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Abstract. To improve the efficiency of the nodes’ influence evaluation methods in dy-
namic social networks that are constantly and complex changing over time, we propose
a knowledge-aggregate-based method. The method firstly utilizes the time window graph
model and time-aggregated graph model to aggregate knowledge of the dynamic network
topology, then comprehensively consider the connection strength, the local influence of
the third-order and fourth-order neighbors, and the bridging influence of each node to
measure nodes’ influence in the entire network. Our innovation lies in the use of knowl-
edge aggregation to capture the dynamic changes of complex networks, which overcomes
the shortcoming of traditional methods which recalculate influential nodes every time the
network changes; and taking into account the multi-dimensional aggregated information
of nodes throughout the network dynamic evolution to improve the algorithm accuracy.
SIR model is used to evaluate the performance of the proposed approach in information
dissemination in real networks, and the results show that this algorithm outperforms cur-
rent algorithms on both small-scale and large-scale dynamic networks, and performs more
prominently on large-scale dynamic social networks. Meanwhile, the algorithm proposed
in this article has lower computational complexity than existing algorithms, which can
effectively improve the efficiency of identifying key nodes in large-scale social networks.
Keywords: Dynamic social network, Knowledge aggregation, Local influence, Informa-
tion dissemination, Bridging influence

1. Introduction. OCIAL networks [1] are typical large-scale complex networks that dy-
namically evolve. Influential nodes, as nodes with high influence in social networks, can
easily and quickly spread the information throughout the network after receiving the in-
formation; and at the same time, if they are effectively controlled, it will be difficult for
the information to spread fast across the network. Therefore, identifying influential nodes
in social networks plays a vital role in applications such as epidemic prevention and con-
trol, public opinion control, word-of mouth marketing, and advertising. To quantitatively
analyze the influence of nodes in the network, scientists have proposed a large number
of centrality methods, such as degree centrality(DC) [2], betweenness centrality (BC) [3],
closeness centrality (CC) [4], Eigenvector centrality(EC) [5], K-shell decomposition [6],
PageRank [7], LeaderRank [8], VoteRank [9], CumulativeRank [10], LIR [11], LocalRank
[12], etc. Most of these methods use the node’s attributes and location as the standard
to measure the influence of a node. In recent years, with the deepening of research, new
research results continue to emerge. Liu et al. [13] proposed the general tightness index
GCC, and approximately found multiple nodes with the highest GCC as the influential
nodes in the network through the K-means method. Bian et al. [14] proposed a sorting
method based on the analytic hierarchy process, using the multi-attribute decision-making
technology AHP application to aggregate several centrality algorithms to evaluate the in-
fluence of each node, and the node with the highest influence are regarded as influential
nodes in the network.

However, the above-mentioned methods are mainly defined for static networks. With
the rapid development become a new feature of social networks, it presents the characteris-
tics of dynamic evolution over time [15]. In this case, it is no longer appropriate to directly
apply the methods in static networks for influential nodes identification to a dynamic so-
cial network. Specifically, some high centrality nodes may die out quickly, that is, they
are only active within a few time steps. In this case, it is difficult to judge whether it is
important in the entire dynamic evolution network. Based on this background, temporal
networks containing time information are more suitable to describe social networks in the
current form [16]. So far, many researchers have begun to pay attention to this problem.
Since the research on dynamic networks is still in its infancy, many scholars have extended
the influential nodes identification methods of static networks to timeporal networks only.
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Kim et al. [17] proposed a time-ordered graph model, which simplified a time-stamped
dynamic network into a directional flow network, and extended the time versions of DC,
BC, and CC through this model. Jiang et al. [18] proposed an Attenuation-Based Supra-
Adjacency Matrix (ASAM) temporal network modeling method based on the attenuation
of the inter-layer coupling strength and evaluate the nodes’ influence by culating the
eigenvector centrality of the nodes in each time layer in the temporal network. Ye et
al. [19] used the time window graph model to propose edge-based dynamic K-shell cen-
trality. Taylor et al. [20] proposed an eigenvector-based measure for temporal networks,
in which the eigenvectors of the hyper centrality matrix and its components can reflect
the influence of nodes. These methods have their unique advantages and disadvantages.
The most obvious disadvantage is that the centrality index needs to be recalculated every
time the network changes, or the efficiency cannot be effectively guaranteed. Recently,
some scholars have further extended the centrality algorithms on the temporal networks
on the basis of the predecessors [21,22,23,24]. Tulu et al. [25] proposed the NWI algo-
rithm. They consider the willingness of the neighbors within the two hops of the node to
spread information in the network and combine the clustering coefficient to measure the
influence of nodes in the dynamic networks. Though the method has low computational
complexity, the neighborhood information of nodes is not fully considered, and it cannot
guarantee that the selected nodes are critical in the entire dynamic network.

Based on the strong clustering structure characteristics of social networks and the
existing research in static networks, the influential nodes in dynamic social networks
should not only dominate the local location but also play a good bridging role among
clusters. Therefore, we propose a new method for identifying influential nodes in dynamic
social networks: on the premise of using the time window graph and time aggregation
graph model to aggregate the knowledge of the node characteristics in each tense, the
influence of nodes in the network is comprehensively measured by considering the contact
times and connection strength between nodes and other nodes, the number of second-
order, third-order and fourth-order neighbors, the local influence of topological relations
and the bridging influence of nodes; and the nodes with the highest score are the influential
nodes in the dynamic social networks. The main contributions of this article are as follows:

(1) Propose a new influential nodes identification method for dynamic social networks
based on knowledge aggregation. In the method, the neighbor’s information of nodes at
each time is fully considered.

(2) The method not only utilize the local information but also considers the bridging
influence. So that the obtained nodes have more advantages in the topology.

(3) Proposed an improved temporal version of the network constraint coefficients.
(4) A large number of experiments have been conducted on real data sets. The ex-

perimental results show that the correlation between the proposed method and the real
dissemination influence is higher than that of other comparison approaches. The accuracy
of our method is higher, and it receives a balance between computational complexity and
computational accuracy.

2. Preliminaries. In this section, the time window graph model and time-aggregated
graph model are completely adopted to compose our knowledge-aggregated model. First,
we divide the dynamic social network into a series of time windows in a discrete manner.
And then, using time-aggregated graph model to summarize all the nodes of the network
and the interaction information between nodes to obtain the aggregate connectivity matrix
Maggre of the entire dynamic network.
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2.1. Time Window Graph Model. The time window graph is a static network relative
to the active nodes and edges at a given time in a dynamic network [26,27]. In this
paper, the dynamic social network is modeled as a series of continuous time windows
GT = G1, G2, ..., Gt, where the total number of nodes N remains unchanged, and the
edges E changes at different time intervals. The size of a window is defined as m, and each
window is used to describe the network relationships and network interactions gathered
in the m period, as shown in Figure 1. The time window graph in the entire period T
can be expressed as GT = (NT,ET,MT ), where NT ∈ N represents all nodes in the
network, ET ∈ E represents the edge set in the dynamic network, and MT represents the
connection matrix corresponding to the connected edges of all nodes in the entire T time
domain, and the number of time windows in this period is calculated as T/m. The t time
window is defined as Gt = (V,Et)(t ∈ 1, 2, . . . , T ), where V = V1, V2, . . . , Vn represents
nodes, and Et represents the edges with in the time interval (t, t+ 1).

2.2. Time Aggregated Graph Model. The time-aggregated graph model is used to
model the changes of nodes and edges in a series of time windows [28]. The edges be-
tween each pair of nodes in the network are represented by a three-dimensional array. For
example,(v1, (v2, t)) represents the connection of node v1 and v2 at travel time t. By count-
ing the edges of nodes in each time window, the time-aggregated graph of the dynamic
network is obtained. Figure 1 shows a continuous time window graph of a simple dynamic
network. The time-aggregated graph model obtained from the time window graph model
of Figure 1 is shown in Figure 2. In the adjacency matrix, under the condition of record
(vi, (vj, t)) = 0 where node vi and vj have no edg at time t, by accumulating the number
of occurrences of each node’s edges, the aggregate connection matrix Maggre of the entire
time domain is obtained, as shown in Figure 3. Take the edges between node 3 and node
7 as examples. In the aggregation connection matrix (3, 7)=3, which indicates that nodes
3 and node 7 (or nodes 7 and node 3) have met 3 times, which is displayed in the time-
aggregated graph as it establishes a connection at t = 2, t = 5, and t = 7, and disappears
at other times. Meanwhile, it can be seen that in the undirected graph, the aggregate
matrix is a symmetric matrix, in which each parameter value is between 0 and T/m.
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Figure 1. Time window graph model.

Figure 2. Time aggregated graph model.
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Figure 3. Aggregate connection matrix.

3. A Knowledge Aggregated Approach For Identify Influential Nodes In Dy-
namic Social Networks. The relationship between nodes in a dynamic social network
is no longer a simple two-tuple, but is constantly evolving. A node that remains active
for a long time and has frequent contact with other neighbors must have a higher in-
fluence in the network than those who only appear in certain time windows and remain
isolated; while in a social network with a strong clustering structure, the most influential
nodes should be the center of each cluster and the node that acts as a ‘bridge’ between
each cluster. In addition, the local structure information of the node in the topology
plays an important role in the rapid spread of information in the network. Based on the
above analysis, we define the influential nodes in the dynamic social network as those who
have a relatively long lifespan during the entire time evolution process, frequently contact
with other nodes, and occupy local structural advantages and bridging advantages in the
topology. Firstly, the weight and connection strength of nodes in the dynamic network
are described by the contact times between a node and its direct neighbors in the whole
temporal. Secondly, the bridging influence of nodes is described by using the structural
hole theory, and the local influence of nodes is measured by using the LIR algorithm.
Finally, the influence of each node in the network is obtained by combining all the above
indicators. In addition, because LIR has the property that the neighbor degree of the
node is smaller than its own degree, the proposed method can also reduce the influence
of node radiation range overlap on the propagation, and avoid the rich club effect to a
certain extent.

3.1. Specific Method. Based on the Knowledge-aggregated model, the evolution of
all the edges and nodes of the network is captured to obtain the aggregate connection
matrix Maggre of the entire dynamic network. Assign the edge weight Mij to each edge
according to the actual situation, which is equal to the number of contacts between two
nodes. Mi represents the total weight of node i in the entire period T. In the real world,
it is conceivable that a node with a small total weight will either have a very short
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lifespan; or it will often appear as a solitary spot, and rarely contact its neighbors in
terms of time or space. In either case, it is difficult to say that this node will have an
advantage in information dissemination. On the contrary, a node with a large total weight
can be inferred that its lifespan is relatively long and has frequent and close contact
with surrounding nodes. It must be more effective than other nodes in the process of
information dissemination. The normalized weight of node i in a dynamic network is
defined as:

nwhi =
Mt∑N
i=1Mi

(1)

The influence given to a node by the number of node contacts is defined as the node’s
connection strength, which represents the strength of the connection between the node
and other neighbors. The larger the value, the closer the connection between the node
and other nodes, and the stronger its inclination to exchange information. The connection
strength of node i is defined as:

CSi =
w

w −Mi

(2)

where w is the number of edges of all nodes in the entire dynamic network. The total
number of third-order neighbors of node j is calculated by the following formula:

Qj =
∑
k∈τj

Rk (3)

Where node k is the direct neighbor of node j. Rk represents the union of the second-
order neighbors of node k. In the dynamic network, the third-order local influence of node
j is calculated by the following formula:

WQj =
∑
k∈τj

MkjRk (4)

The fourth-order local influence of node i is calculated by the following formula:

WLRi =
∑
j∈τi

MijQj (5)

From a sociological point of view, structural holes are gaps between non-redundant
contacts, which measure the ability of a node as a bridge between two unrelated nodes.
Burt [29] use the network constraint coefficient to measure the constraints that nodes
receive when they form structural holes. Nodes with small constraint coefficients often
have a strong influence in information dissemination. Here, by extending the time version
of the improved network constraint coefficient INCC in the CumulativeRank algorithm,
the bridging influence of the node is used as a measure of the influence of the node in
the social network when the neighbor information within the third and fourth order of
the node is fully used. The constraint coefficient of node i in the dynamic social network
TINCCi is calculated by the following formula:

TINCCi =
∑
j∈τi

(
WQj

WLRi

+
N∑

l=1,l ̸=i,l ̸=j

WQl

WLRi

WQj

WLRl

)2 (6)
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Since the value of TINCC decreases with the increase of node influence, in order to
measure the bridging advantage of a node in a dynamic social network, the bridging
influence of node i is defined as:

TLi =
1

1 + eTINCCi
(7)

Since the third-order and fourth-order neighbors’ quantity information of the node is
used in this indicator, the local structural advantage of the node is considered within a
certain range. Moreover, in order to fully consider the topological relationship between
node neighbors, the LIR is introduced, and the LI value is also taken as a consideration
factor to measure the local influence of the node. The formula for calculating the LI value
of node i is as follows:

LIi =
∑
j∈τi

Q(dj − di) (8)

Where di represents the degree of node i, for the function Q(x), if x <= 0, then
Q(x) = 0, otherwise, Q(x) = 1. For nodes whose LI value is not equal to 0, its nd value
is set to 0. By filtering those LI = 0, that is, the node whose direct connection neighbors’
degree is lower than its own degree, the nodes with the advantage of local information
dissemination is obtained. At the same time, this also reduces the possibility of two
influence nodes being directly connected, thereby reducing the generation of rich-club
effects. Since the LI values of the selected nodes are the same, the inf luence of these
nodes is sorted by considering the degree of the nodes, and the calculation formula is as
follows:

ndi =
dt∑N
i=1 di

(9)

Since the dimensions of each variable may be different, each index is normalized to
obtain the influence of each node of the dynamic network. In this algorithm, the local
information of nodes is used in the calculation of each index, so the proposed algorithm
is defined as Nodes’ Temporal Local-based Importance (NTL):

NTLi = (
TLi√∑N
i=1 TLi

+
ndi√∑N
i=1 ndi

+
CSi√∑N
i=1CSi

)
nwhi√∑N
i=1 nwhi

(10)

Finally, sort the NTL values of all nodes in the network, and select the top-ranked
node as the influential nodes of the entire dynamic social network.The overall algorithm
is shown in Algorithm1.

4. Simulation Results And Analysis. In this part, firstly, the feasibility of the pro-
posed algorithm in a small-scale network is verified by analyzing the experimental results
of a small-scale data set karate club [30]. Secondly, by simulating the information dis-
semination process and comparing with other algorithms, it shows the performance of
NTL algorithm in identifying influential nodes of dynamic social networks. Finally, the
running time of all algorithms is compared to verify the effectiveness of the proposed algo-
rithm in largescale networks. The data set used for the experiment is shown in the Table
1. Email-dnc [31] is a mail network in the 2016 Democratic National Committee email
leak event, which includes 2039 nodes and 39264 edges that established contacts within
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Algorithm 1

Input: symmetric adjacent matrix graph (Maggre) = (aij)N × N and adjacent table
corresponding to weighted complex network

Output: The ranked list and the NTL of each node
1: for i = 1 to N do
2: Mi = weight of the ith node
3: di = degree of the ith node
4: nwhi = normalized weight of the ith node
5: CSi = Connection strength of the ith node
6: for j in list(G.neighbors (i)) do
7: Qj = first-second-and-third neighbors of the ith node’s neighbors
8: WQj = first-second-and-third neighbors of the ith node’s neighbors in weighted

networks
9: LIi = the LI value of the ith node

10: end for
11: WLRi = the fourth-order neighbors of the ith node in weighted networks
12: if LIi !=0 then
13: ndi = 0
14: else
15: ndi =

dt∑N
i=1 di

16: end if
17: end for
18: temporal INCC value TINCCi =

∑
j∈τi(

WQj

WLRi
+
∑N

l=1,l ̸=i,l ̸=j
WQl

WLRi

WQj

WLRl
)2

19: the local bridging influence of every node TLi =
1

1+eTINCCi

20: the NTL value of the ith node NTLi = ( TLi√∑N
i=1 TLi

+ ndi√∑N
i=1 ndi

+ CSi√∑N
i=1 CSi

) nwhi√∑N
i=1 nwhi

21: rank1 = Sort(NTL, ’descend’)
22: return rank1

2 days. Social network [32] is the social connections of 72 teachers and students collected
by Bucharest University of Technology in 2012 within 63 days. n and m represent the
total number of nodes and edges of the network, respectively. The maximum degree and
average degree are expressed by kmax and ⟨k⟩ respectively.

Table 1. Dataset for experiment

Network n m ⟨k⟩ kmax

karate 34 78 4.59 17
Email-dnc 2029 39264 40 5.5k
Social network 72 700 9.72 31

4.1. Node dissemination ability evaluation.

4.1.1. SIR model. When analyzing the influence of nodes, many scholars use SIR models
to simulate the dynamic spread of information and diseases. At the beginning of the
spread, the nodes in the SIR model are divided into three states, susceptible state, infected
state and recovery state. Frist, the influential nodes obtained through the algorithm are
regarded as an infected node, and other nodes in the network are set to a susceptible state.
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In each propagation iteration, each infected node infects its randomly selected neighbors
with a probability of µ. The threshold of µ is defined as:

µmax =
⟨k⟩

⟨k2⟩ − ⟨k⟩
(11)

At the same time, each infected node will recover with a probability of β and will not
be infected again. The infection rate λ is defined as:

λ =
µ

β
(12)

In order to spread information widely in the network, in the following experiment, the
infection rate is set near its threshold. The propagation ability of nodes was compared
by using the infection scale at time t. The infection scale at time t is defined as:

F (t) =
nI(t) + nR(t)

n
(13)

Where,nI(t)and nR(t)respectively represent the number of nodes in the infected state
and the number of nodes recovered state at time t. N is the number of summary points
in the network. At time t, the larger F (t) is, the more nodes are infected by the initial
influence nodes. For the same F (t), the smaller the T is, the faster the influence of nodes
will spread in the network. F (tc) denotes the final affected scale. The larger the value,
the stronger the propagation capability of the initial node. F (tc) is defined as:

F (t) =
nR(tc)

n
(14)

Where tc represents the time for the propagation to reach a steady state, and represents
the number of eventually infected nodes in the network.

4.1.2. Kendall’s Tau correlation coefficient.
The Kendall correlation coefficient is often used to measure the ordered classification
data set. It is used here to describe the correlation between the ranking results obtained
based on the algorithm and the actual propagation ability of the node, and its value is
between [−1, 1]. Assuming that X and Y are two different sorted sequences with the same
number of elements N, the i-th value randomly obtained from the two sequences X, Y is
represented by xi and yi respectively, then when the point pair (xi, yi) and (xj, yj) satisfies
xi < xj∧yi < yj or xi > xj∧yi > yj, this set of point pairs is said to belong to a consistent
relationship. And when xi < xj ∧ yi > yj or xi > xj ∧ yi < yj , then this set of point
pairs is said to belong to an inconsistent relationship. When xi = xj or yi = yj occurs, it
is neither consistent nor inconsistent. The Kendall correlation coefficient values between
the two variables are −1, 1, and 0 indicating complete disagreement, complete agreement,
and no relationship, respectively. The Kendall coefficient between two variables is defined
as follows:

τ =
2(N1 −N2)

N(N − 1)
(15)

Where N1 and N2 represent the number of consistent point pairs and inconsistent point
pairs in sequences X and Y , respectively. In this section, by setting X as the centrality
measurement result (such as dynamic betweenness centrality, dynamic degree centrality,
dynamic closeness centrality, etc.), set Y as the SIR propagation range of each node to
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evaluate the Pearson correlation between the influential nodes identification results and
the true propagation.

4.2. Experimental Results and Analysis.

4.2.1. Analysis of experimental results in small-scale network.
First, use the small-scale network karate to verify the feasibility of the proposed algorithm
on small-scale networks. The network topology and the influential nodes extracted by
each algorithm are shown in Figure 4. The blue nodes in the figure are ordinary nodes,
and the red nodes are influential nodes. Table 2 lists the top-6 nodes obtained by the
five comparison algorithms TDC (temporal degree), TB (temporal between- ness), TC
(temporal closeness), NWI and NTL that proposed in this paper. According to the results,
it can be seen that in the karate network, the result of the influential node identified by TC
has the lowest repetition rate with other results. TB and TDC have the same performance,
which shows that in the small network, TB plays the same role as DC. When the algorithm
complexity is higher than TDC, TB loses its utility. The results of NTL and NWI are
consistent, and the identified influential nodes include the results of all other algorithms.
It shows that NTL can better identify the nodes located in the center of the network.

Figure 4. Influential nodes obtained by different algorithms in small-scale
network karate.

Table 2. Ranking of karate network influence nodes

Rank DC BC CC NWI NTL

1 33 0 0 33 33
2 0 33 2 0 0
3 32 32 33 32 32
4 2 2 31 2 2
5 1 3 8 1 1
6 3 1 13 31 31
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4.2.2. Analysis of experimental results in large-scale network.
(1) Difference analysis of algorithms in node influence ranking. The SIR model mentioned
above is used to verify the accuracy of the proposed method in large-scale dynamic social
networks. Firstly, in order to clearly show the difference between the proposed method
and other algorithms in node centrality measurement results, we use Email-dnc and social
network to evaluate the effectiveness of the NTL in identifying influential nodes in dynamic
networks. Take the top-20 nodes ranked in each algorithm as the initial infection node, and
extract a snapshot from the Email-dnc network to analyze the information dissemination
based on the SIR model. These nodes, which only appear in the top-20 of each algorithm,
just reflect the differences in the centrality of the evaluation of different algorithms. Take
t = 100 to reach a steady state, perform 1000 independent experiments to get the average
value, and use the total number of infected nodes and restored nodes during this period
as the node’s spread influence. The image of the propagation influence F (t) obtained
by each algorithm over time is shown in Figure 5. According to the results of Table 3
and Figure 5, compared with other algorithms, the results of the top 20 nodes in the
NTL of the proposed algorithm have certain differences, and according to the analysis of
curve changes, it can be seen that these are only in the NTL when acting as the source
of infection. Compared with the different nodes in other algorithms, the emerging nodes
perform better and have a stronger appeal. It shows that the accuracy of the proposed
algorithm in identifying influential nodes is higher than other comparison algorithms.
Secondly, a good influential nodes identification algorithm should not only be robust to
the initial number of infected nodes, but also the network structure and infection rate.
In order to further compare the differences between the algorithms, the performance of
NTL and the other four algorithms under different infection rates were compared. By
comparing the hit rate of the top-10% nodes of different algorithms with the top-10%
nodes with the largest actual infection scale in the real SIR model, the performance of
the algorithm is judged. The hit rate HR is defined as:

HR =
|S ∩R|
|R|

(16)
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Figure 5. Variation of propagation influence F (t) of top-20 nodes selected
by each.

Table 3. Top-6 nodes in social network ranked by five algorithms

Method 1 2 3 4 5 6

NTL 25 13 15 30 35 8
NWI 25 13 15 30 35 8
TBC 25 31 6 30 27 13
TDC 15 25 13 30 35 34
TCC 25 8 30 49 35 53

Where S is the set of selected top-10% nodes, and R is the set of 10% nodes with the
most infection rate obtained by SIR. The higher the HR, the higher the algorithm hit rate
and the better the algorithm performance. Due to the variability of the dynamic network,
in order to accurately perceive the criticality of the identified nodes in the entire network,
randomly extract three time windows from the time window graph models of the two real
dynamic social networks and perform information propagation analysis, the HR results
obtained by each algorithm are shown in Figure 6. In addition, the top-6 nodes in the
ranking of influence obtained by each algorithm in the social network are shown in Table
3.

It can be seen from Table 3 that in a relatively small-scale dynamic network, the NTL
and NWI algorithms are consistent in the ranking results of node influence. Combining
Figure 6 and Table 3, it can be concluded that in small network- social networks, in most
cases, NTL and NWI can achieve consistent results, and the accuracy of identifying the
most influential nodes is higher than other algorithms. In a large network with 2000
nodes, it can be seen that the accuracy of the NWI has decreased. Compared with the
algorithm NTL proposed in this paper, it cannot well identify the influential nodes that
exert the advantages of propagation in each period. Therefore, overall, compared with
other algorithms, the influential nodes identified by NTL have more stable results and
higher accuracy when they act as the source of infection.
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Figure 6. Comparison of HR values when top-10% nodes act as the source
of infection in five algorithms.

(2)Analysis of the correlation between the sorting results and the true propagation
capacity. Use the Kendall’s Tau correlation coefficient to verify the effectiveness of the
proposed algorithm. Take any node in the network as the initial source of infection, define
the total number of infected nodes and recovered nodes in the network after the specified
time t = 10 as the actual infection capacity of the node, and take the average of 1000
experiments to get the actual ranking of nodes’influence in real networks. The correlation
analysis between the proposed method and the ranking results obtained by other methods
in Email-dnc and social network can obtain the correlation score between the centrality
methods and real communication ability. The higher the correlation score, the more
accurate the algorithm is to identify influential nodes in dynamic social networks. Table
4 shows the correlation results between the influential nodes selected by algorithms and
the actual influence in different networks. The correlation between the results of each
algorithm is shown in Figure 7, and the correlation between the comparison algorithms
and the actual influence is shown in Figure 8 (here only show the result in network Email-
dnc). Heat map of correlation between methods and actual influence.

The horizontal and vertical axes in Figure 7 represent the comparison algorithms. The
color represents the correlation with the true influence obtained by SIR. The lighter the
color, the higher the correlation. According to Figure 7, it can be found that in the
two networks, TDC, NWI, and NTL have a good correlation, while in the smaller social
network, TB has little correlation with other algorithms. However, due to the discovery
of the consistency of the concept of ‘bridging nodes’, the correlation between TB and
NTL is still higher than in other algorithms. This is because although bridging nodes
have advantages in spreading information between clusters, the number of bridging nodes
in the network is relatively small, and nodes occupying local topological advantages play
a key role in information dissemination in each cluster. Therefore, compared with other
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algorithms, the correlation between TB and SIR is low, which is shown in Figure 8 that
is, the correlation curve is more divergent. At the same time, the correlation between TC
and other algorithms is generally small. Combining with Figure 8, it is found that TC fails
in a network with a high degree of aggregation. Therefore, it is not accurate to measure
the importance of nodes in the entire dynamic network only by proximity centrality.
In addition, there is a positive correlation between all methods and actual influence.
The principle that the greater the’degree’, the more important the node is still valid in
dynamic networks, the more obvious the performance in smaller networks. However, when
the community structure is unbalanced, the top-ranked nodes may be concentrated in
the same community, leading to the limitation of information dissemination. Compared
with NWI, it can be seen that in a large-scale Email-dnc network, NTL has a greater
correlation with the actual influence of each node, achieving a result higher than NWI
by 7%. Combined with the above analysis, although NWI performs well in each network,
NTL performs better than NWI in larger networks and performs in the same way as
NWI in smaller networks, which shows that the key nodes identified by NTL It has
good information dissemination ability in the dynamic evolution of the entire network.
Therefore, the algorithm NTL proposed in this paper can better find the nodes that occupy
the advantage of information dissemination in the entire dynamic network structure.

Table 4. Comparison of Kendall’s Tau correlation coefficient of node rank-
ing obtained by each algorithm and SIR

Methods TB TC TDC NWI NTL

Email 0.83 0.53 0.89 0.86 0.93
Social network 0.51 0.68 0.93 0.85 0.84

Figure 7. Heat map of correlation between methods and actual influence.

Figure 8. Correlation analysis of various methods and actual influence in
Email-dnc.
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5. Running Time. The running time comparison with TB, TC, TDC, and NWI al-
gorithm is shown in Figure 9 (the processor is Intel(R) Core (TM) i7-5500U CPU, the
memory is 8G, and the system is win10). It can be seen from the figure that the efficiency
of NTL algorithm is second only to TDC algorithm. However, according to the above
analysis, the accuracy of the TDC in large-scale social networks is lower than that of the
proposed algorithm, and the running time of the NTL increases slowly with the increase
of the number of nodes, and the gap with TDC remains within 1 second. Therefore, it
achieves a balance between algorithm efficiency and accuracy, and is more suitable for
large-scale social networks.

Figure 9. Running time.

6. Conclusions. A social network is a large-scale and complex network that continues to
dynamically evolve. Traditional social network influential nodes identification methods are
mostly based on static network analysis, which is not suitable for real situations. In this
paper, we propose a method for identifying influential nodes in dynamic social networks
based on knowledge aggregation. It uses time window graphs model and time-aggregated
graph models to aggregate dynamic network topology information, which overcomes the
shortcomings of the traditional method of recalculating the centrality index of all nodes in
the network every time the network changes. Meanwhile, this method fully considers the
multi-dimensional aggregated information of the nodes in the network evolution process,
so that the identified influential nodes are more in line with the laws of the dynamic evolu-
tion of social networks over time, which is of great importance for network public opinion
control, epidemic prevention and control, and advertising and marketing. Important role.
From the simulation results, the proposed algorithm NTL has achieved a good balance
of computational complexity and ranking accuracy, and the results obtained are more ac-
curate and stable than TB, TC, TDC, and NWI, and are suitable for rapidly developing
large-scale dynamic social networks.However, the algorithm proposed in this paper has
no significant performance improvement on small-scale networks, and its performance is
consistent with that of the current optimal algorithm. Therefore, the algorithm proposed
in this paper still has a large room for improvement on small-scale networks, and it will
try in this direction in the future.

The research results show that the influence of nodes in dynamic social networks not
only depends on the number of contacts between node pairs in the tense but also on their
local influence in the topology and structural superiority. However, which of these three
factors plays a key role in the information transmission in the whole period still needs
to be further studied. We will further discuss the influence of these factors on the key
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node recognition algorithm in the future research process. In addition, when conducting
network public opinion and disease control, it is of more practical significance to predict
the key nodes in the next time period. The key nodes in the next time period can often
bring more valuable information, which is also worthy of further research.
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