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Abstract. With the rapid development of Internet technology, data has new character-
istics (Volume, Velocity, Variety, Value) that make it difficult for traditional classification
algorithms to achieve high classification accuracy. Inspired by Spiking-based communica-
tion in the brain, Deep Spiking Neural Network (DSNN) uses a Spiking neuron model that
mimics biological neuronal mechanisms for computation, with the ability to handle com-
plex time-series data, very low energy consumption, and high robustness. Therefore, to
test the solution performance of DSNN, a DSNN model and a modified deep DSNN model
were used for multi-label classification evaluation, respectively. First, the deep Spiking
response was combined with a convolutional neural network (CNN) to construct a deep
Spiking neural network model. Then, the Bacterial Foraging Optimization (BFO) indi-
viduals were constructed with the weights, dynamic thresholds, and forgetting parameters
of the DSNN, and the multi-label classification accuracy was used as the fitness function
of the BFO algorithm. Secondly, the optimal individuals were obtained by continuously
updating the fitness values through repellent, reproduction, and migration operations, and
the DSNN parameters corresponding to the optimal individuals were saved. The simu-
lation results show that by reasonably setting the gravitational and repulsive coefficients
and migration probability threshold of the BFO algorithm, the multi-label classification of
the DSCNN model achieves a high classification accuracy, and the BFO-DSNN algorithm
has a better classification performance when compared with the multi-label classification
algorithms of commonly used deep neural networks.
Keywords: Bionic intelligence algorithm, Bacterial foraging optimization, Spiking neu-
ral network, Multi-label classification, Artificial intelligence

1. Introduction. Neural network algorithms are an important class of classification al-
gorithms [1,2,3]. The basic idea is to mimic the work of the human brain as closely as
possible, and its development has gone through two important stages, from shallow neural
networks with only three layers of network structure to deep neural networks with hun-
dreds of layers of network structure, and its performance has also achieved a qualitative
leap.

Deep convolutional neural networks, a feed-forward neural network with a multi-layer
structure [4,5] and a unique convolutional and pooling structure, were the first successful
deep structural models. The first steps in the study of convolutional neural networks were
taken in 1962 when Hubel and Wiesel published a research paper on the visual cortex
of monkeys and birds. in the 1980s Kunihiko introduced the convolutional process into
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the field of CNNs, named neocognitron. currently, deep convolutional neural networks
(DCNNs) are successful in many applications [6,7].

Inspired by Spiking-based communication in the brain [8,9], Deep Spiking Neural Net-
work (DSNN) uses Spiking neuron models that fit biological neuronal mechanisms for
computation, with the ability to handle complex temporal data, extremely low energy
consumption and high robustness. SNNs have received a lot of attention in the field of
neuromorphic engineering and brain-like computing, and have been hailed as the next
generation of neural networks [10,11]. Action Potential) in biological neurons [12].

Theoretical analysis shows that SNNs are comparable to conventional neuron models
in terms of computational performance. Due to its ability to handle complex time-series
data, its extremely low energy consumption and its deep physiological foundation [13],
SNNs have received a lot of attention from scholars and have made rapid progress in
image classification, target recognition, speech recognition and other fields. Recent studies
have shown that SNNs approach or achieve comparable performance to classical Artificial
Neural Networks (ANNs) in many areas. SNNs also exhibit greater robustness than ANNs.
Firstly, the randomness in the dynamics of Spiking neurons can improve the robustness
of the network to external noise [14]. Second, recent studies have shown that the issuing
mechanism of Spiking neurons makes SNNs inherently robust against adversarial attacks
[15].

Although the current research on DCNN algorithms in the big data environment has
achieved some success, SNNs have been applied less in this field. In addition, DSNN suffers
from too many redundant parameters in the network and poor parameter finding ability
[16]. The Bacterial Foraging Optimization (BFO) algorithm [17] is a bioheuristic-based
bionic intelligence algorithm, which has certain advantages in model parameter finding.
For example, the BFO algorithm simulates real bacterial behaviour through the life cycle
and movement process of colonies, which can effectively avoid local optimal solutions and
has global search capability. At the same time, the BFO algorithm is suitable for high-
latitude search problems, is not limited by the number of dimensions, and can complete
the optimisation in a shorter time. The BFO algorithm is simple to understand, easy to
implement, does not require advanced mathematical foundation, and can quickly achieve
the optimisation solution [18]. Therefore, this work uses the BFO algorithm to find the
optimal parameters of DSNN, thus improving its performance in multi-label classification
tasks.

1.1. Related Work. SNN achieves data transfer by encoding the Spiking to be trained
samples and the resulting Spiking responses, which enables a much larger data transfer
compared to traditional ANNs because their Spiking sequences contain not only sample
data but also rich temporal data.

The results of Burrows et al. [19] showed that in the multilayer operation of DSNNs,
only when a spiking response occurs, the neurons inside the network perform the con-
version computation, thus making it more resource efficient. The more powerful complex
computation of DSNNs facilitates the extension of this structural model to applications in
several industry domains. For example, Karekal et al. [20] proposed a DSNN containing
multiple synapses to solve the problem of learning multiple distal rewards simultaneously.
Liu et al. [21] first applied ANN-SNN conversion to the field of reinforcement learning,
avoiding the difficulty of training SNNs directly for reinforcement learning, and demon-
strated that SNNs can improve the robustness of the model to occlusion. However, the
determination of the DSNN model also requires more parameters, such as neuron con-
nection weights, ignition thresholds and forgetting variables, so the training solution of
DSNN is more complex than that of traditional neural networks. In the model solving of
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DSNN, Gao et al. [22] proposed to determine a stable SNN model by taking the minimum
value of the difference between the ignition expectation and the actual ignition time as
the objective function, and determining the parameters corresponding to this minimum
value when it is obtained.

Recently, researchers have attempted to optimally solve DSNN parameters with the
help of bionic intelligence algorithms. Madhiarasan and Deepa [23] proposed an improved
DSNN model based on the Grey Wolf Optimization (GWO) algorithm and achieved more
accurate long-term wind speed predictions. The results of Xu et al. [24] showed that
compared to the GWO algorithm, the BFO algorithm has more advantages in terms of
functional form independence, dependence on initial values, no need to maintain param-
eters and better robustness. This is because the GWO algorithm requires maintenance
of parameters, such as alpha, beta, etc., whereas the optimisation process of the BFO
algorithm does not require maintenance of these parameters.

Therefore, this work evaluates the classification performance of DSNN in terms of multi-
label classification. The BFO algorithm is used to optimise the core parameters of the
DSNN model when solving for them. The simulation experimental results show that the
BFO algorithm effectively improves the classification performance of the deep Spiking
neural network.

1.2. Motivation and contribution. . Since artificial neural networks have shown per-
formance breakthroughs in the areas of target detection and scene classification, DSNNs
in particular have excellent performance. Therefore, this work focuses on finding optimal
parameters for DSNN models.

The main innovations and contributions of this work include:
(1) In order to reduce the probability of local convergence of the BFO algorithm, this

work brings the idea of variation (mutation factor) from genetic algorithms into the BFO
algorithm. The proposed adaptive BFO algorithm has a high convergence speed and
accuracy, while reducing the probability of local convergence to a certain extent.

(2) Since the ANN-SNN conversion process requires scaling the weights of the neural
network, the scaling ratio of each layer of weights can be regarded as an independent
hyperparameter to be optimised. In order to reduce the errors arising from the conversion
process and maximize the performance of the DSNN, this work uses the adaptive BFO
algorithm to find the optimal scaling parameters for the DSNN, thereby improving the
training efficiency and classification accuracy of the DSNN.

2. Spiking neural networks.

2.1. Spiking neuron models. Spiking neural networks, as third generation neural net-
works, use biologically sound Spiking neuron models and corresponding learning algo-
rithms to model the neuronal structure and synaptic plasticity in the brain.

In living organisms, the typical structure of a neuron consists of three main parts:
the dendrites, the cytosol and the axons [25]. The dendrites collect input signals from
other neurons and transmit them to the cytosol; the cytosol acts as a central processor,
generating Spiking (i.e. action potentials) when the accumulation of received afferent
currents causes the neuron’s membrane potential to exceed a certain threshold; the axon
propagates Spiking and transmits the signal to the next neuron via the terminal synaptic
structure. The basic neuron of the SNN is shown in Figure 1. In computer simulation, the
continuous differential equations for each variable in the Spiking neuron model need to
be discretized in time first, and then the corresponding variables are iteratively updated
according to the discrete time steps. For the discrete time steps, when a smaller time
interval is chosen, the model changes more closely to the original continuous differential



Improved Deep Spiking Neural Network on Bionic Optimization 163

Figure 1. Basic neurons of the SNN

equations, with less loss of accuracy. However, this also increases the number of discrete
time steps under the same conditions, thus increasing the computational complexity.
Therefore, there is a trade-off between accuracy and computational complexity in discrete
Spiking neuron models. In general, the discrete Spiking neuron model can be described
as three discrete equations for charging, discharging and resetting.

Ht = f (Vt−1, Xt) (1)

St = Θ(Ht − Vth) (2)

Vt = Ht (1− St) + Vreset St (3)

where Ht denote the membrane potential after charging at moment t and Vt denote the
membrane potential after resetting. f(·) defines the specific neuron charging equation,
which varies considerably between different Spiking neuron models. Θ(·) is a step function,
which is generally defined as

Θ(x) =

{
1, if x ≥ 0
0, otherwise

(4)

During charging, the neuron receives exogenous input Xt and updates the membrane
potential; during discharging, the neuron outputs a Spiking signal St when the membrane
potential exceeds a threshold Vth; during resetting, the neuron updates the membrane
potential in response to the Spiking signal. A generic discrete Spiking neuron model is
shown in Figure 2.

Figure 2. Generalized discrete Spiking neuron model
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2.2. Spiking encoding patterns. The perception of the world around us, the regu-
lation of endostasis and the behavioural response to sensory stimuli are all transmitted
by neuronal Spiking sequences. The way in which neurons store information in Spiking
sequences is one of the most important questions discussed in the field of neuroscience.

Based on the physiological findings obtained from the brain, the research community
has proposed a number of different Spiking coding styles. The main common Spiking
coding methods include Rate Coding, Temporal Coding, Bursting Coding and Population
Coding.

Rate Coding focuses on the Spiking delivery rate of a neuron, i.e. the mean number
of Spiking deliveries issued by a neuron over the duration of the simulation. The Spik-
ing rate of a neuron reflects the strength of the input stimulus, and temporal coding is
more concerned with differences in the temporal structure of the Spiking sequence than
frequency coding. In addition to the complete Spiking delivery time information, the
time from receipt of the stimulus to delivery of the first Spiking and the temporal logic
between Spikings are considered to encode In addition to these two common temporal cod-
ing schemes, temporal coding schemes include Latency Coding, Phase Coding, Synchrony
Coding and Polychronisation Coding, among others [26].

Explosive coding considers the encoding of information using the behaviour of neurons
firing explosively. During burst-type firing, neurons rapidly dispense large amounts of
Spiking over a period of time, and then remain resting for a longer period of time. In
contrast to frequency coding, temporal coding, etc., which focuses more on the activity
of individual neurons [27], population coding considers the information generated by a
stimulus to be characterised by the joint activity of multiple neurons.

Let the voltage of the posterior synaptic neuron j in the Spiking neural network be

u(t). When u(t) is less than the threshold τ , an output t
(f)
j is triggered with the output

Spiking sequence of

Fj = {t(f)j ; 1 ≤ f ≤ n = t|uj(t) = τ} (5)

Assuming that all anterior synaptic neurons i are in the set Γj, ignition of Spiking will
affect u(t).

Pj(t) =
∑
i∈Γj

∑
t
(f)
j ∈Fi

wijεij(t− t̂j, t− t
(f)
j −∆ax

ij ) + U ext
j (6)

where wij is the weight, U ext
j is the voltage change, εij is the synaptic potential, t̂j is the

Spiking output time and ∆ax
ij is the delay term.

Let s = t− t
(f)
j −∆ax

ij and use urest for the resting potential, the change before and after

ignition will be ηj(t− t̂j).
In practice, the above equation is too complex to calculate and a simplified Spiking

response model is often used for the calculation.

uj(t) = ηj(t− t̂j) +
∑
i∈Γj

∑
t
(f)
i ∈Fi

wijεij(t− t
(f)
j ) + U ext

j (7)

The Spiking response of the posterior synaptic neuron j is represented by

uj(t) = ηj(t− t̂j)) + Pj(t) (8)

The synaptic potential εij(t) is calculated as

εij(t) =
t− t

(f)
i −∆ax

ij

τ
exp(1−

t− t
(f)
i −∆ax

ij

σ
)H(t− t

(f)
i −∆ax

ij ) (9)

where H(·) is the step response and σ is a constant.
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3. BFO algorithm.

3.1. Basic principles. Bacterial Foraging Optimization is a bionic intelligence algorithm
that simulates the foraging behaviour of Escherichia coli.

According to biological studies, the foraging process of E. coli begins by searching for
areas where food may be present. Then, the selected area is judged whether to enter or
not, and if it decides to enter, it looks for food in that area, otherwise it continues to
look for possible areas. After acquiring some food in the selected area, the area is judged
whether to migrate to other areas. Each step of the bacterial population is based on the
selection of its own conditions and environment, thus allowing the bacteria to obtain the
most food per unit time. Assume that S individual bacteria perform movement operations
in the interval [min, max]. Initialise the location of the bacterial swarm at P as follows:

P = min+rand ∗ (max−min) (10)

Bacterial individuals perform 3 main types of operations: repellent, reproduction and
migration. Let the position of bacteria i be Xi = (x1, x2, . . . , xv), where v denotes the
position dimension. The position from position P after the jth repellent operation is
shown below:

Xj+1
i = Xj

i + C(i)
∆(i)√

∆T(i)∆(i)
(11)

where C(i) and ∆(i) are the repellent step and direction vector for bacteria i, respectively.
The degree of adaptation after the Roundup operation is shown below:

J(Xi) =
S∑

i=1

J i
attract +

S∑
i=1

J i
repellant (12)

where J i
attract and J i

repellant denote the gravitational and repulsive forces of the bacterial
population, respectively.

S∑
i=1

J i
attract =

S∑
i=1

[−dattract exp(−wattract

v∑
m=1

(xm − xi
m)

2
)] (13)

where dattract and wattract are the longitudinal and transverse components of the gravita-
tional force, respectively.

S∑
i=1

J i
repellant =

S∑
i=1

[−hrepellant exp(−wrepellant

v∑
m=1

(xm − xi
m)

2
)] (14)

where hrepellant and wrepellant are the longitudinal and lateral components of repulsion,
respectively, xm is the m-th dimensional component of all individuals, and xi

m is the m-th
dimensional component of bacteria i.
The fitness is updated after each repellent operation and the total fitness of individual

i after several iterations H(Xi) is shown as follow:

H(Xi) =
∑
iter

J(Xi) (15)

A new bacterial population location is generated by selecting the higher bacterial individ-
uals for the reproduction operation according to the descending order of fitness. According
to Equation (15), individuals with higher fitness are retained for reproduction. The three
types of movement are alternated until the maximum number of iterations is reached.
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3.2. Adaptive BFO. The step size C(i) is a key parameter in the evolutionary process.
If the step size is too large, the bacteria can move faster towards the target but tend to
ignore the optimal value or fall into a local optimum. If the step size is too small, the
search will be less efficient and will tend to fall into local convergence.

In the early stage of the search, a larger step size is needed to quickly find the region
where the optimal solution is located and to improve the global search capability of the
algorithm. And in the later stage of the search with smaller step size, it is bacteria
with stronger local search ability. Therefore, Adaptive Bacterial Foraging Optimization
(ABFO) is proposed in this work.

Step 1: Initialize the sensitivity V.

V =
Ji

Jmax

(Xmax −Xmin) · rand (16)

where J is the adaptation value.
Step 2: Perform updates of the bacterial locations and corresponding adaptation values

by generating a unit random vector.

θi(j + 1, k, l) = θi(j, k, l) + C(i)ϕ(j) (17)

Step 3: If the adaptation values improve after the above flip, swim in the direction of the
flip, otherwise leave it the same.

Step 4: The sensitivity is linearly decreasing according to the following rule.

V =
stepmax − stepmin

stepmax

· V (18)

However, there is still a significant possibility of local convergence in the way the step
size is updated by linear decrement. To reduce this possibility, this work introduces the
concept of variation in genetic algorithms into ABFO.

η =
Ji
J̄

(19)

Where η is the mutation variance factor and J̄ is the average fitness value of the colony.
After initiating the mutation factor, the step size of the bacterial population will mutate

with probability Pm.

C(i) = η (Cimax − C(i)) + C(i) (20)

By introducing the colony step mutation as a measure, the ABFO algorithm is able to
break out of the local convergence trap to some extent.

In order to verify the performance of the ABFO algorithm, three common standard
non-linear test functions were selected for simulation and compared with PSO and BFO.
The parameters for each experiment: population size of 50, dimensionality of 30 and
maximum number of iterations of 300. The test functions are shown in Table 1:

Table 1. Three test functions.

Name Expressions Initial range BestT
Daily

accuracy
Sphere
function

f1(x) =
n∑

i=1

x2
i (50, 100)30 0 0.00001

Rastrigrin
function

f2(x) =
n∑

i=1

(x2
i − 10 cos (2πxi) + 10) (2.56, 5.12)30 0 100

Griewank
functions

f3(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
(

xi√
i

)
+ 1 (300, 600)30 0 0.05



Improved Deep Spiking Neural Network on Bionic Optimization 167

Figure 3. Sphere function Figure 4. Rastrigrin function

Figure 5. Griewan function

The convergence curves of the two bionic intelligence algorithms are shown in Figure
3, Figure 4 and Figure 5 respectively.

The convergence results of the five bionic intelligence algorithms are shown in Table
2. From the simulation results, it can be seen that ABFO has greatly improved both
in terms of convergence speed and convergence accuracy, while effectively reducing the
probability of entering local convergence.

Table 2. Test function convergence point.

PSO BFO ABFO
Iteration Value Iteration Value Iteration Value

Sphere 143 3.812 126 1.204 113 1.102
Rarigrin 170 12.9343 155 8.9024 70 5.9124
Griewan 223 0.1232 166 0.0887 143 0.0314

4. ABFO-based DSNN model.
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4.1. Learning approaches. Currently, there is no uniform learning algorithm in the
field of impulsive neural networks. Learning algorithms for impulsive neural networks vary
considerably due to the different emphasis on biological plausibility and task performance,
as well as the model of impulsive neurons in the network and the way the impulses are
encoded.

With the rise of deep learning, the need to make the layers of impulse neural networks
deeper has become a major challenge due to the need to handle complex tasks as well
as performance considerations. To solve the problem of network depth, the ANN-SNN
transformation was proposed. In recent years, the training techniques of ANNs have
become increasingly mature. Compared with ANN, training SNN currently requires not
only a large amount of computational resources, but also has to overcome the difficulty
that the pulse release function is not trivial. In order to avoid the difficulties of training
SNNs and to take advantage of the data processing advantages of SNNs, the ANN-SNN
transformation has become a feasible method to convert trained ANNs into SNNs by using
the firing rate of each impulse neuron to approximate the corresponding ReLU activation
values in artificial neurons. It is worth noting that the firing rate of pulse neurons here
refers to the quotient of the total number of pulses fired in a discrete simulation period
over the duration of the simulation. It was demonstrated that IF neurons in the Soft
Reset setting are an unbiased estimate of the ReLU activation function in time [28].

In simulation, the firing rate of a pulse neuron is usually defined as the quotient between
the total number of pulses fired by the pulse neuron and the duration of the simulation.
Thus, this firing rate can be taken to be in the range of 0 to 1, whereas the continuous
values involved in reinforcement learning (continuous actions, Q-values, etc.) are often
not limited in their range and can be taken to any floating point value between plus and
minus infinity. Even if there is a range restriction on these continuous values, it is often too
difficult to know in advance to represent them in terms of the scaling results of the release
rate. It is this difference in the range of values that greatly limits the scope of application
of frequency encoding based impulse reinforcement learning algorithms. However, by
combining the training benefits of ANN networks with the low energy inference of SNN
networks, no training of SNNs is required. The ANN-SNN transformation is able to
achieve performance comparable to that of the corresponding deep network. In Spiking’s
impulse model, the execution of its impulse response is often combined with different types
of neural networks to enhance the computational power of the Spiking neural network,
and this work brings together Spiking impulses with convolutional neural networks to
form the SCNN model structure.

The feature sampling of Spiking is first performed, with the j-th node corresponding to
the k-th layer sampled in the following manner:

Xk
j = f(

1

n

∑
i∈Mj

Xk−1
i +Bk) (21)

where n is the sample size and B is the bias.
Sampling and entering the convolution layer operation can be expressed as

Xk
j = f(

∑
i∈Mj

T (Xk−1
i ) ∗Kernelkij +Bk) (22)

where T is the encoding function, Kernel is the convolution kernel, and Mj is the j-th
feature map.

The conversion function for sampling and convolution f can be expressed as

f(z) =
1

1 + exp(−z)
(23)
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The output of DSNN t
(f)
j can be expressed as

t
(f)
j : f(t

(f)
j ) = θ,

df(t)

dt
|
t
(f)
j

> 0 (24)

4.2. The flow of the model. As the ANN-SNN conversion process requires scaling the
weights of the neural network, the scaling of each layer of weights can be considered as
an independent hyperparameter to be optimised.

In order to reduce the errors that occur in the conversion process and maximise the
performance of the DSNN, this work uses the ABFO algorithm to find the optimal scaling
parameters for the DSNN, thereby improving the training efficiency and classification
accuracy of the DSNN. The following are the steps for optimising the weight parameters
of the DSNN model using the ABFO algorithm:

Step 1: Determine the fitness function. For the DSNN model, the fitness function can
be a weighted sum of the accuracy and Spike Count. Assuming that the DSNN model has
a total of n neurons and each neuron produces an output of S(i) and the actual output
is T (i), the accuracy rate can be expressed as

accuracy = (1/n) ·
∑

( T (i) == S (i) ) (25)

The Spike Count can be expressed as

spikecount =
∑

S (i) (26)

The adaptability function can be expressed as

fitness = w1 · accuracy + w2 · spikecount (27)

where w1 and w2 are the weights of the two targets respectively.
Step 2: Initialise the bacterial population. The number of bacterial populations is set

to N, and the position and trophic state of each individual is initialised. The position
is used to represent the value of each weight in the DSNN model, and the trophic state
refers to the value of each individual’s fitness function under the current model.

Step 3: Nutritional status update. For each individual, the nutritional status is calcu-
lated based on the fitness function under the current model. You can use the previously
defined fitness as the nutritional status of the individual.

Step 4: Move mode selection. For each individual, select the movement mode. There
are two types of movement patterns: single-step and multi-step. In principle, you should
choose multi-step movement whenever possible to avoid duplication of searches in the
search space.

Single step moves: for each weight value, a nearby random value is chosen for replace-
ment. For the i -th weight, the new value is

X (i) = X (i) + rand (2 · r)− r (28)

where r is the range of movement.
Multi-step moves: a vector is randomly generated and the weight vector is updated

using the vector values. For each weight vector x of an individual, a move vector d is
generated via a Gaussian distribution.

d ∼ N
(
0, s2 · I

)
(29)

where s is the step size and I is the unit matrix.
Update the weight vector according to the shift vector d:

xnew = x + d (30)
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Step 5: Random wandering. After a multi-step move, a random walk is performed with
a certain probability to prevent a locally optimal solution.

X(i, j) = rand(−r, r) ; N(i, j) = fitness(X(i, j)) (31)

Step 6: Blast event. A blast event is triggered when an individual’s fitness value does
not improve after several iterations. A blast event is a process that randomly resets the
position and trophic status of the bacterial population.

Step 7: Loop execution. Repeat steps 3 to 6 a certain number of times until convergence
or the maximum number of iterations is reached.

The pseudo-code for ABFO-DSNN is shown in Algorithm 1. The final optimization
results in Xbest and fbest, which correspond to the optimal individual nutrient concentra-
tions and corresponding positions for all colony processes. These values will be returned
as output parameters.

Algorithm 1 ABFO-DSNN

Input: Weight parameter X of the DSNN model (column vector); cost function
costFunction; bacterial population size N ; nutrient concentration step Nc; movement
step Ns; transfer probability Pmove; maximum number of iterations stepmax.

Output: The weight parameter Xbest of the optimized DSNN model; the value of the
cost function fbest of the optimized DSNN model.

1: Initialisation of the colony and random distribution of nutrient concentrations in the
colony.

2: Repeat until stepmax.
3: Check the position of each bacterium and spot.
4: Calculation of the upward, downward, leftward and rightward gradients for each bac-

terium based on the nutrient concentration of the spot.
5: Choose to move up, down, left or right or to stay, depending on the best historical

position of each individual bacterium in the colony and the best historical position of
the group.

6: Calculate the position of each bacterium after it has moved.
7: Update the nutrient concentration of each bacterium.
8: Check that each bacterium in the colony has not colonised or spread.
9: The decision to colonise or spread is based on the probability of transfer.

10: Calculate and update the nutrient concentrations of all colonies.
11: Calculation of the optimal solution for the colony and the corresponding optimal

nutrient concentration.

5. Experimental results and analysis.

5.1. Experimental design. To validate the classification effectiveness and performance
of the ABFO-DSNN model, this work conducts comparative experiments on the Wine,
Gisette, Madelon and SECOM datasets.

All four datasets are commonly used machine learning datasets to test the performance
of classification algorithms. Among them, the Wine dataset is mainly used to test the
multi-classification algorithm, the Gisette dataset is mainly used to test the classification
ability of sparse and high-dimensional data, the Madelon dataset is mainly used to test the
algorithm’s ability to distinguish between noisy and non-noisy attributes, and the SECOM
dataset is mainly used to test the performance of the anomaly detection algorithm. Based
on the accuracy of the classification results and their RMSE, this work compares the
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ABFO-DSNN with DSNN, BFO-DSNN and ABFO-DSNN models for simulation. The
experimental environment is shown in Table 3.

Table 3. Experimental environment

Experimental platform Specific parameters
Memory/CPU 16 G/R7 5800X

Systems Windows 11
Frames Tensorflow, Keras

Programming Languages Matlab

5.2. Optimisation performance of ABFO on DSNN. To verify the impact of the
ABFO model on the classification performance of DSNN, the DSNN, BFO-DSNN and
ABFO-DSNN models were used to simulate the classification performance of the four
datasets respectively. A comparison of the classification accuracies of the three models is
shown in Table 4. It can be seen that the classification accuracy of the DSNN model is

Table 4. Classification accuracy of three models

Sample Models
Accuracy

Minimum value Average Maximum value

Wine
DSNN 0.8467 0.8534 0.8609

BFO-DSNN 0.9265 0.9301 0.9325
ABFO-DSNN 0.9413 0.9582 0.9596

Gisette
DSNN 0.8531 0.8629 0.8653

BFO-DSNN 0.9167 0.9202 0.9224
ABFO-DSNN 0.9407 0.9482 0.9489

Madelon
DSNN 0.8560 0.8605 0.8692

BFO-DSNN 0.9196 0.9224 0.9261
ABFO-DSNN 0.9398 0.9466 0.9485

SECOM
DSNN 0.8572 0.8628 0.8667

BFO-DSNN 0.9187 0.9205 0.9223
ABFO-DSNN 0.9403 0.9441 0.9462

significantly improved after the BFO optimisation. Meanwhile, the DSNN model accuracy
was further enhanced with ABFO. In the Wine set, the ABFO-DSNN model improved
the accuracy by 3.02% compared to the BFO-DSNN model and by 12.28% compared
to the DSNN. In the Gisette set, the ABFO-DSNN model improved the accuracy by
3.04% compared to the BFO-DSNN model and by 9.88% compared to the DSNN. In
the Madelon set, the ABFO-DSNN model improved the accuracy by 2.62% compared to
the BFO-DSNN model and by 10.00% compared to the DSNN. In the SECOM set, the
ABFO-DSNN model improved the accuracy by 2.56% compared to the BFO-DSNN model
and by 9.42% compared to the DSNN.

The cross-sectional comparison revealed that the ABFO algorithm had the highest level
of optimisation for the DSNN model in the Wine set and the lowest in the SECOM set.
RMSE comparisons of the classification accuracy of the three models are shown in Table
5. It can be seen that the RMSE values of the ABFO-DSNN model are significantly
lower than those of BFO-DSNN and DSNN in terms of the RMSE of the classification
accuracy of the 4-class set, mainly because it is not easy to find better DSNN model
parameters within a specified number of iterations, which means that the stability of the
solved DSNN model is poor. However, with the BFO algorithm, the stability of DSNN is
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Table 5. Classification accuracy rate RMSE of three kinds models

Sample Models
RMSE

Minimum value Average Maximum value

Wine
DSNN 0.9311 0.9542 0.9881

BFO-DSNN 0.8025 0.8242 0.8434
ABFO-DSNN 0.7311 0.7372 0.7349

Gisette
DSNN 1.0183 1.0305 1.0532

BFO-DSNN 0.8252 0.8468 0.8683
ABFO-DSNN 0.7615 0.7637 0.7682

Madelon
DSNN 1.1215 1.1566 1.1793

BFO-DSNN 0.9152 0.9271 0.9339
ABFO-DSNN 0.8233 0.8289 0.8365

SECOM
DSNN 1.1304 1.1429 1.1553

BFO-DSNN 0.9131 0.9253 0.9365
ABFO-DSNN 0.8247 0.8296 0.8358

significantly improved. The comparison revealed that in the Wine set, the RMSE of the
three models was better relative to the other three classes of sets, which may be due to
the higher dimensionality of the other three classes of sets, resulting in more significant
stability oscillations.

5.3. Classification accuracy of different algorithms. To further validate the classi-
fication performance of the ABFO-DSNN model, the CNN, LSTM, RNN and AWWO-
SCNN algorithms were simulated for four types of sample sets. the classification accuracies
of the four deep neural network models are shown in Figure 6. It can be seen that among

Figure 6. Classification accuracy of four models

these four deep neural network models, the ABFO-DSNN model has the highest classifi-
cation accuracy with values above 0.9, the LSTM and RNN are both between [0.8, 0.9],
while the CNN is basically around 0.7. This is mainly because ABFO reduces the errors
that occur in the CNN-SNN conversion process in the DSNN model and maximizes the
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performance of the SNN. In addition, ABFO updates the weight parameters by simulating
biological evolution, which is more in line with the actual natural laws, and is therefore
better able to find the appropriate weight parameters. the weight parameters of DSNN
models are usually high-dimensional, while the ABFO algorithm is good at dealing with
high-dimensional problems and can search for the optimal solution in the high-dimensional
space.

6. Conclusion. This work evaluates the classification performance of DSNN from the
perspective of multi-label classification. The BFO algorithm is used to optimise the core
parameters of the DSNN model when solving for them. To reduce the probability of local
convergence of the BFO algorithm, this work brings the idea of variation (mutation factor)
from genetic algorithms into the BFO algorithm. The proposed adaptive BFO algorithm
has a high convergence speed and accuracy, while reducing the probability of local con-
vergence to a certain extent. As the ANN-SNN conversion process requires scaling the
weights of the neural network, the scaling ratio of each layer of weights can be considered
as an independent hyperparameter to be optimised. In order to reduce the errors arising
from the conversion process and maximise the performance of the DSNN, this work uses
the adaptive BFO algorithm to find the optimal scaling parameters for the DSNN, thereby
improving the training efficiency and classification accuracy of the DSNN. However, or-
ganisms learn from their interactions with their environment throughout their lives, and
artificial intelligence systems need to be equally capable of continuous learning if they are
to act and adapt in the real world, hence the need to combine SNNs with reinforcement
learning in order to improve generalisability and reduce energy consumption.
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