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Abstract. : Modern rotating machinery is becoming increasingly sophisticated and
complex, making it difficult for manual Operation and Maintenance(O&M) methods to
detect abnormal conditions and determine the causes of failures of rotating machinery
and equipment in a timely manner. Data-driven intelligent O&M technology can estab-
lish the mapping relationship between equipment and operation status from large-scale
historical monitoring data. Therefore, a rotating machinery fault detection method based
on data mining technology is proposed. First, a sliding time window is used to divide the
historical data sequences, and a subset of the sequences is represented as a fault feature
vector according to the type of each sequence. The corresponding attribute values are
calculated and the cluster centroids are discovered using local density. An improved den-
sity peak clustering method is designed using a new labeling delivery method. Then, the
density peak clustering analysis is performed on the sample points in the healthy state in
order to construct the baseline health state matrix. Finally, a nonlinear mapping func-
tion is used to calculate the difference between the real-time failure modes and the healthy
baseline to quantitatively assess the operational status of the equipment. The experimen-
tal results show that the proposed fault detection method has high accuracy and stability
for a variety of common rotor system faults.
Keywords:Data mining; Density peak clustering; Rotating machinery; Fault detection;
Data-driven

1. Introduction. Rotating machinery fault diagnosis has been one of the important re-
search directions in the field of equipment condition monitoring and fault diagnosis. The
operating condition of rotating machinery directly affects the safety and economy of the
whole system. The development of rotating machinery fault monitoring and diagnosis
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methods has gone through the process from traditional regular maintenance to condi-
tion monitoring and fault diagnosis [1,2]. The traditional method exists diagnosis lag,
maintenance blind problem.

The emergence of condition monitoring and fault diagnosis technology has realized the
change from regular maintenance to condition monitoring and condition based mainte-
nance. Commonly used condition parameters are vibration, temperature, sound, current
and so on [3,4]. Early failure warning can be realized through feature extraction and pat-
tern recognition. Modern rotating machinery is becoming increasingly sophisticated and
complex, which makes it difficult for manual operation and maintenance methods to dis-
cover the abnormal conditions of rotating mechanical equipment and determine the cause
of failure in time [5]. Currently, intelligent diagnosis has become a development trend.
Machine learning methods are used to establish fault diagnosis and prediction models [6,
7]. At the same time, remote online monitoring is carried out by combining the technology
of the Internet of Things [8]. However, the challenges of rotating machinery fault diagnosis
include the high-dimensional complexity of state information, the difficulty of identifying
different fault mechanisms, and the improvement of the generalization performance of
diagnostic models [9].

The traditional way of judging through manual experience inevitably suffers from large
subjective differences and lagging diagnosis. Regular maintenance is also prone to over
or under maintenance. These have prompted the shift from periodic maintenance to con-
dition monitoring and fault diagnosis. Vibration, acoustic emission, and current signals
are widely used for condition monitoring [10, 11]. Through signal processing and fea-
ture extraction, sensitive parameters can be selected to build condition assessment and
fault diagnosis models. Commonly used features are time domain, frequency domain and
time-frequency domain features. Wavelet transform, fuzzy and other methods can also
be used to extract features. The high-dimensional complexity of the state, the difficulty
of identifying different fault mechanisms, and the enhancement of model robustness and
generalizability all require continuous research. Artificial Intelligence for IT Operations
(AIOps) is a technology that applies artificial intelligence and machine learning to IT
operations management [12]. AIOps collects, aggregates, and analyzes various types of
operations data through automation to realize intelligent monitoring, fault prediction,
abnormality diagnosis, problem location, and other functions of IT systems, networks,
and applications, so as to enhance and optimize the IT operations management process.
monitoring, fault prediction, abnormality diagnosis, problem location and other functions,
so as to enhance and optimize the IT operation and maintenance management process. In
the application of rotating machinery fault diagnosis, AIOps can collect and analyze the
massive mechanical operating parameters, alarm information, operation and maintenance
logs and other structured and unstructured data, and discover the hidden failure mode
[13]. Through machine learning and other technologies to establish complex fault diag-
nostic models, to achieve accurate identification and localization of fault types and root
causes. AIOps can predict the likelihood, time and severity of mechanical failures based
on big data analysis, to achieve the prediction and early warning of failures. Through
intelligent analysis, prediction, decision-making and other means, AIOps can significantly
improve the automation and intelligence level of rotating machinery fault diagnosis and
operation and maintenance, which has important research value.

The most commonly used machine learning techniques in AIOps are data mining al-
gorithms such as k -mean clustering [14]. Clustering techniques are utilized to provide
explanatory fault detection and enhance the interpretability of the detection process for
engineers to parse and apply. As an advanced clustering algorithm, Density Peak Cluster-
ing (DPC) [15] can automatically cluster a large number of event logs and system faults
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in an unsupervised manner, discover the intrinsic connection between events and faults,
and categorize them into different types of faults.DPC helps AIOps to extract knowledge
and insights from complex O&M data automatically, so that O&M data can be auto-
matically extracted and analyzed. and insights to make O&M decisions more intelligent,
which deserves further research. Therefore, the research objective of this work is to utilize
DPC to perform unsupervised clustering on the operation data of rotating machinery to
automatically identify different types of fault states. The intrinsic connection between
the monitored data is analyzed by clustering to realize AIOps for rotating machinery.

1.1. Related Work. Currently, research on fault detection in rotating machinery can
be divided into the following categories.

(1) Fault detection based on physical model. This kind of method realizes fault detec-
tion by establishing a physical model of rotating machinery, analyzing its dynamic char-
acteristics and designing sensitive parameters. Xu et al. [16] established a dynamic model
of bearings and designed fault characteristic parameters based on differential rotational
speed, which combined with the noise processing technology to realize the identification of
various types of faults of bearings. Sun et al. [17] established a dynamic model of cracked
rotor through theoretical analysis and simulation, and studied the natural frequency and
stress distribution of the rotor. By establishing a physical model to analyze the influence
of faults on dynamic parameters, it lays a theoretical foundation for the fault monitoring
based on physical model, but the model simplification is still a difficult point in practical
application. (2) Fault detection based on signal processing. This kind of method needs
to analyze the signals of vibration, acoustic emission, current, etc., and extract the fault
features through signal processing method for pattern recognition. Zhao and Zhang [18]
proposed a new time-frequency decomposition method, which is applied to the condi-
tion monitoring of low-speed spiral reducer, and realized the effective detection of various
problems, including tooth mating faults, tooth wear, etc. However, the signal process-
ing process relies too much on feature selection and requires manual extraction of design
fault-related features, which relies on the experience of experts, and there are difficulties
in selecting features for different fault scenarios. For example, the selection of wavelet
basis function, the number of modes of modal decomposition and other parameters have
a great influence on the results, and need to be repeatedly tested.

(3) Data-driven fault detection. This type of method uses machine learning and other
algorithms to learn fault patterns directly from operation and maintenance data to con-
struct a detection model. Ye et al. [19] proposed a learning framework based on 1D
convolutional neural network, which realizes the intelligent detection of bearing faults
and improves the accuracy of fault diagnosis. Different from the neural network model,
using the clustering results to classify the operational data is beneficial to discover the
intrinsic patterns of the data and realize the fault detection. Typical clustering algorithms
include k-means clustering, Gaussian mixture model, etc., which can realize unsupervised
clustering of mechanical states. Dreher et al. [20] used k-means clustering to mine the
state patterns of rotor machinery to detect bearing faults. As an advanced clustering
algorithm, DPC can automatically cluster a large number of event logs and system faults
in an unsupervised manner [21, 22], discovering the intrinsic connection between events
and faults and categorizing them into different fault types.

1.2. Motivation and contribution. Due to the large uncertainty of the real-time state
of rotating machinery under dynamic working conditions, the fault diagnosis method
based on clustering algorithm needs to calculate the distance of all sample points in order
to obtain the abnormality of the sample points.
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In addition, the interpretability of fault diagnosis methods based on clustering algo-
rithms still needs to be explored. Therefore, to address the problem of uncertainty in
the real-time health state of rotating machinery under dynamic operating conditions, this
work proposes a fault detection method based on DPC and Nonlinear Mapping Function
(NMF).

The main innovations and contributions of this work include:
(1) Aiming at the problem of misclassification of clusters easily caused by manually

selecting cluster centroids in the traditional DPCA algorithm, an Improved Density Peak
Clustering (IDPC) method is designed by using a new labeling delivery method.

(2) Based on IDPC clustering to obtain representative sample points of large-scale fault
sample points, it can effectively adapt to the efficient analysis of different types of rotating
machinery AIOps systems.

(3) NMF is designed to calculate the real-time abnormality, thus realizing the quanti-
tative assessment of equipment health status. Compared with existing similarity metrics,
NMF has better interpretability and accuracy. In addition, the abnormality calculation
of sample points avoids the inefficiency caused by the distance calculation of all sample
points.

2. Improved peak density clustering.

2.1. Density-based clustering algorithm. Clustering algorithms are both classical
and extremely important as an unsupervised learning method, especially in the current
complex real-world network environment. Clustering algorithms are more suitable as a
current technique for anomalous traffic detection since the network environment is not
capable of obtaining class labeling of newly collected traffic on a large scale with a high
degree of accuracy and efficiency. Compared with other clustering algorithms, Density-
based Spatial Clustering of Applications with Noise (DBSCAN) algorithm [23, 24] starts
from the key of data objects and clusters them according to their density correlation,
which can find out any clusters in noisy spatial data. Find out arbitrary clusters, further
study the connectability between different data objects and keep expanding, finally get
the clustering result. As a classical algorithm, different from divisional clustering and
hierarchical clustering algorithms, DBSCAN can find out the point with high density and
then define the high density region around the point into clusters. The related definition
concepts of DBSCAN algorithm are as follows:

1) Neighborhood. The circle represented by a data point as the center and e as the
radius is defined as the neighborhood, that is, the set of data objects whose Euclidean
distance from other points is less than e. The density value of the data point is the number
of data points in the circle.

2) Core points. Given a neighborhood sample threshold Pmin, the center point of the
circle which indicates that the number of data points in the circle is greater than Pmin is
called a high density point or core point, otherwise it is called a low density point.

3) Density Direct. A peripheral data point m is said to be density-directed by a core
data point n if the peripheral data point m is in the neighborhood of the core data point
n. In other words, the high-density points in the neighborhood of the high-density point
are connected, and so on, and then all such points are connected. If a low-density point is
within the neighborhood of a high-density point, connecting it to the nearest high-density
point is called a boundary point.

4) Density reachable. A data point k is said to be density reachable from data point
n if there are the same number of sub-data points k in the peripheral data point m and
core data point n.
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5) Density connected. A peripheral data point m is said to be density connected to
a core data point n if there exists a peripheral data point m that is reachable by the
density of sub-data point k, and a core data point n that is also reachable by the density
of sub-data point k.

The concepts related to the DBSCAN algorithm are shown in Figure 1. In this case,
the dotted lines indicate the neighborhoods of the preset data points N1, N2, N3, N4, N5.
The Pmin indicates that there are 3 additional data points in the neighborhood, and it
can be seen that there are 4 data points in each circle. Data point N2 is directly accessible
from data point N1 density, data point N3 is accessible from data point N1 density, and
data point N6 is connected to data point N1 density.

N1

N2

N3
N4

N5

N6

Figure 1. Schematic conceptualization of DBSCAN

2.2. Peak density clustering algorithm. Clustering algorithms mainly classify the
points with closer Euclidean distance into one class cluster and the points with farther
Euclidean distance into other class clusters. Although there are many types of clustering
algorithms, the definition of clusters in clustering still has not been standardized.

The DPC algorithm is a novel density-based clustering algorithm [25], introduced in
2014. The algorithm first determines the centroid of the cluster, and then adds the rest
of the data points to the corresponding class clusters. The DPCA algorithm selects the
centroid of the cluster under 2 conditions: the first condition is that the selected centroid
of the cluster is locally the peak density point within the neighborhood, i.e., the maximum
density value; the second condition is that this centroid of the cluster is far away from
the Euclidean distances of all other similarly localized data points with larger densities.
The DPCA algorithm mainly The main purpose of DPCA algorithm is to calculate the
relative distance δ and local density ρ of all sample data points, and then construct the
corresponding decision diagram based on these two attribute values. Then, the data
points with larger values of relative distance δ and local density ρ are selected as cluster
centers. Other data points are added to the cluster where the data point with the smallest
value δ of relative distance is located according to the decreasing value of local density ρ
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from large to small. Where the relative distance δi of any data point i is defined as:

δi = min
j:ρj>ρi

(dij) (1)

where dij is the Euclidean distance of any data point i from another data point j.
If this data point i is the highest density in the whole globe, its distance is defined:

δi = max
j

(dij) (2)

The Euclidean distance of this data point i is equal to the maximum distance of other
data points from this point. The local density ρi of any data point i is defined as:

ρi =
∑
i ̸=j

x(dij − dc), x(X) =

{
1, X ≥ 0
0, X < 0 (3)

where dc is the cutoff distance.
Equation (3) is used under the condition that the local density is more discriminative

when the data volume is large. If the amount of data is small, it is necessary to use the
Gaussian function to find the local density value ρi of data point i, ρi is the sum of the
weighted values of the Euclidean distances of data points in the neighborhood of this data
point i to solve the problem of low distinction of local density.

ρi =
∑
j

exp(−
d2ij
d2c

) (4)

2.3. IDPC. This work proposes IDPC this algorithm consists of 2 main steps: first,
identifying the 2 attribute values of each data point in the computed dataset; and second,
constructing a decision map and starting clustering. Cluster centers are identified among
the data points that are denser than the neighboring data points.

IDPC uses 2 different metrics to identify the cluster centers and then clusters the data
points using the label propagation distance method. The steps of IDPC are as follows:

Step 1: Enter the data set D and truncate the distance dc ;
Step 2: Discover the cluster centroids and calculate the point distance matrix using

equations (1) and (2). Calculate the local density of points using Equation (3) and
Equation (4), construct a decision diagram and select the cluster centroids;

Step 3: Form clusters, assign the labels of the cluster center points to the nearest
neighbor points for clustering based on neighborhood distance matrix and density, and
assign each remaining point to the nearest cluster center;

Step 4: Output the clustering result cluster C .
The corresponding data is computed in Step 2, which is consistent with the traditional

DPC algorithm. The difference is that a new label passing method is proposed in Step 2,
which finally forms clusters based on the processed cluster centroids, assigns a different
label to each cluster centroid, and each cluster centroid passes its label to its nearest
neighbor. For a data point i which does not have any label or processed, if its local
density value ρi is less than ρj, then the data point gets the label of the fetched data
point j. It can be shown that the time complexity of the IDPC algorithm is O(N2),
where N is the number of sample data points in D.

Finally, the rules for judging the anomalous states in the dataset, in this work, the
anomalous state samples are defined to satisfy the following conditions: local density
ρi < Pmin, relative distance δi < δr, where Pmin is the local density threshold.

Pmin =
1

N

N∑
i=1

ρi − γρ (5)
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The relative distance threshold δr is defined as follow:

δτ =
1

N

N∑
i=1

δi − γδ (6)

where γρ and γδ are empirical parameters.

3. IDPC-NMF based rotating machinery fault detection.

3.1. Subset partitioning and vectorized representation. In order to meet the re-
quirements of real-time anomaly detection, data sequences over a period of time need to
be analyzed. The sliding window mechanism is a processing method for data sequences,
which is able to divide the full amount of sequence data according to the generation time
of the sequence or the number of elements. Therefore, this work is based on sliding time
windows to segment historical data sequences. An example of the three sequence subsets
is shown in Figure 2. The attributes of the sliding time window include the length of

Figure 2. Examples of three subsets of sequences

the window and the step size, the length of the window indicates the time span of each
division, and the step size indicates the time interval of each slide. Generally speaking,
the larger the length of the time window, the more information it covers, and the better
the effect of anomaly detection, but for the fault detection task, a time window with a
large span may lead to a reduction in the real-time and accuracy of detection, so the
window length needs to be determined according to the actual situation. For the step
length attribute, it is usually set to be smaller than the window length to obtain a larger
subset of sequences and ensure that each sequence is classified into the corresponding
fault subset.

After completing the division of the subset of sequences, a vectorized representation of
them is performed. The number of different types of sequences is vectorized to represent
them as eigenvalues.

3.2. IDPC-based benchmark matrix under different operating conditions. The
variation of fault characteristics of rotating machinery under different operating conditions
is analyzed. Assuming that there exists an optimal value of the eigenvectors of the faults
when the equipment operates normally under a certain working condition, at which time
the equipment state is the healthiest, then the health state of the equipment corresponds
to a set of optimal value eigenvectors under the condition of multiple working conditions.
In this work, we refer to the concept of health baseline and define the baseline health state
matrix to express the mode of the equipment state under multiple operating conditions.

It is assumed that there are m operating conditions characteristics of the rotating
machinery during operation. Under a certain condition characteristic c, the health baseline
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of the equipment is Xc = (xc
1, x

c
2, . . . , x

c
k), c = 1, 2, . . . ,m, where xc

i denote the optimal
value of the i-th characteristic under the condition characteristic c. The baseline health
state matrix can be expressed as follows The baseline health state matrix Dm×k can be
expressed as follows:

Dm×k =


X1

X2

...
Xm

 =


x1 x1 ... x1

k

x2 x2 ... x2
k

... ... ... ...
xm xm

2 ... xm
k

 (7)

This matrix stores a collection of health baseline vectors of the equipment under different
operating conditions, so the baseline health state matrix is actually a collection of repre-
sentative fault feature vectors. In this work, IDPC is used to cluster the sample points
under health states.

IDPC determines the initial clustering center by calculating the sample attribute density
and distance values [26], and then determines the category based on the distance between
the sample points and the center point. A DPC decision map is generated from the density
and distance two-dimensional coordinate graph to select the clustering center. Let the
sample X contains C = {C1, C2, . . . , Ck} categorys, that satisfies the conditions: k ≤ N ,
N is the total number of sample sets) and X = C1 ∪ C2 ∪ . . . ∪ Ck. The distance rij
between any two sample points xi and xj is shown as follow:

rij =

√
|xi1 − xj1|2 + |xi2 − xj2|2 + · · ·+ |xin − xjn|2 (8)

where n denotes the dimension.
The density xi of the point among the N points ρi is shown as follow:

ρi =
∑

j
χ(rij − rc) (9)

where rc is the distance threshold and the kernel function χ(x) is shown as follow:

χ(x) =

{
1, x < 0
0, x ≥ 0

(10)

Since χ(x) is not derivable, a Gaussian kernel function is often used as a replacement.

ρi =
∑

j
e
−

r2ij

2r2c (11)

The minimum distance δi of the point xi is calculated as follow:

δi =

{
minj(rij), if j s.t. ρj > ρi
maxj(rij), otherwise

(12)

Calculate ρi and δi for N sample points and generate a decision map using both as
horizontal and vertical axis coordinates, multiplying the density and distance values for
all points.

γi = ρi · δi (13)

Then all the sample points of ρi, δi and γi are arranged in descending order, and the
point that is larger than all three points is taken as the center of clustering. Finally, for
the non-center points, the distance value from the point to the center is used to identify
the category.

The cluster centers obtained by the IDPC algorithm have the characteristics of maxi-
mum local density and maximum distance between cluster centers, so the IDPC clustering
can learn the representative fault feature vectors of the health states from the positive
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samples. Each category represents different working conditions, the category cluster cen-
ter represents the health baseline of the category, and the set of all cluster center vectors
constitutes the baseline health state matrix.

First, the local density rho of each sample is calculated based on k-nearest neighbors,
and the distance delta of each sample is calculated. Then, find the one with larger rho
and delta at the same time as the clustering center. The IDPC-based mechanical failure
benchmark matrix construction method is shown in Algorithm 1.

Algorithm 1 IDPC-based Mechanical Failure Benchmark Matrix

1: # Import the required libraries
2: import numpy as np

3: from sklearn.neighbors import NearestNeighbors

4: # Input
5: X = mechanical sensor data

6: # Peak density clustering
7: # 1. Calculate the local density ρ for each sample
8: knn = NearestNeighbors(n neighbors=5)

9: knn.fit(X)

10: distances, = knn.kneighbors(X)

11: ρ = np.sum(np.exp(−distances), axis = 1)
12: # 2. Calculate the delta for each sample
13: δ = np.min(distances, axis = 1)
14: #3. find the peak density (ρ and δ both larger) as the center of clustering
15: cluster centers = []

16: for i in range(len(X)) do
17: if ρ[i] == np.max(ρ) and δ[i] == np.max(δ) then
18: cluster centers.append(i)

19: end if
20: end for
21: # 4. Assign other samples to clusters where the nearest clustering center is located
22: clusters = [[] for in range(len(cluster centers))]

23: for i in range(len(X)) do
24: if i not in cluster centers then
25: closest = np.argmin(np.sqrt((X[i] - X[cluster centers])**2))

26: clusters[closest].append(i)

27: end if
28: end for
29: # Perform troubleshooting
30: faulty clusters = []

31: for c in clusters do
32: if determines that c represents a fault state then
33: faulty clusters.append(c)

34: end if
35: end for
36: print("Faulty benchmark matrix:", faulty clusters)

3.3. Nonlinear mapping function. The abnormality of a device can be obtained by
calculating the similarity between the sample points and the healthy baseline. However,
most of the traditional similarity measures use various distance measures between vectors
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[27], which do not take into account the weighting factors of different features or the effect
of different variations of the features on the anomaly metric value.

Thus it does not accurately reflect the degree of abnormality of the current state of
the device compared to the healthy state. To address the above problems, this work
proposes a weighted nonlinear mapping function to quantitatively assess the degree of
abnormality of a device. The feature weights of the sample points are designed. Among
the multidimensional features of the sample points, the changes of different features have
different impacts on the health state of the equipment, so it is necessary to weight the
original sample points, i.e., to give more weight to the fault features that have a greater
impact on the health state of the equipment. The formula for the designed combined
weight wi is as follows:

wi =
θ · ζi
k∑

i=1

ζi

+
(1− θ) ηi

k∑
i=1

ηi

(14)

ζ =
x̄i

σi

(15)

ηi =
Nc

x′
i

(16)

where σi is the standard deviation of the feature, x̄i is the mean value of the feature, k
is the feature dimension, Nc is the number of positive sample points under the working
condition characteristic c, and θ is the scale parameter.

The feature weights are composed of two parts, including the distribution weights and
importance weights of the features. The distribution weight is determined by the inverse
coefficient of variation of the feature values, which is defined here as the inverse of the co-
efficient of variation. In historical data, if the distribution of feature values in a dimension
is more concentrated, it has higher weight in anomaly detection. The importance weight
of the feature is determined by the mean value of the fault importance of the sample
points to be tested. In practice, the proportion parameter can be used to adjust the ratio
of the two to obtain better model performance.

Let xi denote the i-th eigenvalue of the sample to be tested, xc
i denote the i-th eigenvalue

of the health baseline, and wi denote the combination weight of the i-th eigenvalue, then
the abnormality δcn of the sample point to be tested under the condition of working
condition characteristic c is calculated as follows:

δcn =
k∑

i=1

wi · ReLU(xi′ − xc
i) (17)

where ReLU denotes the linear correction function.
The greater the abnormality of the sample point to be tested, the worse the health

status of the equipment.

4. Experimental results and analysis.

4.1. Experimental environment and experimental dataset. The experimental hard-
ware environment is: Intel Core i5 2.2GHz processor, 6G RAM, 400G hard disk, GTX1060
discrete graphics card. The experimental software environment is: Windows 7 operating
system, Matlab 2012 (R2012a) simulation software.

The Society for Machinery Failure Prevention Technology (MFPT) dataset was selected
for the failure detection experiments of rotating machinery. The MFPT dataset, released
in 2022, contains vibration signals of many types of bearings under different operating
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conditions, with a total data volume of more than 150GB, and more than 20 types of
bearings. The main parameters of the MFPT dataset are shown in Table 1.

4.2. Clustering performance validation. The performance of IDPC algorithm is com-
pared with k -means algorithm [28] and DBSCAN algorithm [29], which are evaluated in
terms of four performance metrics, namely, running time, completeness, homogeneity, and
accuracy, respectively, as shown in Table 2. The IDPC algorithm and k -means algorithm
are set to set the number of clustering centers to 25, and the default parameters are
selected for DBSCAN algorithm.

Table 1. Main parameters of the MFPT dataset.

Parameters Clarification
Name MFPT Bearing Data Set

Release time 2022
Data content 150GB vibration signals of different types of bearings
Bearing type More than 20 types including ball bearings, roller bearings, etc.
Failure mode Normal, inner ring failure outer ring failure, etc.
Transducers Vibration acceleration sensors

Sampling frequency 96 kHz
Speed range 600-6000 RPM
Loading force 0-8000 pound.

Data set format MAT files

Table 2. Performance Comparison of Different Clustering Algorithms.

Performance indicators k-means DBSCAN IDPC
Running time/s 3.44 5.79 3.84
Completeness 0.6 0.631 0.604
Homogeneity 0.779 0.775 0.783
Accuracy 0.81198 0.79016 0.82013

It can be seen that in terms of running time, the k -means algorithm takes the shortest
time of 3.44 s, the IDPC algorithm is second only to it, while DBSCAN has a longer
running time. In terms of completeness higher values are better, DBSCAN algorithm
has the highest value, IDPC algorithm remains second and k -means algorithm has the
lowest value. In terms of homogeneity, the IDPCA algorithm has the highest value, the
k -means algorithm is second and the DBSCAN algorithm has the lowest value. In terms of
clustering accuracy, the IDPC algorithm has the highest accuracy, the k -means algorithm
has the second highest and the DBSCAN algorithm has the lowest.

4.3. Comparison of fault detection results. The sequences in the healthy state are
first divided according to a window of fixed length of time.

In order to simulate a multi-operating condition environment, each sample point was
collected from two operating conditions of the equipment, idle or busy, and the length of
the time window was set to be 2 hours with a step size of 1.5 hours. After data preprocess-
ing, a total of 144 idle-time working condition sample points and 96 busy-time working
condition sample points were obtained. Then the maximum-minimum normalization was
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applied to each dimension of each sample point to eliminate the influence of different
orders of magnitude of features in each dimension on the clustering results [30].

x′
i =

xi −min (xi)

max (xi)−min (xi)
, i = 1, 2, · · · , k (18)

IDPC clustering is performed on the normalized sample points. The Gaussian kernel
function is used in this experiment to define the local density of a point. The truncation
distance was set to be the top 2% after sorting the distances between all sample points
in ascending order. The results of the clustering analysis are shown in Figure 3. The
horizontal coordinates in the IDPC clustering decision diagram represent the local density
of each sample point, and the vertical coordinates represent the cluster center distance of
each sample point.

From the decision diagram, it can be intuitively found that the IDPC clustering can
accurately divide all sample points into two classes, and the two points in the upper right
corner have higher local density and larger cluster center distance, thus representing the
healthy baseline of the alarm features under the two kinds of working conditions. Then
the weights of the feature combinations under the two working conditions are calculated
separately, and here the scale parameter is set to θ = 0.3, and the results are shown in
Table 3.

Figure 3. Clustering decision diagram for IDPC

Table 3. Health baseline and feature weights for two operating conditions.

Working condition Health baseline
Combination weights

(distribution weights + importance weights)
Idle-time 0.24 0.33+0.67
Busy-time 0.59 0.24+0.76
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This experiment validates the effectiveness of IDPC-NMF. Firstly, 12 sample points
of the device under two working conditions are collected for the experiment, and each
working condition contains two anomaly sample points. IDPC-NMF, k -means-NMF and
IDPC are used to calculate the abnormality, respectively. The experimental results are
shown in Figure 4 From the experimental results, it can be seen that the IDPC-NMF

(a) Idle-time working conditions

(b) Busy-time working conditions

Figure 4. Anomalies of different methods under two operating conditions

proposed in this work is able to detect the abnormal sample points more obviously under
the two working conditions, i.e., sample point 3 and sample point 8 under the idle-time
working condition and sample point 5 and sample point 10 under the busy time working
condition, which show a more obvious increase in the degree of abnormality. However,
non-detection and misidentification occurred when using k -means-NMF and IDPC, which
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is due to the fact that IDPC-NMF is able to attenuate unimportant feature variations
and increase the effect of variations in important features on the abnormality.

5. Conclusion. Aiming at the uncertainty problem of real-time health state of rotat-
ing machinery under dynamic working conditions, this work proposes a fault detection
method based on DPC-NMF. A new label passing method is used to design the IDPC,
which solves the problem of manually selecting the cluster centroids in the traditional
DPCA algorithm that is prone to misclassification of clusters. Based on IDPC cluster-
ing to obtain representative sample points of large-scale fault sample points, it can be
effectively adapted to analyze different types of rotating machinery AIOps systems with
high efficiency. NMF is designed to calculate the real-time abnormality so as to realize
the quantitative assessment of equipment health status. The abnormality calculation of
sample points avoids the inefficiency caused by the distance calculation for all sample
points. Experimental results show that the proposed fault detection method has high
accuracy and stability for a variety of common rotor system faults. However, NMF is
usually more complex than linear functions, and the computational cost is usually higher
than linear functions, requiring more computational resources and time. Further research
will be conducted on how to reduce the complexity of NMF.
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