
Journal of Network Intelligence ©2024 ISSN 2414-8105

Taiwan Ubiquitous Information Volume 9, Number 1, February 2024

Software Protection Technology on Tamper-Proof
Hybrid Coded Chaotic Watermarking

Li Li∗

College of Information Engineering
Chengdu Vocational & Technical College of Industry

Chengdu 610213, P.R. China
lily better310@163.com

Di Hu

School of Science and Technology
Assumption University

Bangkok 10700, Thailand
hudi0506@126.com

∗Corresponding author: Li Li
Received March 26, 2023, revised May 25, 2023, accepted September 25, 2023.

Abstract. : Software is an essential digital product in people’s daily lives, but copyright
protection of software products has become a very important issue. Software watermark-
ing can store the information of software copyright and user identity into the software in
advance and stealthily, so as to protect the legal copyright of the software product owner.
This paper firstly introduces in detail the generation of dynamic watermark, the process
of watermark extraction and embedding, and the watermark encoding method. Secondly,
based on the study of existing dynamic graph watermarking algorithms, a new software
watermarking scheme based on chaos optimisation is proposed to solve the problems of
poor robustness of software watermarking and difficulty of recovery after watermark de-
struction by introducing chaos theory. The scheme uses chaotic systems to generate
chaotic sequences to split the watermark information matrix and displace the chaos. Af-
ter the watermark is embedded, chaotic encryption is used to protect the entire code. It
is then a hybrid encoding technique that combines the advantages of the base K-linked
table encoding scheme and the PPCT encoding scheme, with the addition of tamper-proof
features. When the program is run the topology must be decoded before the constants can
be obtained, so when the topology structure is corrupted the whole program will not run.
Simulation results show that the tamper-proof hybrid coded chaotic watermarking scheme
has good stealth and robustness. Therefore, the proposed scheme is a dynamic graph cod-
ing scheme with good performance.
Keywords: Software watermarking; Dynamic watermarking; Chaotic sequences; Hybrid
coding; Robustness

1. Introduction. With the rapid development of computer networks and the increasing
popularity of digital products, people can edit, modify and copy the original versions of
digital products, including video, audio, images and software, causing the problems of
intellectual property protection and information security of digital products to become
more and more prominent. This has made it very difficult to protect the copyright of
digital products, and it also shows that research into various technologies for protecting
the copyright of digital products is urgent. In the long run, it will bring huge losses to
the digital product market and even affect the normal operation of the digital product

176

Software Protection on Hybrid Chaotic Watermarking 177

market [1,2,3]. Therefore, how to protect the integrity, security and copyright of digital
products from infringement has become a very serious problem we are facing.

The technique traditionally used to protect the copyright of digital products is encryp-
tion [4,5]. The so-called encryption technique is the step of using certain technical means
to turn important data that is not wanted to be seen by others into a garbled transmission
whose meaning cannot be perceived, i.e. ordinary text is combined with a string of num-
bers, i.e. a key, to produce an unintelligible ciphertext. This technique simply enables the
transmission of secrets between the sender and receiver of the message [6,7], and once the
digital product has been received and successfully decrypted by a third party, the product
is in an insecure and unprotected state. A third-party attacker of this digital product can
then copy and distribute it at will.

Software watermarking is a branch of digital watermarking, a cross-cutting research area
of information security, cryptography, graph theory, algorithm design [8,9], and software
engineering. Software watermarking technology embeds software copyright information
and user identity information into the software in advance, which cannot or will be difficult
to remove while maintaining the functionality of the program. This information can be
extracted to detect illegal copying and piracy of software products when piracy occurs
and proof of copyright ownership is required. Software watermarking technology can
provide owner identification, attribution verification, copy control and piracy tracking
and location. While software protected by encryption techniques can be cracked by an
attack, all information about the software product is completely known to the attacker,
software watermarking works by adding secret watermark information to the software
[10,11], which can be extracted when needed to prove copyright. It is in this context that
software watermarking has come into being. In view of the better performance of dynamic
graph watermarking compared to other watermarking algorithms in all aspects, the main
work of this paper is to propose a new and better performance scheme for dynamic
graph software watermarking based on existing dynamic graph software watermarking
coding methods. A chaotic sequence is generated using a chaotic system to partition the
watermark information matrix and displace the chaos. After the watermark is embedded,
chaotic encryption is used to protect the entire code. In addition, in order to better
achieve the goals of high data embedding rate, concealment and good attack resistance,
the two existing encoding schemes are based on and mixed with anti-tampering features
to achieve better attack resistance. Finally, the experimental results are used to verify
the feasibility of the proposed algorithm scheme.

1.1. Related Work. Software watermarking belongs to a multidisciplinary research field
[12], including cryptography, algorithm design, software engineering, graph theory and
programming. In recent years, research on software watermarking technology has focused
on static watermarking algorithms and dynamic watermarking algorithms. Static water-
mark in a particular format stored in the program code, with the generation of flexible,
simple identification and other characteristics, is the most commonly used watermarking
algorithms, but the security is poor. Typical algorithms for this type of watermarking
include: software watermarking algorithms based on image watermarking, watermarking
algorithms based on basic block control flow encoding, watermarking algorithms based on
software control flow graph merging, watermarking algorithms based on instruction fre-
quency encoding, tamper-proof watermarking algorithms based on encryption functions,
robust watermarking algorithms based on chaos theory dynamic graphics, watermarking
algorithms based on register allocation, etc.

Dynamic watermarking makes full use of the executable features of the software itself
[13], and is a hot topic of research because of its higher robustness compared to static

178 L. Li and D. Hu

watermarking. In terms of watermarking characteristics, dynamic watermarking can be
classified as Easter Egg watermarking, dynamic data structure watermarking, dynamic
execution process watermarking, etc. Easter Egg watermarking is a watermark detector
placed directly in the software code, and the watermark detector is activated by a specific
input sequence. The detector, upon detecting the watermark, displays the watermark
information to the user. Dynamic data structure watermarking embeds the watermark
into the data structure that is dynamically generated when the software is run. When
the software receives a specific input sequence, the watermark information is encoded in
data such as a stack or global variable. The watermark is extracted by detecting the
relevant state of the software. Dynamic execution process watermarking encodes the wa-
termark by the sequence of execution of instructions or memory addresses in the program.
The watermark is extracted by detecting the watermark information by examining the
execution path diagram or data flow diagram of the program at a specific input.

Currently, dynamic watermarking algorithms using graph structure encoding are an
important direction in software watermarking technology. The first dynamic graph wa-
termarking algorithm was proposed by Collberg and Thomborson, called the CT algo-
rithm [14], which embeds the watermark into the dynamically generated graph structure
of the program, where the watermark information is hidden in the running state of the
program, and the detection and extraction of the watermark must be performed in the
state of program execution. Sahu et al. [15] proposed a watermark subgraph by splitting
the watermarked graph. Ma et al. [16] presented a dynamic software watermarking al-
gorithm based on multi-constant coding. Li et al. [17] proposed a chaos-based software
watermarking algorithm scheme. The scheme protects the entire program code by intro-
ducing a chaotic system that does a heteroskedastic operation on the chaotic sequences
and watermark information, and encodes the result as a hash into the entire code, while
resisting reverse engineering attacks by embedding an anti-reverse engineering module.
The above software watermarking algorithms are not perfect in terms of functionality
and performance, and have the disadvantage of poor resistance to attack.

1.2. Motivation and contribution. The main dynamic graph watermarking algorithms
in use today are the base K-linked table encoding scheme [18] and the PPCT encoding
scheme [19]. Among them, the base K-linked table scheme is simple in structure, easy
to implement and high in data embedding rate, but it is also more vulnerable to attacks
because of its simple structure. PPCT encoding scheme is a binary tree based encoding
method, which has good steganography but is not ideal in terms of data embedding rate.

The main innovations and contributions of this study are shown below:
(1) To improve the robustness of software watermarking as well as its anti-tampering

performance, this work combines chaotic systems and code encryption techniques, using
interleaving and mutual protection mechanisms to complete code integrity detection and
protect the entire code. When the watermark is sensed to be tampered with, a tamper
response mechanism is activated to terminate the program or execute the wrong control
flow, preventing further damage to the software watermark by means such as reverse
engineering attacks. Theoretical analysis and experiments show that this mechanism can
effectively enhance the robustness of watermarking.

(2) K-link table encoding has a relatively high data embedding rate, while PPCT en-
coding has better resistance to attack. To better improve all aspects of the performance
of the watermark encoding scheme, this work uses a hybrid encoding of the two and adds
anti-tampering features to achieve better performance in terms of resistance to attack.
In this way, when the program is run the topology must be decoded before the constants

Software Protection on Hybrid Chaotic Watermarking 179

can be obtained, so when the topology structure is corrupted the whole program will not
run.

2. A model for software watermarking.

2.1. Definition and working mechanism of software watermarking. Software wa-
termarking technology is an emerging research direction in the last decade or so. Software
watermarking technology is an after-the-fact verification technology [20], and its purpose
is usually not to prevent software products from being pirated, but to extract specific
information embedded in the software when it is pirated or illegally exploited, which is
used by the copyright owner of the software to prove their copyright and thus to settle
the matter through legal channels.

Let P be the original program, w be the embedded watermark information, k be the
encryption key, and e be the watermark embedding algorithm, then e(P,w, k) → Pw. By
using the key k and the watermark embedding algorithm e, the watermark information
w is embedded into the original program P , resulting in the program Pw containing the
watermark information w. To ensure the correctness of the program operation, the algo-
rithm e needs to satisfy the following constraints without changing the program function
Rule [21, 22]: Let CoI(P) be the set of input sequences of P and out(P, I) be the output
of P when the input is I. For the user, it is sufficient to observe whether the execution
behaviour of the two programs P and Pw is the same. r is the watermark extraction
algorithm, then r(Pw, k) = w′. algorithm, which extracts the watermark information w′

from Pw according to the key k. Obviously, to ensure the correctness of the watermark
extraction, w = w′ is required. The basic model of software watermarking is shown in
Figure 1.

Figure 1. Basic model of software watermarking

The difference between a software watermark and a normal multimedia watermark is
that the embedded watermark must not have any impact on the functionality of the
software. Also the impact on the execution efficiency of the software must be as low as
possible, so that the user does not perceive a significant change in the execution speed of
the software with the watermarked information embedded.

When designing software watermarking algorithms, several issues need to be considered.
Firstly, there is the issue of the data embedding rate, i.e. the ratio of the space taken
up by the watermark to the space added to the host program in order to embed the
watermarked information; secondly, the characteristics of the program format and code
in which the watermark is embedded also have an impact on the characteristics of the
software watermarking algorithm; and finally, the software watermark has to be designed
in response to possible attack methods to better resist these attacks.

180 L. Li and D. Hu

2.2. Dynamic software watermarks. Dynamic software watermarks (DGW) differ
from static software watermarks in that instead of embedding the watermark information
in the static text of the program, the watermark is embedded in the dynamic execution
environment of the program. Dynamic software watermarks are characterised by the need
for a specific input sequence as a key, where the program is run into a certain state and
the process of extracting the watermark information is extracted from the execution state
of the program.

The process of embedding and extracting the dynamic graph watermark is as follows
[23]:

(1) Enter the watermark information W to be embedded.
(2) Represent the watermark information W as a watermark number (i.e. an integer)

and transform it into some topology G. The topology G may be one of the structures
such as a base K-link table, a permutation graph, an enumeration tree or a PPCT.

(3) Partition the graph G into several subgraphs G0, G1, . . . , Gm.
(4) Encode each subgraph Gi and convert it to the corresponding program code Ci.
(5) Embed C0, C1, . . . , Cm in the program mark position according to the predefined

input sequence i0, i1, . . . , in, to complete the embedding of the watermark.
(6) When extracting the watermark, the program containing the watermark is exe-

cuted. After entering the correct predefined sequence i0, i1, . . . , in, the program calls the
corresponding watermark construction code C0, C1, . . . , Cm, and dynamically generates
the graph Gi in memory. When the last graph Gm is generated, the entire topological
graph G is restored according to the watermark segmentation algorithm, and then it is
into the corresponding original watermark information W .

2.3. Dynamic image watermark encoding methods.
(1) Base link table encoding.
The base K-linked table encoding consists of k nodes, including a head node and a

circular chain table consisting of k nodes. The base 5 chain table code is shown in Figure
2 and is represented as follows: 438 = 3× 53 + 2× 52 + 2× 51 + 2× 50.

Figure 2. Base 5 chain table code

In base K -linked table encoding, the head node contains only one pointer to the first
node in the circular chain table. Each node in the circular link table has two pointers,
left and right, where the left pointer is used for encoding the watermark information.
The right pointer is used to point to the next node in the circular chain table. The right
pointer of the last node points to the first node in the circular chain table. Thus, for
encoding a base K -linked table containing k nodes, the number of watermarks that can
be represented ranges from 0 to kk−1−1. The encoding function for a base K -linked table

Software Protection on Hybrid Chaotic Watermarking 181

is

Index =
k−1∑
n=1

ank
n−1 (1)

Where an is the multiplication factor. If the left pointer of the node is NULL, an = 0; if
the left pointer of the node points to itself, an = 1.
(2) PPCT code.
The PPCT coding structure is an improvement from a binary tree.The PPCT is a

special binary tree that adds an Origin node [24,25] to the binary tree and makes the
pointer to the Origin node point to the root node.The PPCT adds a right pointer to
the Origin node and the leaf nodes to the special binary tree structure so that all leaf
nodes of the binary tree and the generating nodes form a circular chain table, as shown
in Figure 3. The PPCT structure has good resistance to attack. Next we analyse the

Figure 3. Special binomial trees and PPCT structures

process of transforming a PPCT structure into a watermark number N . Assume that the
watermark number N represented by the PPCT structure T = int(T), T.left denotes the
left subtree of T , T.right denotes the right subtree of T , and L and R denote the number
of leaf nodes in the left and right subtrees of T respectively.

int(T) = 0, if |T | = 1 (2)

int(T) = int(T.left)× C(R) + int(T.right) + min int(L,R), if |T > 1| (3)

where min int(L,R) is the smallest integer.

min int(L,R) = min
−

int(L−1, R+1)+C(L−1)×C(R+1) =
L−1∑
i=1

(C(L−i)×C(R+i)) (4)

Topologically, the PPCT structure has the characteristics of both a binary tree and a
single circular chain table, and uses pointers for structure generation. Since the exact
value of the pointer is different each time the program is run, it increases the difficulty for
an attacker to break the watermark. Also, according to the characteristics of the PPCT
structure, for a PPCT structure with m leaf nodes, as soon as any node in the tree is

182 L. Li and D. Hu

found, the generating node can be found in m-1 steps along its left pointer, thus traversing
the whole tree. Secondly, when an attacker modifies the pointers of some nodes in the
PPCT structure, it is even possible to effectively recover the PPCT structure based on
its generation rules, which has a strong error correction capability.

2.4. Types of Software Watermarking Attacks. We currently classify software wa-
termarking attacks into four main categories: addition attacks, removal attacks, distortion
attacks and complicity attacks.

The most effective form of attack among the above-mentioned attacks is the hold se-
mantic transformation attack in the deformation attack. The so-called hold semantic
transformation attack uses obfuscation techniques to replace or otherwise change vari-
ables in a program, where the program runs unchanged but the internal structure of the
program has changed dramatically and the extraction of the watermark becomes relatively
problematic. Each of these hold semantic transformations brings a degree of obfuscation
to the program, and in practice these hold semantic transformation algorithms are not
usually used alone, but rather a combination of multiple semantic hold transformations
are used together so that they can provide sufficient obfuscation to the program.

3. Chaos optimization based tamper-proof hybrid coded watermarking scheme.

3.1. Chaos theory. Chaos is a description of the emergence of a non-linear dynami-
cal system with similar random uncertain output, disorder containing order, which is
indecomposable, regular and unpredictable.

Logistic mapping is a chaotic dynamical system [26], which has a very complex dynam-
ical behavior and has a wide range of applications in fields such as communication and
cryptography, where the dynamics of a one-dimensional function can be expressed as:

xk+1 = µxk (1− xk) (5)

where the chaotic domain is (0, 1) and µ is the branching parameter.
The Logistic mapping works in the chaotic state when 3.5699456 < µ < 4. When given

the initial value x0, the sequence {xk; k = 0, 1, 2, 3, . . .} generated by the one-dimensional
chaotic function under the Logistic mapping is acyclic, non-convergent, and closely related
to x0.

Sn(k) = Rn (xk) =


0, xk ∈

2n−1−1⋃
d=0

In2d

1, xk ∈
2n−1−1⋃
d=0

In2d+1

(6)

where n is any positive integer and In0 , I
n
1 , . . . , I

n
2n are 2n consecutive equal intervals. The

chaotic sequence {xk; k = 0, 1, 2, 3, . . .} is transformed by calling Sn(k) into a binary
output sequence.

3.2. A software watermark splitting and storage scheme based on chaos op-
timization. On the basis of the original CT algorithm, the split-storage watermark is
formed by matrix partitioning of the watermark information, and the split-storage water-
mark is encrypted by using chaotic dislocation CS.

The encrypted split-storage watermark is then represented using DPPCT and the Hash-
processed watermark information is populated in the Info field of DPPCT. Finally, the
sensitive code segment of the program is encrypted using Chaos Encryption. The water-
mark embedding process is as follows:

(1) For the watermark information W , perform matrix partitioning to form a sub-
storage watermark (w1, w2, w3, . . . , wm) and transform it into matrix A;

Software Protection on Hybrid Chaotic Watermarking 183

(2) Using chaotic dislocation CS, dislocation encryption of matrix A to form matrix
A′;
(3) Pre-processing of program source code, marking the location of watermark embed-

ding and program sensitive code segment CSB, adding Hash functions, encryption and
decryption functions;

(4) The sub-stored watermark information w′
i (1 ≤ i ≤ m) for each row of matrix A′

is encoded in the PPCT topology map and embedded in the location specified by the pro-
gram. In the running state of the program by the user input sequence {I1, I2, I3, . . . , Im};

(5) Compile to generate the target program P ′
w;

(6) Apply the chaotic encryption algorithm CE to encrypt P ′
w.

The watermark extraction process is the inverse process of watermark embedding.
Firstly, the target program P ′

w is chaotic decrypted CE−1 by user input key, then the
matrix A′ is extracted and the matrix A is obtained from the inverse of the chaos SR−1.
Finally, the watermark information W is restored by the matrix partitioning algorithm.

The proposed algorithm converts the watermark information W into a matrix A. First
the watermark information W is converted into a binary message. The watermark in-
formation W is partitioned according to the length of the binary information Lw and
the length of each segment is Lwi+1. The processed watermark information is noted as
W = (w1, w2, w3, . . . , wm). Then construct a matrix A(Am × An), where the number
of watermark branches Am = m and the length of each segment An = ⌊Lw⌋ + 1. The
segmented watermark information is placed in each row of the matrix in order.

For example, the watermark information W = 29 is converted to binary as 1101.

According to the above algorithm Am = 2 and An = 3, then A =

[
111
010

]
The proposed algorithm can generate 2m× n chaotic sequence values and can displace

and encrypt any m× n matrixs. The permutation encryption process is as follows:
(1) Generation of a sequence C containing 2m×n chaotic sequence values by a chaotic

system;
(2) Matrix partitioning of the chaotic sequence C to obtain 2m× n matrices C1, C2;
(3) The matrices A and C1 are dissociated by rows to form a new matrix T1, i.e.

T1 = A⊕ C1;
(4) Transpose T1 to form a new matrix T2;
(5) The matrix T2 and C2 are dissociated by rows to form the new matrix T3, i.e.

T3 = T2 ⊕ C2;
(6) Transpose T3 to form a new matrix T4.
The above is an iterative permutation of matrix A. The resulting matrix T4 is the

chaotic permutation of matrix A′. To get a better result, the above process can be
iterated several times.

The inverse process is: first, transpose the matrix T4 to obtain the matrix T5, then
transpose T5 with C2 to obtain the matrix T6, then transpose T6 to obtain the matrix
T7. Finally, transpose T7 with C1 to obtain the matrix T8. The matrix T8 is the original
watermark information matrix A.

3.3. Improved tamper-proof hybrid encoding watermarking scheme. Based on
the analysis above we can know that the base k-linked table encoding has a relatively
high data embedding rate, while the PPCT encoding has better resistance to attacks. In
order to better improve the performance of the watermarking scheme in all aspects, we
use a hybrid encoding method of both and add tamper-proof features to achieve better
performance in terms of resistance to attack.

184 L. Li and D. Hu

We know that the main advantage of encoding base K -linked table is the high data em-
bedding rate, but the structure is too simple and can be easily detected and compromised.
ppct is the more commonly used topology graph, which is resistant to attack and conceal-
ment, but does not have a high data embedding rate. Therefore, we have combined the
two, thus inheriting the advantages of both. The advantages of PPCT are guaranteed on
the basis of its node right pointer pointing to encode it, thus implementing the idea of a
base K-linked table encoding scheme. The constants are then extracted from the software
program and represented as integers. Finally, the encoding scheme is transformed into
a similar graph topology. The constants in the program are replaced with these graph
topologies, thus creating a pseudo watermark to confuse the attacker. Therefore, when
the pseudo-watermark information is tampered with or removed from the program, the
constants are also corrupted and cannot be extracted properly, and the entire program
will not run. The structure of the tamper-proof hybrid coding scheme is shown in Figure
4.

Figure 4. Tamper-proof hybrid code

If there are n leaf nodes, the Origin node in the topology diagram points to a node
of power 0, the next node pointed to by the left pointer of that node is of power 1, the
next two nodes pointed to are of power 2, and so on until the left pointer points to the
generating node of power n-1.

ci =

 0 j = i
j − i+ 1 j ≥ i
n− |(j − i)|+ 1 j < i

(7)

The value of ci is represented by the information of the right pointer of its leaf node,
which ranges from 0 to n+1.

Based on the characteristics of the hybrid encoding structure, we form a sufficiently
large watermark library. We can choose any one of these as our topology to encode the

Software Protection on Hybrid Chaotic Watermarking 185

watermark information, which is very effective in resisting complicity attacks. The steps
for implementing the tamper-proof hybrid encoding scheme are

(1) Select the watermarked number N, which can be decomposed into two large prime
numbers;

(2) Calculate the number of leaf nodes required for the topological graph structure;
(3) Select a hybrid coding structure based on the number of leaf nodes;
(4) Selecting constants from the source program and encoding them into the PPCT

topology structure;
(5) Embedding the coded information into the software program.
Based on the principle that large numbers are hard to decompose, we choose the product

of two large prime numbers as the watermark information we want to embed. We choose
the BigInteger type, which can represent a larger range of numbers, to represent the
watermark number and use the probablePrime() method of the BigInteger class to generate
the large prime number.

Public static BigInteger probablePrime (int bitLen, Random rnd) (8)

In general, the numbers returned by this method are all prime numbers. The bitLen
parameter determines the number of bits in the binary corresponding to the prime number
returned, and the rnd parameter is used to test the random number type variable returned.
Next, a 32-bit prime number is obtained.

Random rand = new Random () ; Re turn BigInteger.ProbablePrime(32, rand); (9)

The prime numbers returned when the function is executed are randomly generated,
and the product of the two randomly generated large prime numbers is used as the
watermarked number to be embedded. This makes it impossible for an attacker to fully
decompose the two large prime numbers within the limited time or capability available,
even if they were able to find the exact watermarked numbers to be embedded. Thus, the
copyright of the software is very well protected by this method.

When encoding constants create an encoding function encode(int i) in the program,
use this function to implement the conversion from constants to graph structures, i.e. to
form a pseudo watermark graph. When the program runs, we need to convert the pseudo-
watermarked graph into a constant again, this process is the decoding of constants, it is
the inverse of the constant encoding process. The decode function decode(CG[i]) can be
created to reduce the pseudo watermark structure to a constant. The pseudo code for the
watermarking procedure is shown in Table 1.

3.4. Chaotic Encryption CE. This work combines chaotic sequences with encryption
algorithms to construct chaotic encryption schemes with variable length cipher and inter-
leaved protection mechanisms.

Using hashes of non-sensitive code segments [27], the watermark information and sensi-
tive code segments are protected from attackers tampering with the watermarking system,
and the encryption process is shown in Figure 5. During the execution of the program,
the Decrypt function is called to decrypt CSBi when the ciphertext CSBi code block is
encountered. Then, the plaintext code block CSBi is executed. The encryption process
uses the chaotic sequence qi as an argument with a variable-length key, which can effec-
tively make it more difficult for an attacker to crack [28], and the hash value of CIBi as
an argument, which can effectively prevent the whole program from being tampered with
by an attacker. After the program has finished running, the encryption module is called
again to complete the protection of the sensitive code segment.

4. Simulation experiments and performance tests.

186 L. Li and D. Hu

Table 1. Pseudocode for watermarking procedures.

The process of a tamper-proof hybrid coding scheme
Input: Watermark information W, user input sequence {I1, I2, I3, ..., Im }, user input key k.
Ouput: Mixed Wm; //The watermark map is a mixed coding structure.
public method () {
int C[1], C[2];
Wm = buildWm (); //Embed watermark.
C[1]=100;
C[2] = 200;
Print(C[1]+C[2]);
//The pseudo-code for the watermarking procedure to perform constant encoding.
Mixed Wm, CG[1], CG[2];
public method () {
int C[1], C[2];
CG[1] = encode(1); //Embed the 1st pseudo watermark.
CG[2] = encode(2); //Embed the 2nd pseudo watermark.
Wm = buildWm(2);
C[1] = decode(CG[1]); // Extract the constant from the 1st pseudo watermark.
C[2] = decode(CG[2]); //Extract constants from the 2nd pseudo watermark.
...
Print(C[1] + C[2]);
}

Figure 5. Chaotic Encryption Process

4.1. Experimental platform. The tamper-proof hybrid coding scheme is validated
through simulation experiments. The system platform for the algorithm used for soft-
ware watermarking is the SandMark platform.

The SandMark platform is an open source system developed by Christian Collberg
and others at the University of Arizona, which allows the embedding and extraction of

Software Protection on Hybrid Chaotic Watermarking 187

watermarks into programs and the testing of programs against obfuscation and tamper-
ing attacks. The main features of the SandMark platform are: software watermarking
algorithms, code obfuscation, code optimisation, bytecode viewing, static data statistics,
bytecode comparison and static code analysis functions. With these features, we can
use the SandMark platform to embed watermarks on programs and simulate various at-
tacks to test the performance of watermarking algorithms. In addition, as the platform
is plug-in structured, we can add the watermarking algorithms proposed in this work to
the platform.

4.2. Performance testing and analysis. This work uses the SandMark software wa-
termarking test platform, invokes the dynamic graph watermark CT algorithm in it,
completes the generation, embedding and extraction of watermark data, and completes
the integrity detection and anti-tampering of the watermark with the help of FlexHEX,
OllyDbg, XJad and other tools.

The watermark data generation module mainly converts the watermark information W
entered by the user into a watermark number and then encodes the watermark number
into a graph structure. The tamper-proof hybrid coded watermarking scheme proposed in
this work is compared and analysed with the PPCT coding scheme and the base K -linked
table scheme.

4.2.1. Robustness analysis. The topology of the hybrid encoded watermarking scheme is
constantly changing in the stack and has multiple graph structures, making it difficult to
find the exact location of the watermark.

Also due to the changed graph topology, the resistance of the watermark to pattern
matching and complicity attacks is enhanced. Secondly, with the newly added Pointer and
Info domains, the PPCT structure is characterised by a bi-directional circular chain table
and makes every node except the Origin node contain watermark information, further
improving robustness and security. A comparison of the attack resistance of the hybrid
coded watermarking scheme with other coding schemes is shown in Table 2.

Table 2. Comparison of attack resistance analysis of 3 coding schemes

Coding schemes
Adding attacks,
clipping attacks

Twisted
Attack

Fault
tolerance

Base K -linked table weak weak General
PPCT Code Strong weak Strong
Mixed coding Strong Stronger Stronger

It can be seen that chaotic dislocation and chaotic encryption of the watermark by a
chaotic system yields good random uncertainty outputability and autocorrelation prop-
erties, thus effectively resisting differential and linear attacks on known plaintexts. If the
two-dimensional chaotic parameter µ is cracked, 2 correlated value pairs of that chaos are
required. For a chaotic system with n chaotic sequence values, the cracking probability is
n−2. If a code segment in the program is modified, this will cause the decryption to fail
and the program to terminate.

4.2.2. Data rate analysis. The hybrid coding structure combines the features of both base
K -linked table coding and PPCT coding.

The hybrid coding structure has 2n nodes which can be coded in the range of 0 to
nn−1 − 1. The data rates of the three methods of base K, PPCT and hybrid coding are
compared when the number of nodes is given and the results are shown in Table 3.

188 L. Li and D. Hu

Table 3. Comparison of data rate analysis for different coding methods

Number of nodes Base K-linked table PPCT Code Mixed coding

n nn−1 − 1 2C
n/2−1
n−2 /n (n/2)n/2−1 − 1

10 1.00 x 109 1.40 x 101 6.25 x 102
20 5.24 x 1024 4.86 x 103 1.00 x 109
30 1.78 x 1083 1.29 x 1012 3.55 x 1033

4.2.3. Performance overload analysis. The embedding of the watermark will definitely
have an impact on the execution efficiency and performance of the program, mainly in
the form of space occupation and time increase.

Experiments were conducted using the SandMark platform to process the TIT.jar pro-
gram, embedding different numbers of watermarks and analysing the impact on the orig-
inal program size and running time with different numbers of watermarks, the results are
shown in Figure 6 and Figure 7.

Figure 6. Program size change

It can be seen that the program size increases slowly after watermark splitting. This is
due to the matrix partitioning of the watermark information, which increases the number
of watermarks in the sub-store linearly, and the use of mixed coding with a higher data
rate, which reduces the program load. It can be seen that the program runtime is not
significantly affected by the embedding of the watermark. This is due to the fact that
the embedded watermark code does not participate in the main functional modules of the
program and only chaotic encryption is applied to sensitive code segments of the program,
which does not significantly increase the program’s overall running time.

Software Protection on Hybrid Chaotic Watermarking 189

Figure 7. Program runtime change

5. Conclusion. This work proposes to see a chaos-optimized software watermarking
scheme, which improves the stealth of software watermarking through chaos dislocation
and watermark splitting, and constructs a hybrid coded PPCT topology graph structure
to improve the robustness and attack resistance of watermarking. At the same time, it
combines chaotic encryption to protect the watermark information and all the code to
prevent the software and watermark from being tampered with. Theoretical analysis and
experiments show that this scheme can significantly improve the robustness and error
correction capability of the watermark. In addition, this work takes a hybrid coding ap-
proach to embedding the watermark and incorporates anti-tampering features to obtain
better resistance to attacks. The proposed dynamic graph software watermarking scheme
is simulated on the SandMark platform. The results show that the new scheme is also
significantly better and more resistant to attack in terms of stealth and resistance to at-
tack. Dynamic graph watermarking is difficult to detect by an attacker during program
execution due to the dynamically changing graph structure. However, for an experienced
attacker, it is easier to find the code that builds the graph by decompiling the program
and observing the changes in the stack. Therefore, subsequent research will focus on
analysing how to improve the stealthiness of the watermarked code.

REFERENCES

[1] T.-Y. Wu, Q. Meng, Y.-C. Chen, S. Kumari, and C.-M. Chen, “Toward a secure smart-home IoT
access control scheme based on home registration approach,” Mathematics, vol. 11, no. 9, 2123, 2023.

[2] T.-Y. Wu, F.-F. Kong, Q. Meng, S. Kumari, and C.-M. Chen, “Rotating Behind Security: An en-
hanced authentication protocol for IoT-enabled devices in distributed cloud computing architecture,”
EURASIP Journal on Wireless Communications and Networking, vol. 2023, 36, 2023.

190 L. Li and D. Hu

[3] X. Guo, W. Jiang, Q. Zhang, and K. Wang, “Digital Protection Technology of Cultural Heritage
Based on ArcGIS Geographic Information Technology Algorithm,” Security and Communication
Networks, vol. 2022, pp. 1-10, 2022.

[4] X. Li, C. Liao, and Y. Xie, “Digital Piracy, Creative Productivity, and Customer Care Effort:
Evidence from the Digital Publishing Industry,” Marketing Science, vol. 40, no. 4, pp. 685-707,
2021.

[5] T.-Y. Wu, Q. Meng, L. Yang, S. Kumari, and M. P. Nia, “Amassing the Security: An Enhanced
Authentication and Key Agreement Protocol for Remote Surgery in Healthcare Environment,” Com-
puter Modeling in Engineering and Sciences, vol. 134, no.1, pp. 317-341, 2023.

[6] S. Hilbolling, H. Berends, F. Deken, and P. Tuertscher, “Complementors as connectors: managing
open innovation around digital product platforms,” R&D Management, vol. 50, no. 1, pp. 18-30,
2019.

[7] C.-M. Chen, Y. Hao, and T.-Y. Wu, “Discussion of ‘ultra Super Fast Authentication Protocol for
Electric Vehicle Charging Using Extended Chaotic Maps’,” IEEE Transactions on Industry Appli-
cations, vol. 59, no. 2, pp. 2091-2092, 2023.

[8] L. Wessel, A. Baiyere, R. Ologeanu-Taddei, J. Cha, and T. Blegind Jensen, “Unpacking the Difference
Between Digital Transformation and IT-Enabled Organizational Transformation,” Journal of the
Association for Information Systems, vol. 22, no. 1, pp. 102-129, 2021.

[9] C.-M. Chen, L.-L. Xu, K.-H. Wang, S. Liu, and T.-Y. Wu, “Cryptanalysis and Improvements on
Three-party-authenticated Key Agreement Protocols Based on Chaotic Maps,” Journal of Internet
Technology, vol. 19, no. 3, pp. 679-687, 2018.

[10] S. Namasudra, G. C. Deka, P. Johri, M. Hosseinpour, and A. H. Gandomi, “The Revolution of
Blockchain: State-of-the-Art and Research Challenges,” Archives of Computational Methods in En-
gineering, vol. 28, pp. 1497-1515, 2020.

[11] C.-M. Chen, W. Fang, S. Liu, T.-Y. Wu, J.-S. Pan, and K.-H. Wang, “Improvement on a Chaotic
Map-based Mutual Anonymous Authentication Protocol,” Journal of Information Science & Engi-
neering, vol. 34, no. 2, pp. 371-390, 2018.

[12] J. Ma, J. Chen, and G. Wu, “Robust Watermarking via Multidomain Transform Over Wireless
Channel: Design and Experimental Validation,” IEEE Access, vol. 10, pp. 92284-92293, 2022.

[13] E. Farri and P. Ayubi, “A robust digital video watermarking based on CT-SVD domain and chaotic
DNA sequences for copyright protection,” Journal of Ambient Intelligence and Humanized Comput-
ing, vol. 3, pp. 68-85, 2022.

[14] C. S. Collberg, C. Thomborson, and G. M. Townsend, “Dynamic graph-based software fingerprint-
ing,” ACM Transactions on Programming Languages and Systems, vol. 29, no. 6, 35, 2007.

[15] A. K. Sahu, K. Umachandran, V. D. Biradar, and O. Comfort, “A Study on Content Tampering in
Multimedia Watermarking,” SN Computer Science, vol. 4, no. 3, 222, 2023.

[16] H. Ma, C. Jia, S. Li, W. Zheng, and D. Wu, “Xmark: Dynamic Software Watermarking Using
Collatz Conjecture,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 11, pp.
2859-2874, 2019.

[17] Z. Li, H. Zhang, X. Liu, C. Wang, and X. Wang, “Blind and safety-enhanced dual watermarking al-
gorithm with chaotic system encryption based on RHFM and DWT-DCT,” Digital Signal Processing,
vol. 115, 103062, 2021.

[18] L. Zeng, W. Ren, Y. Chen, and M. Lei, “LMDGW: a novel matrix based dynamic graph watermark,”
Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 1, pp. 295-304, 2017.

[19] T. A. Grotzer, A. M. Kamarainen, M. S. Tutwiler, S. Metcalf, and C. Dede, “Learning to Rea-
son about Ecosystems Dynamics over Time: The Challenges of an Event-Based Causal Focus,”
BioScience, vol. 63, no. 4, pp. 288-296, 2013.

[20] S. Che and Y. Wang, “A Software Watermarking Based on PE File with Tamper-proof Function,”
TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 12, no. 2, pp. 1012-1021, 2014.

[21] A. Mpanti, S. D. Nikolopoulos, and L. Palios, “Strong watermark numbers encoded as reducible
permutation graphs against edge modification attacks,” Journal of Computer Security, vol. 12, pp.
1-22, 2022.

[22] D. Mata-Mendoza, M. Cedillo-Hernandez, F. Garcia-Ugalde, and A. Cedillo-Hernandez, “Secured
telemedicine of medical imaging based on dual robust watermarking,” The Visual Computer, vol.
38, no. 6, pp. 2073-2090, 2021.

[23] M. Harahap, J. R. Malau, T. N. Simangungsong, D. Winata, and D. Hadyanto, “Digital Image Copy-
right Protection with Spatial Domain Public Image Watermarking Scheme,” Journal of Computer
Networks, Architecture and High Performance Computing, vol. 4, no. 1, pp. 69-78, 2022.

Software Protection on Hybrid Chaotic Watermarking 191

[24] E. Elbasi, N. Mostafa, and E. Cina, “Robust, Secure and Semi-Blind Watermarking Technique Using
Flexible Scaling Factor in Block-Based Wavelet Algorithm,” Electronics, vol. 11, no. 22, 3680, 2022.

[25] L. van Iersel, R. Janssen, M. Jones, Y. Murakami, and N. Zeh, “A Practical Fixed-Parameter
Algorithm for Constructing Tree-Child Networks from Multiple Binary Trees,” Algorithmica, vol.
84, no. 4, pp. 917-960, 2022.

[26] M. Wang, S. Chen, and J. Jing, “Chaotic shadows of black holes: a short review,” Communications
in Theoretical Physics, vol. 74, no. 9, 097401, 2022.

[27] B. Ramadevi and K. Bingi, “Chaotic Time Series Forecasting Approaches Using Machine Learning
Techniques: A Review,” Symmetry, vol. 14, no. 5, 955, 2022.

[28] A. H. Bukhari, M. A. Z. Raja, N. Rafiq, M. Shoaib, A. K. Kiani, and C.-M. Shu, “Design of intelligent
computing networks for nonlinear chaotic fractional Rossler system,” Chaos, Solitons & Fractals, vol.
157, 111985, 2022.

