < z, Reinitialization of the population position.
When rand ≥ z and rand < 0.5, Equation (6) is executed for a position update.
When rand ≥ z and rand ≥ 0.5, Equation (11) is executed for a position update.
Step 4: Calculate the updated tuna fitness values and update the retention of the best

tuna positions and their relative fitness values.
Step 5: Determine whether t < tmax is valid, if so, make t = t + 1 and go to Step 2;

otherwise, the algorithm ends and outputs the best solution and the best value.

3.3. ITSO strategy.

3.3.1. Piecewise chaotic map initialization strategy. Chaos is a relatively common motion
phenomenon in non-linear systems, which has the characteristics of pseudo-randomness,
boundary, and ergodicity. By using these characteristics to set the initial position of tuna
swarm individuals, not only can the tuna swarm be diversified, but also the distribution
of tuna swarm individuals can be made more uniform. The common chaotic maps mainly
include Logistic map and Tent map, of which Piecewise chaotic map is one of the typical
representatives of the chaotic map, and its mathematical model is as Equation (13) The
mathematical model is shown as follows:

Xk+1 =


Xk/P 0 ≤ Xk < P

(Xk − p)/(0.5− P ) P ≤ Xk < 0.5
(1− P −XK)/(0.5− P ) 0.5 ≤ Xk < 1− P

(1−Xk)/P 1− P ≤ Xk < 1

(13)
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where P and X range from [0,1]. The Piecewise chaotic map is distributed between [0,1],
using its chaos as an alternative to random initialization to make the tuna individuals
more evenly distributed in the search space.

3.3.2. Cubic map fusion inverse refraction initialization. In the original TSO algorithm,
the positions of the tuna swarm are generated randomly by means of random initialization.
When the positions are unevenly distributed, it has a tendency to lead to low solution
accuracy. In this paper, cubic mapping is used to make the tuna swarm positions have
better uniformity. The cubic map chaos operator formula is demonstrated below:

yi+1 = 2yi
3 − 3yi/2 (14)

−1 < yi < 1, yi ̸= 0, i = 0, 1, ..., N (15)

xi =
(Xub −Xlb)(yi + 1)

2
+Xlb (16)

where xi in Equation (16) is the mapped tuna location; Xub and Xlb correspond to the
highest and lowest thresholds in the calculation space, respectively. The result of the
cubic chaos mapping calculation is mapped onto the individual tuna swarm positions by
Equation (16). The tuna positions in Equation (16) are fused with the tuna positions
generated by the reverse refraction mechanism shown in Equation (17), then the fitness
values are ranked and the number of tuna in the previous population size is removed in
order as the initial position of the tuna swarm.

Xij = (aj + bj)/2 + (aj + bj)/2k −Xij/k (17)

where the parameter k is the crucial parameter in Opposition-Based Learning (OBL).
The Opposition-Based Learning optimization mechanism was proposed by Tizhooshs [29].
This mechanism extends the search by computing the inverse of the current solution, thus
finding a better candidate solution for a given problem. However, OBL has some draw-
backs, for example, although the algorithm introduced in the early iterations can enhance
the optimization performance of the algorithm, in the later iterations OBL tends to fall
into local optimality, which leads to poor convergence performance. Refractive backward
learning is an improved mechanism that essentially combines the law of refraction of light
with backward learning to find a better candidate solution.

3.3.3. Adaptive factor updating strategy. During the spiral foraging phase, the weight
coefficients of the TSO algorithm are generated randomly within a specified range. This
situation fixes the search step of the algorithm and tends to slow down the convergence
of the optimization algorithm. β is associated with optimal or random individuals and
affects the ability of individual tuna to exploit the search space during the spiral foraging
phase.

The adaptive inertia factor strategy designed in this section is as follows:

bnew = 1− exp(−((2(Tmax − tr)/tr))
2) (18)

where Tmax is the maximum cycle threshold, and tr is the present count of cycles. The
parameter bnew will vary exponentially according to the count of cycles. In the initial
stage of the spiral foraging stage, bnew provides a large search step to speed up the opti-
mization speed; in the late spiral foraging stage, bnew is relatively small, which increases
the algorithm’s local search accuracy.
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3.4. Optimized selection of dc with ITSO.. The accuracy (ACC) evaluation metric
is chosen for the merit-seeking process to measure the clustering quality of the clustering
algorithm in this research, which uses the robust merit-seeking performance of the ITSO
algorithm to select the best dc. The ACC [30] evaluation metric is defined as follows:

ACC =
n∑

i=1

δ(ci,map(qi))/n (19)

where the dataset’s total amount of data points is n; δ(x,y) is a δ function, if x=y, then
δ(x,y) outputs 1, otherwise 0; ci is the original label of the data in the prior knowledge;
qi is the experimentally obtained clustering label; map(qi) is the mapping function that
matches the clustering result label with the original label.

In the optimization process, the ACC metric is used by the ITSO algorithm as the
objective function to optimize the dc in the DPC algorithm. Using the ITSO algorithm,
the dc value corresponding to the ACC metric of the maximization DPC algorithm is
output and used as the optimal solution for parameter dc of the present dataset.

The ITSO-DPC algorithm has the merit of finding the best parameter values quickly
and outputting the best clustering results. The algorithm optimizes the selection of
parameter dc in the DPC algorithm and promotes the global detection efficiency of the
TSO algorithm. Its algorithm flow is as follows:

The flow chart of ITSO-DPC algorithm is shown in Figure 1.
According to Figure 1, the operation steps of the ITSO-DPC algorithm are as follows:
Step 1: Set the maximum iteration threshold T , tuna swarm size SizeParticlesno, and

dc value range from ub to lb.
Step 2: Initialize the population by using the tuna population location X as the cut-off

distance dc value and performing a hybrid chaotic mapping in the search space.
Step 3: Substitute dc into Equations (3) and (4). the results of its calculation are input

into Equation (5) for the automatic selection of clustering centers.
Step 4: Use Equation (19) to calculate ACC evaluation metrics and the dc value corre-

sponding to the maximum ACC evaluation metric is recorded as dcmax.
Step 5: The adaptive factor is updated and substituted into Equation (9), and the

position of the tuna is updated according to Equations (6) and (11) to record the current
best individual and its fitness value.

Step 6: Determine whether T is reached, if the condition is met, the current main
loop will be skipped and the best dc value and the maximum ACC value will be output,
otherwise it will return to Step 3 to continue the optimization search.

Step 7: Clustering is completed using the optimal cut-off distance of the output.
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Start

Set initial parameters T, t, SizeParticles_no

Calculatethe local density andrelative distance of all points, and automatically select 
the cluster center.

Use the ACC evaluation metrics as the objective function of the ITSO algorithm, and 
record the dcvalue corresponding to the maximum ACC evaluation metrics as Max_dc.

After updating the adaptive factor, use the ITSO algorithm to update the position of 
the tuna school and record it.

Output the best dcvalue and the maximum ACC value.

t T

Clustering is completed using the optimal cut-off distance of the output.

Finish

The population position of the ITSO algorithm is initialized by using the 
hybrid chaotic mapping, which is dc.

Y

N

Figure 1. ITSO-DPC algorithm flow chart

4. Simulation experiments and analysis. The simulation experiments were con-
ducted in an Intel(R) Core(TM) i5-6300HQ, 8.00GB RAM, the x64-based processor with
Windows 10 operating system, and Matlab 2022a environment.

4.1. Optimization algorithm section. In order to evaluate the ITSO algorithm’s effi-
ciency, the grey wolf optimization algorithm (GWO) [31], the sine cosine algorithm (SCA)
[32], and the wind driven algorithm (WDO) [33], which are group intelligence optimization
algorithms, were selected for comparison experiments. For the simulation experiments,
eight benchmark test functions were chosen, and Table 1 displays the functions’ details.
Single-peaked functions (f1-f3) are typically used to evaluate how well algorithms perform
local searches; multi-peaked functions (f4-f8) have function solutions that are more com-
plicated and are more likely to find a local optimum. To guarantee the test algorithm’s
performance is accurate and equitable, the experimental environment and parameters
used in the comparison algorithm and the ITSO algorithm remain the same. The experi-
ments were set to T=500, N=30, and d=30. For the eight benchmark functions mentioned
above, each function was run independently for 30 independent experiments and its mean
and standard deviation were found, where the mean was used to reflect the convergence
accuracy and the standard deviation was utilized to reflect the stability.
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Table 1. Benchmarking function information and results

ITSO TSO GWO SCA WDO

f1(Sphere) Mean 6.20E-246 3.04E-235 1.00E-31 4.18E+00 1.00E-15

Std 0.00E+00 0.00E+00 3.25E-02 8.75E+00 4.60E-02

f2(Schwefel2.22) Mean 3.12E-124 4.80E-117 1.04E-18 4.25E-02 1.17E-08

Std 1.40E-01 2.65E-02 7.63E-02 5.97E-02 2.55E-02

f3(Schwefel2.21) Mean 1.11E-121 3.50E-114 1.63E-08 2.72E+01 1.73E-09

Std 6.01E-02 1.90E-02 1.34E-01 1.20E+01 2.32E-02

f4(Quartic) Mean 1.14E-04 3.00E-04 1.90E-03 1.03E+05 2.58E-04

Std 9.07E-02 3.00E-04 4.00E-03 2.69E-01 1.92E-01

f5(Rastrigin) Mean 0.00E+00 0.00E+00 3.56E+00 1.23E+02 6.14E+01

Std 0.00E+00 0.00E+00 4.44E+00 6.62E+01 2.69E+01

f6(Ackley) Mean 4.44E-16 4.44E-16 2.09E+01 2.03E+01 6.98E-01

Std 0.00E+00 0.00E+00 7.35E-02 9.16E-02 3.83E+00

f7(Griewank) Mean 0.00E+00 0.00E+00 3.10E-02 4.08E-01 7.30E-03

Std 0.00E+00 0.00E+00 6.00E-02 2.45E-01 1.93E-02

f8(Penalized2) Mean 5.00E-06 1.50E-03 4.52E-01 3.22E+15 4.54E-01

Std 1.84E-02 3.80E-03 2.07E-01 7.32E-01 9.27E-01

The results in Table 1 demonstrate that all algorithms did not reach the theoretical
optimum for (f1-f3) under the same parameter environment, but the ITSO algorithm
outperformed the other comparative algorithms. For (f4-f8), the optimum values reached
by the ITSO algorithm were smaller than those of the other algorithms, its standard
deviation was smaller and its performance was stable. In conclusion, the stability and
performance of the ITSO algorithm are superior. The convergence curves of all the algo-
rithms in the 30-dimensional scenario with four multi-peaked benchmark test functions
are displayed in Figure 2 to visualize the speed and efficacy of the ITSO algorithm. This
figure also illustrates the effectiveness of the proposed optimization strategy.

4.2. Experimental results and analysis of the ITSO-DPC section.

4.2.1. Experimental dataset. In order to confirm that the ITSO-DPC worked clustering
with greater accuracy than the DPC. Five adult datasets combined and three UCI stan-
dard datasets were selected for comparison. The experimental data are shown in Table 2.

4.2.2. Evaluation Indicator. To avoid reusing ACC metrics to assess clustering algorithm
efficiency, two evaluation metrics independent of label absolute values were utilized to
assess clustering capabilities: Adjusted Rand Index (ARI) and Adjusted Mutual Infor-
mation (AMI). The upper bound of these three indicators is 1, and the closer the value
of the indicator is to the upper bound, the better the clustering result. ARI is defined as
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Figure 2. Convergence curves for test function optimization. (a) f5. (b)
f6. (c) f7. (d) f8.

Table 2. Experimental data

Dataset Samples Features Clusters

Aggregation 788 2 7

Jain 373 2 2

R15 600 2 15

Spiral 312 2 3

D31 3100 2 31

Seeds 210 7 3

Ecoli 336 8 8

Iris 150 4 3

shown below:

ARI =

∑
ij

(
Mij

2

)
−

[∑
i

(
ai
2

)∑
j

(
bl
2

)]
/

(
M
2

)
1
2

[∑
i

(
ai
2

)
+
∑
j

(
bj
2

)]
−

[∑
i

(
ai
2

)∑
j

(
bj
2

)]
/

(
M
2

) (20)

The value of ARI is calculated by introducing a column linkage table to represent
the degree of overlap between the actual data sample category divisions and the cluster
divisions. The rows of the column linkage table represent the actual category divisions, the
columns of the column linkage table represent the cluster markers of the cluster divisions,
Mij represents the number of overlapping instances, and ai and bj are the marginal sums
of the column linkage table. The columnar table is shown in Table 3.

Table 3. Column linkage table

Cluster 1 Cluster 2 · · · Cluster s

Category 1 M11 M21 · · · M1s

Category 2 M12 M22 · · · M2s

...
...

...
...

...

Category r M1r M2r · · · Mrs

AMI is based on Shannon’s information theory and uses mutual information to compare
different clusters. Its definition is shown below:

AMI(T,R) =
MI(T,R)− E{MI(T,R)}

max{H(T ), H(R)} − E{MI(T,R)}
(21)

where T is the actual label of the data sample and R is the clustering result label.
MI(T,R) denotes the mutual information between T and R; H(T ) and H(R) denote
the Shannon entropy of the category labels of T and R, respectively. E{MI(T,R)} de-
notes the mathematical expectation of MI(T,R).
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4.3. Experimental results and analysis. Table 4 displays the results of four different
clustering algorithms on eight datasets using the ACC, ARI, and AMI. From the values
of the evaluation metrics obtained in Table 4, it is known that it is feasible and effective
to optimize the parameter dc parameter of the DPC algorithm by tuna swarms. On the
synthetic dataset, among the proposed algorithms, Aggregation and D31 were higher than
the other comparative algorithms in all three clustering evaluation metrics, and ITSO-
DPC had the best clustering performance. On the Jain dataset, the proposed ITSO-DPC
algorithm is second only to DBSCAN in terms of clustering metrics and outperforms the
other comparative algorithms. In terms of ACC metrics, ITSO-DPC achieved 92.2%,
succeeding only to DBSCAN’s 96.5%, but it is higher than DPC’s 86.1% and FKNN-
DPC’s 65.1%. On the R15 and Spiral datasets, the four algorithms work admirably
and similarly. In the real dataset, taking the ACC index of the Seeds dataset as an
example, the proposed ITSO-DPC has reached 89.1%, which is second only to 89.5% of
FKNN-DPC, but it is about 10% better than the original DPC and 25.3% better than
DBSCAN. Taking the ACC metric of Iris as an example, the proposed algorithm achieved
an accuracy of 95.3%, which is better than DPC by about 12%, FKNN-DPC by about
4.6%, and significantly better than DBSCAN by about 22.6%. On the Ecoli dataset,
taking the ARI metric as an example, the proposed ITSO-DPC algorithm achieved a
clustering accuracy of 68.6%, which is significantly better than the DPC algorithm by
about 34.9% and higher than FKNN-DPC by about 13.1% and better than DBSCAN
by about 16.1%. This demonstrates that the proposed ITSO-DPC outperforms all other
comparative algorithms on such real datasets.

Figures 3-5 show comparison charts of the ACC, ARI, and AMI clustering evaluation
metrics for each of the four algorithms for each dataset to make them easier to observe.
Despite ACC, AMI, and ARI having different definitions and the clustering algorithms
generating different results, their average rankings are fairly similar. On the Jain dataset,
ITSO is ranked higher than DPC and FKNN-DPC but not as high as DBSCAN. The DPC
has the lowest average rating for the Ecoli dataset, whereas ITSO-DPC has the best. The
clustering metric values of the ITSO-DPC algorithm have a significant improvement on
both the artificial and UCI datasets. Compared with the original DPC, the ITSO-DPC
algorithm reduces the drawback of manually selecting parameter dc and its clustering
results are much better than the DPC.
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Figure 3. Comparison of ACC metrics for the four algorithms
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Figure 4. Comparison of ARI metrics for the four algorithms
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Figure 5. Comparison of AMI metric for the four algorithms

Table 4. Monitoring data query contract algorithm

ITSO-DPC DPC FKNN-DPC DBSCAN

ACC ARI AMI ACC ARI AMI ACC ARI AMI ACC ARI AMI

Aggregation 1.0000 1.0000 1.0000 0.9987 0.9978 0.9957 0.9876 0.9855 0.9775 0.9530 0.9097 0.9468

Jain 0.9223 0.7055 0.6103 0.8606 0.5146 0.4667 0.6514 0.562 0.1318 0.9651 0.9583 0.8955

R15 0.9967 0.9928 0.9938 0.9967 0.9928 0.9938 0.9898 0.9892 0.9907 0.9883 0.9819 0.9846

Spiral 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

D31 0.9687 0.9370 0.9558 0.9674 0.9354 0.9547 0.9568 0.9275 0.9522 0.8593 0.6563 0.8564

Seeds 0.8905 0.7132 0.7119 0.7952 0.6163 0.6018 0.8952 0.7422 0.6971 0.6381 0.4416 0.5402

Ecoli 0.7946 0.6863 0.5567 0.5892 0.3369 0.2453 0.7126 0.5547 0.4876 0.6829 0.5255 0.4636

Iris 0.9533 0.8682 0.8541 0.8333 0.7794 0.7257 0.9067 0.9222 0.8831 0.7267 0.4817 0.5491

5. Conclusion. Considering the limitations of the DPC in the cut-off distance taking,
this paper proposes a density peak clustering algorithm (ITSO-DPC) incorporating tuna
swarm optimization. Firstly, the algorithm introduces a mixture of Piecewise chaotic map
and cubic map fused with a reverse refraction mechanism to initialize the population,
updates the parameters of the spiral foraging phase based on an adaptive inertia factor,
and evaluates its convergence with eight benchmark test functions. Stronger global search
capabilities and quicker convergence speed are advantages of the modified TSO algorithm.
Secondly, in order to automatically determine the cluster centers, the metric γ was used
to consider computational variables including ρ and δ. Finally, this paper incorporates
the stronger search performance of ITSO to optimize the dc value in the DPC algorithm.
Experimental results on synthetic datasets and UCI standard datasets are shown that the
algorithm has a better adaptive capability of the cut-off distance parameter on datasets
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of different dimensions and scales. However, the ITSO-DPC algorithm proposed in this
paper still has some detection challenges in dividing the data points around the boundary
and the data points with lower-density peaks. The problem in this direction needs further
research.
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