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Abstract. In recent years, the power industry is facing more and more new cyber
threats, with the Ukrainian power grid being attacked twice, triggering large-scale black-
outs, and the Iranian nuclear power being attacked by virus voltage. Therefore, realizing
intelligent prediction and data service optimization of complex power grid has remark-
able positive significance. In this paper, we combine narrow-band filter detection method,
adaptive learning algorithm and piecewise linear regression analysis technique to build
the model of power grids. Then according to the characteristic parameters of the grid,
combining with the link prediction algorithm and the optimized Dijkstra algorithm, an op-
timization method of the grid characteristic model is proposed considering outliers of the
reconstructed network, so as to better provide instructive suggestions for the overall net-
work restoration. Then, this paper analyzes some algorithms, such as the classical link
prediction algorithm, the anomalous edge link prediction algorithm and anomaly-based
grid intelligent prediction algorithm. Not only the multi-objective swarm optimization
algorithm but the anomalous link prediction swarm intelligent optimization algorithm is
proposed to solve the grid model in this article. By using the SIOA-ALP anomaly link
prediction swarm intelligent optimization algorithm and other benchmark social network
opinion propagation control methods, the simulation experiment of topological power grid
anomaly link prediction is realized. Comparing the experimental results under different
data sets, and supplemented with the statistical checkout, advantages of the model and
algorithm given in the paper are fully reflected, which can provide a better intelligent
prediction and data service optimization scheme for complex large-scale power grid. At
the end of this paper, the relevant research directions in the future are prospected and
predicted.
Keywords: bee colony algorithm; power grid intelligent prediction; data service; im-
proved Dijkstra algorithm; link prediction

1. Introduction. Traditional security products, such as firewalls, IPS, vulnerability
scan, etc., perform attack identification and protection based on signed certificates and
static rules [1, 2]. Digital grid is a new energy ecosystem formed by the core driving force of
new generation digital techniques. Data becomes a significant production factor, modern
electric energy network and advanced information network become the foundation, contin-
uously improving the extent of digital intelligent network construction through the deep
integration of digital technology with operation and management of energy corporations.
Flexibility, openness, interactivity, economy and sharing are the characteristics, making
the grid more intelligent, safe, reliable, green, and efficient [3, 4]. The digital power grid is
similar to the digital twin manufacturing, which is essentially a continuous optimization
system of the whole life cycle of the complex virtual reality integrated grid. The digital
grid is also based on a unified digital grid model, which enables the collection and analysis
of various data from the physical power grid through connection channels such as the data
network/Internet of things and the like, and interacts with people through applications
such as grid management platforms, thus realizing entire life cycle optimizations, such as
projecting, design, and construction until finishing the operation [5, 6].

Some scholars have considered the voltage regulation of distribution grid to solve the
overvoltage problem, but this method may increase the grid pressure through excessive
operation and high loss of grid equipment [7, 8, 9]. On the basis of grid voltage analysis,
Xie et al. [10] used the intelligence information from security manufacturers to correlate
the characteristics and influence scope of the grid threat, to concentrate the superior re-
sources to take treatment measures to deal with those critical grid threats in a timely
manner, and to carry out early warning for the grid voltage events with higher accuracy
and threat level, to realize automatic strategy linkage, and further improve the efficiency
of emergency response treatment. Therefore, in order to make grid voltage obtain overall
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improvement, many different optimization objectives are able to be taken into considera-
tion and the problem can be regarded as the best voltage regulation issue [11] . Optimal
regulation schemes based on optimization methods have been proposed to solve distribu-
tion networks, where most of the reactive power capabilities are combined with network
structures, including disconnecting switches and other regulators to optimize the grid
voltage. Srivastava et al. [12] proposed to redistribute reactive power with grid units to
minimize grid voltage loss.

In addition, some scholars have established several optimization objectives with the
aim of minimizing grid power [13, 14, 15]. To seek better efficiency and accuracy which
belong to the power grid voltage optimization, existing grid optimization methods usually
contain multiple objectives, so the above problem can be transformed into a simplified
two-objective optimal voltage regulation issue. Gao [16] considers that the classical op-
timal grid regulation scheme has the problem of high time complexity, and carries out
grid voltage optimization based on quasi-linear real-time optimal algorithm. Other schol-
ars used dynamic detection technologies. For instance, using deep learning and machine
learning to construct the framework of grid voltage threat detection technology [17, 18],
while Sheng et al. [19] developed a layering electrical control system for grid parallel co-
ordination. Some scholars have proposed a meta-heuristic technique obtain the optimal
solution of voltage regulation issue. For example, some scholars used fuzzy differential
evolutionary algorithm to solve the above problem [20, 21], and some scholars have also
analyzed the influence of parameters such as the strength of grid topological coupling
on grid stability [22, 23, 24, 25]. In this study, subspace reconstruction and availability
analysis is adopted to construct the complex network model of the grid, and a predic-
tion algorithm is designed for the grid link network. Then the method is improved by
combining the anomaly value and the improved Dijkstra algorithm, and get the solution
of the model with the improved bee colony algorithm. That is getting more useful data
service when facing the complex multi-network center environment of the grid, to realize
the automatic construction, rapid scheduling, intelligent dispatching and joint utilization
and version release management among service interfaces for large-scale heterogeneous
services of digital power grid, and ensure high availability and high concurrency of the
grid service. It can greatly raise physical resource utilization, save hardware cost, de-
velopment cost, operation and maintenance cost, and improve service release efficiency.
The following sentences describe other parts of this article. The second part summarizes
the theoretical framework; the third part parents the design framework which describes
the algorithm; in the fourth part, the experimental results would be given; finally, the
conclusions and prospectives are given in the fifth part.

2. Model construction.

2.1. Construction of the grid model. In this study, a complex network approach
is used to implement modeling of the power grid, with reference to the literature [26,
27, 28], using a graph G = (V,E) to present the grid model, assuming that the edge
vector of the circuit node data distribution is (u, v) ∈ E. At the terminal of electronic
circuit information transmission, a narrowband filter detection method is used for adaptive
detection of electronic circuit nodes, combined with a matched filter detector for adaptive
filtering, an adaptive learning algorithm is used for distributed feature reconstruction of
electronic circuit nodes, segmented linear regression analysis technique can be used to
build a statistical analysis model containing data of electronic circuit nodes. We set the
reference variable of circuit fault sampling as x′(t) and the template variable as s′(t) under
the big data fusion mode, and adopt the group detection method to obtain the parameter
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estimates, which is shown in Equation (1).{
x′(t) = x(t) ∗ hw(t)
s′(t) = s(t) ∗ hw(t)

0 ≤ t ≤ T (1)

The load information flow of the electronic circuit fault point is extracted, and an
envelope contour detection method is adopted to for sampling and adaptive modulation
of the electronic circuit fault point to obtain the modulated variable output, as shown in
Equation (2).

d(t) = a0 (x
′(t) + s′(t)) (2)

In addition, set S0(t) = a0δ(t), which indicates the existence of the finite set of vectors
in the connected graph of the electronic circuit fault point distribution. Then we use
the adaptive feature estimation of the electronic circuit fault point to obtain the output
signal feature quantity, S(t), and the multipath delay characteristic distribution is shown
in Equation (3).

S(t) = a0

N∑
i=1

aiδ (t− τi) e
jwet (3)

The wide time domain window Sr(t) for constructing the characteristic distribution of
fault points in electronic circuits is shown in Equation (4).

Sr(t) = S(t) ∗ h(t) + ns(t) (4)

Where, ns(t) is the spectral noise on the time axis. Then we construct the statistical
sequence distribution model of electronic circuit fault points, and use the big data mining
method for the collection of electronic circuit fault point information, which is tenable
when Equation (5) is satisfied.{

1, sgn (|z(k)|2 −RMDMMA(k)) = sgn (|z(k)|2 −R)
0, sgn (|z(k)|2 −RMDMMA(k)) ̸= sgn (|z(k)|2 −R)

(5)

According to the references [29, 30], apply doppler suppression to p(−t), use correla-
tion spectrum feature detection method for the acquisition of electronic circuit fault point
anomaly data, match the filtering of the collected electronic circuit fault point information
feature quantities, and sample the features of fault point data to construct a fault distri-
bution data set based on the filtering detection results. In addition, our research considers
the grid mixed integer nonlinear optimization problem under the isolated switch. We set
the isolated regulator position as a discrete control variable, and the Pareto front solution
which belongs to this Binocular optimization issue can be obtained. Then, X(i, j) and
Y (i, j) can be shown as the coefficients calculated by Equation (6–7), while the grid power
flow can be expressed by Equation (8).

f (w1, w2) = w1 ∗
∑
∆t

(t−∆t) + w2 ∗∆C(t) (6)

{X(i, j), Y (i, j)} = [R(i, j)/(V (t, i) ∗ V (t, j))] ∗ {cos(i, j), sin(i, j)} ∗∆t (7)

{O(t, i), L(t, i)} = V (t, i)∗∆t∗

{∑
i,j

V (t, j) ∗ {X(i, j), Y (i, j)},
∑
i,j

V (t, j) ∗ {X(i, j), Y (i, j)}

}
(8)

In addition, the voltage magnitude V (t, s) can be constructed from the grid voltage
magnitude V (t, h) shown in Equation (9) for the isolation switch, which indirectly makes
the distribution network in a limited situation of the voltage stability. And as shown in
the literature [12], the grid voltage deviation has a strong dependence on the network
stability. Finally, the reactive power capability and the operating range of the disconnect
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switches are introduced, in which Q(t, n) and Q(t, x) are some corresponding limit values,
which can be obtained by Equation (10).

V (t, s) = V (t, h)

/[∏(
ef(α+β)

)2/∑
ef(α+β)

]
(9)

{L(t, n), L(t, x)} = ±
√

(S(i) +O(t, d)) ∗ (S(i)−O(t, d)) (10)

where S(i) describes the rated power which belongs to the grid at the ith panel point.
The computational complicacy of the classical optimization issue has a close relationship
with the grid topology, hence this optimal operation which belongs to the grid cannot
be guaranteed. In contrast, the distribution system determines the time frame of the
planning stage, using the selected disconnect switches with update rules as inputs for
reactive power allocation.

2.2. Model Optimization Based on the Grid Characteristic Parameters. The
goal of the grid prediction and governance is that in the state of large-scale network failure,
the powered generating units can be supplied with the shortest path to the candidate
restoring units prioritized by their anomaly degree, thus rebuilding the system grid and
accelerating the system recovery process. After that, the link anomaly degree is used
as a criterion to sequentially restore the candidate restoring lines around the recovered
ones [31, 32, 33]. Therefore, the link prediction method in complex networks can be
applied as a reconfiguration indicator for screening important nodes and critical lines to
provide guidance for determining the reconfigured network. The substance for applying
link prediction algorithms and reconfiguring this power system skeleton network is to
calculate the restoration sequence of actual generator power nodes and achieve power
supply to all lost units in the network by some link prediction method after a large-scale
power outage, and to lay the foundation for the restoration in the next path [34, 35, 36, 37].
In this study, this link prediction algorithm which owns strong prediction precision can
be used to obtain the ranking score RSe of each edge e, i.e., the anomaly degree, and
then calculate the anomaly degree RSx of all power nodes to be restored and prioritize
the power nodes with higher anomaly degree in the restoration graph. After determining
the recovery order of power nodes, the shortest path from the power node to be recovered
to other charged power nodes is calculated using the improved Dijkstra algorithm (as
shown in Algorithm 1) [38], from which the connected power node skeleton graph can
be obtained; after the skeleton network reconstruction is completed, the paths around
the generator power supply are recovered in order from the highest to the lowest by the
anomaly degree of the edges, so as to achieve the recovery of the whole network.

Since the reconfiguration process involves many technical factors as well as uncertain-
ties, the network reconfiguration guidance is performed with the help of the network
construction which ensures to satisfy the operational quality [39, 40, 41]. Considering
the importance of anomalous edges and anomalous panel points to the meshwork, if the
number of anomalous edges and anomalous panel points contained in the reconstructed
network become bigger, the reconfiguration method would be more effective, so this paper
defines the reconstructed network efficiency η = r̄/c̄, where the larger η is, the higher the
reconfiguration efficiency would be, r̄ denotes the average anomaly of comprehensive load
panel points which come from the reconstructed meshwork, and c̄ denotes the clustering
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Algorithm 1 Application of Improved Dijkstra Algorithm in Power Grid

Input: G = (V,E), x ∈ V , e ∈ E
Output: path (i− 1, i)
1: for i, j = 1: k do // Sorted power node labels
2: path (i, j) = dijkstra(A, i, j) // Shortest path calculation using improved

Dijkstra’s algorithm
3: if path (i − 1, i) ⩽ path (j, i)(i ⩾ 2, 1 ⩽ j ⩽ i − 1) then // Ensure the

priority and rapid recovery of critical nodes
4: else
5: path i = path (i − 1, i) // Obtain the reconfigured skeleton network

composed of power nodes
6: end if
7: end for

coefficient of this reconstructed network as shown in Equation (11).

r̄ =

k∑
i=1

ri
max (r1r2 · · · rk)

k

c̄ =

m∑
j=1

cj
max (c1c2 · · · cm)

m

cj =
2d′j

dj (dj − 1)

(11)

where k describes the quantity of load panel points contained from the reconfigured net-
work, m describes the quantity of panel points from the reconfigured meshwork, dj de-
scribes the degree of panel point j when facing the original network, and d′j is the degree
of panel point j when facing the reconfigured network. Moreover, when actually operating
the grid, the receiving terminal which belongs to this grid tends to increase the purchase
of external power when the load is high, otherwise the opposite conclusion. So that this
external power follows the load trend to a certain extent, and has a certain peaking effect,
so the peaking capacity of the external power should be taken into account. According to
the previous topic, the peaking factor can take the peaking capacity of the EHV district
electricity into account as long as it has been given. Referring to the definition of the
peaking rate of conventional generating units, the peaking rate of external power in the
zone during the cycle can be determined by Equation (12).

kline =
Pline ,max(t)− Pline ,min(t)

Pline ,max(t)
(12)

where, Pline max(t) represents the maximum value of regional external power output in the
period, and Pline,min (t) represents the minimum value. In order to achieve the efficient
reconfiguration strategy, it is necessary to connect all power nodes and load nodes with
relatively few lines to form a skeleton network, so as to better guide the recovery process
of the whole network. The specific algorithm can be seen in Algorithm 2.

3. Algorithm optimization.

3.1. Classical Link Prediction Algorithm. Based on the power grid optimization
model mentioned above, the grid can be abstractly transformed into a graph which con-
tains a node set and an edge set. In the process of recording the meshwork, due to the
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Algorithm 2 optimization method of power grid feature model

Input: G = (V,E), x ∈ V , e ∈ E
Output: {RSx}
1: for i = 1 : 5 do
2: Calculate RSi

3: end for
4: Let LPA = LPAi s.t. RSi = min {RS} // Select the link prediction algorithm

(LPA) with the highest prediction accuracy
5: Let RSe = LPA[train, e] // Calculate the anomaly of each edge
6: Calculate RSx and sort (descend) {RSx} // Obtain the sorted power nodes

and determine the priority recovery order of the power nodes
7: Return the best solution (binary vector)

incompleteness of information, there observes link loss problems in the network, such as
information loss and deliberate information hiding. The actual work of network link pre-
diction can be used to predict the degree of whether there exists one connection during
double panel points which is located in a meshwork where a connected edge has not been
produced. This prediction includes predictions of both unknown links and future links.
Link prediction relates networks to information science and deals with the restoration and
prediction of missing information in information science. Scholars have used the prox-
imity during panel points, i.e. the likelihood for a link which is located in double panel
points, directly for link prediction. The typical similarity index based on local structure
information includes CN [42] , AA [43] , PA [44] and RA [45] , and path-based typical
similarity index includes LP [46] , ERA [47] , PIC [48] and so on. The main indicators to
survey the precision for the link prediction algorithm include AUC [49], precision [50]and
Ranking score [51], among which AUC can be used as the most normal measurement,
which can describe the accuracy of the algorithm as a whole, while the ranking score
takes into account the ranking of the predicted edges. The specific definition methods of
the above similarity metrics are as follows.

In the well-known structural local metric method, CN(u, v) represents common neigh-
bor nodes shared between double panel points u and v amid a social meshwork and the
number of which would be given. And let τ(u) shows the set of neighbors of panel point
u. That normal neighbor mensuration will be defined and the content is expressed in
Equation (13).

CNuv = |τ(u) ∩ τ(v)| (13)

The Adamic/Adar score is shown in Equation (14). Preferential attachment [31] can be
expressed by PA. It is presumed that the degree of whether a new link can be connected
to panel point u changes in the same trend with |τ(u)|, so the preferential attachment of
panel points u and v change in the same trend with the quantity of their adjacent objects,
which can be calculated by Equation (15).

AAuv =
1

log |τ(x)|
+

1

log |τ(y)|
+

1

log |τ(z)|
+

1

log |τ(t)|
= 4.51 (14)

PAuv = |τ(u)| · |τ(v)| (15)

RA can represent Aesource Allocation, which is calculated upon the transversion of
allocating meshwork resources, where the normal neighbors of double detached panel
points u and v are thought as the objects who send resources, in which each panel point
provides a unit that enables node u to send some resources to v, as shown in Equation
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(16).

RA(u, v) =
∑

z∈(τ(u)∩τ(v))

1

|τ(z)|
(16)

Local Path index (LP). Local path index method offers a nice compromise when han-
dling the precision and computational sophistication of local link prediction techniques
and global link prediction techniques, which is a local link prediction method. If x and y
are irrelevant, (A3)xy describes various paths with the length of 3 which are in the middle
of x and y. The key is also likely to extend to a generalized form as shown in Equation
(17).

SLP = A2 + εA3 + ε2A4 + · · ·+ ε(n−2)An (17)

where n is the maximum number of orders. Extended Resource Allocation (ERA) is an
extended resource allocation metric, and is proposed for a potential resource transmitted
between two nodes through a local path, based on the exchange of resources between
nodes. This can be shown by Equation (18). Potential Information Capacity (PIC) is
to define information content, which is thought as to describe the scale of information
transmission content between any double panel points according to Canny’s law, taking
information channel and information context into consideration. This can be shown by
Equation (19).

SERA
xy =

∑
z∈Cxy

2 + σ ∗ (nzy + nzx)

kz
+
∑
C′

xy

σ ∗ (nzy + nzx)

kz
(18)

SPIC
xy =

∑
zy∈Γ(y)

(
axzy +

nxzy

kmax
z′xzy
− 1

)β

+
∑

zx∈Γ(x)

(
ayzx +

nyzx

kmax
z′yzx
− 1

)β

(19)

3.2. Anomalous Edge Link Prediction Algorithm. For node pairs not yet connected
in a network, the link prediction algorithm (similarity metric) owns the ability to predict
the possibility whether an edge exists during double panel points. For those where a link
already exists in the network, if the similarity algorithm obtains the value of similarity
of this edge is very low, then their existence is of great significance to the meshwork.
Referring to [52, 53], ink prediction algorithms can be used to evaluate the reliability or
importance of the existence of a link.

Anomalous edges are those real in the network but considered to have a low probability
of existence by link prediction methods. Anomalous links have a particularly important
contribution to maintain the connectivity of the network, and the anomalous link analysis
method can effectively identify edges that play an important role in network connectivity.
Therefore, it can be believed that prioritizing the recovery of anomalous edges in the
network is an important guide for the recovery process of the network. For a given
network G = (V,E) and a link prediction algorithm, the network data set is partitioned
by a term-by-term traversal method: traversing each edge in the network to constitute
the test set. For ∀e ∈ E, the algorithm yields the ranking of the edge’s similarity se in
the set of unknown edges H, denoted as re, and the ranking score which belongs to the
edge e will be defined. Meanwhile, the concrete content is described as Equation (20).

RSe =
re

1 + n(n−1)
2
− |E|

(20)

where |H| = 1 + n(n−1)
2
− |E| denotes the set which contain every unknown edge, i.e.,

concatenating the test set and the set of nonexistent edges. For anomalous edges, a
larger ranking score RSe indicates a more anomalous level, so its anomalousness can be
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expressed by its ranking score. For network G, traversing all the edges in which belong to
the test set, the ranking score for the system can be obtained as shown in Equation (21).

RS =
1

|Ep|
∑
e∈Ep

RSe =
1

|Ep|
∑
e∈EP

re
|H|

(21)

For a node x, the ordering score of the system G0 (Vx, Ex) constructed by its associated
edges and itself can be expressed as shown in Equation (22).

RS =
1

|Ep
x|
∑
e∈Ep

x

RSe =
1

dx

∑
e∈Ep

x

re
|H|

(22)

Moreover, the definition of the anomaly degree of panel point x is as shown in Equation
(23).

RSx =
1

dx

∑
z∈Γ(x)

r(x,z)
|H|

(23)

In which, d describes the degree which belongs to the panel point, Γ describes the set
of adjacency objects of the panel point, (x, z) denotes the edges connecting nodes x and
z. And for the link prediction algorithm, the smaller the system ranking score indicates
the better prediction of the algorithm; while for anormalous edges, the larger the ranking
score indicates the more anomalous level of the links.

3.3. Intelligent forecasting algorithm of power grid according to anomalous
degree. What is desired to get for grid prediction is to supply the powered generating
units with the shortest path to the candidate restoring units in the state of massive net-
work failure by prioritizing them according to their anomalous degree, so as to rebuild the
system grid and accelerate the system recovery process; then the link anomalous degree
is used as a criterion to sequentially restore the candidate restoring lines around those
restored ones. Since power grids have certain commonalities of complex networks, link
prediction methods in complex networks can be applied as reconfiguration indicators for
screening important nodes and critical lines, providing guidance for determining reconfig-
uration networks. Applying link prediction algorithms tells the substance to reconfigure
the skeleton network of power systems is to calculate the restoration sequence of actual
generator power nodes, and realize the power supply of all lost units in the network by
some link prediction method after a large-scale power outage to lay the foundation for the
next path restoration [54, 55, 56]. Therefore, the link prediction algorithm which owns
great prediction precision is used to obtain the ranking score RSe for each edge e, i.e.,
the anomaly degree, and then calculate the anomaly degree RSx for all the candidate
restoring power nodes, and prioritize the power nodes with higher anomaly degree in the
restoration graph. After determining the restoration order of power nodes, the shortest
path from the candidate restoring power nodes to other power nodes is calculated using
the improved Dijkstra algorithm, from which the connected power node skeleton graph
can be obtained. After the grid structure reset is completed, the paths around the gen-
erator power would be restored in order from the highest to the lowest according to the
anomaly degree of the edges, thus realizing the restoration of the whole network.

Since the prediction process involves many technical factors as well as uncertainty fac-
tors, the reconstruction of the meshwork is guided according to the meshwork structure
which ensures to satisfy the operation quality [57, 58]. Considering the importance of
anomalous edges and anomalous panel points to the meshwork, if the quantity according
to anomalous edges and panel points contained in the reconstructed meshwork become
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bigger, the reconstructed method would be more effective, so this paper defines the re-
constructed network efficiency η = r̄/c̄. And the larger η is, the higher the reconstructed
efficiency would be, and r̄ denotes the average anomaly of all load panel points in the
reconstructed meshwork, c̄ denotes the clustering coefficient of the reconstructed network,
which can be expressed in Equation (24) and Equation (25).

r̄ =

∑k
i=1

ri
max (r1r2 · · · rk)

k
(24)

c̄ =

∑m
j=1

2d′j
dj (dj − 1)

max

(
2d′j

dm (dm − 1)

)
m

(25)

Where k shows the quantity of load nodes contained in the reconstructed meshwork,
m is the quantity of panel points there, dj is the degree of panel point j in the initial
meshwork, and d′j is that of panel point j in the reconstructed network. To achieve an
efficient prediction strategy, it is necessary to link all power nodes and load nodes with
high anomaly degree, to form a skeleton network with relatively few lines, which in turn
can better guide the recovery process of the whole network.

3.4. Power grid optimization method based on improved bee colony algorithm.
Artificial Bee Colony (ABC) algorithm [59, 60], which can be thought as a meta-heuristic
algorithm for mixed and numerical optimization issues. The process of finding food for
bees gives it inspiration. Meanwhile, bees and food sources are double main components
for ABC. Solutions to the issue are food, and bees can seen as a factor in finding the best
food source.

First and foremost, reference [61] searches the issue space. Then a random or specific
strategy can be used to obtain a set of food sources. Those bees can be separated into
three parts: worker bees, bystander bees and scout bees. Every initial food source Si is an
worker bee firstly, hence the quantity of initial food sources can be the quantity of worker
bees. After that, the corresponding food source would found in a neighboring node, and
if the the fresh food source owns more nectar than which the food source Si owns, then
the new food source will become the next place for the bees to move, and otherwise, they
will keep in the same place. After the process, worker bees will choose to go back to their
home and tell the bystander bees about relative food sources and their nectar amounts.
Every bystander bee will select a food source randomly according to those information.
The same as the worker bees, bystander bees can search to get solutions near the chosen
food source by neighborhood arithmetic. If there exists more nectar which is available,
that location will be their next new position, otherwise, they will choose to come back to
the chosen food source. For the artificial bee colony algorithm, the quantity of bystander
bees can be thought the same as that of worker bees. Then, the process can be iterative
and the algorithm would search for the optimal solution to the problem.

Our study presents a swarm optimization approach for grid problems to set a set of
panel points as solutions to make the spread of influence achieve the largest scale. For
this purpose, the set of influences is identified in iterations and a different solution can be
determined for every iteration. Then, the non-dominated solutions will arrange in order
for the algorithm. Then, the optimal solution will be selected as the answer to this issue
at the end. Every solution Si is considered as a set of panel points Si = {si,1, si,2, si,3, . . .}.
Let the quantity of panel points be k, while the number of nodes in the multi-objective
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bee colony algorithm varies depending on the required budget and spend for the panel
points. Algorithm 1 gives a specific explanation of this algorithm. Algorithm 3 consists
of four steps: initialization, worker bee, bystander bee and scout bee, where the initial
food source (solution) is determined randomly in the initialization step.

Algorithm 3 Solving process of multi-objective bee colony algorithm

Input: G(V,E,W ), k, FN , maxIteration, ch, β, EA size
Output: initial seed set S
1: Sh ← highest weight degree (G, k)
2: for i = 2 to FN do
3: Si ← neighborhood solution (G,Sh, β)
4: Evaluate the nectar amount of food source Si

5: end for
6: while iteration < max iteration do
7: for i = 1 to FN do // worker bee
8: ns← neighborhood solution (G,Si, β)
9: end for
10: Update non-doimnated set in EA
11: for r = 1 to FN do // bystander bee
12: ns← neighborhood solution (G,Sr, β)
13: end for
14: for i = 1 to FN do // scout bee
15: if chi = 0 then
16: Si ← crossover solution (EA, k)
17: end if
18: end for
19: Iteration ← Iteration + 1
20: end while

For worker bees, each node uses the neighborhood solution function to find a solution
ns near its corresponding food source, if ns decide the current solution Si, then the
solution ns replaces Si and the bee will choose to move to the food source ns. In addition,
providing that the quantity of non-dominated solutions outstrips the scale of the EA,
the algorithm which is about crowding distance can be used to determine and eliminate
crowded solutions. Therefore, solution ns can take place of Si inside the inner archive.
and for the bystander bees, every bystander bee chooses a food source Si randomly in the
non-dominated set within the EA. Then, the degree of whether choosing food source Si

can be shown in Equation (26).

pt =
Cdt∑EA member

j=1 Cdj
(26)

where Cdt describes the congestion distance value which belongs to solution St, and
EA member describes the quantity of members in the external archive. Then the bee
ensures an answer ns in its neighborhood, and if ns influences Sr, then the solution Sr

will be substituted by ns in the EA. If both Sr and ns are neither dominant, then ns
will be joined into EA as a non-dominated parts, and the non-dominated set would be
updated at the end. And for scout bees, while the worker bees having no chance to search
for their neighbors at their current position facing consecutive iterations before they turn
into scout bees. Next, for every scout bee by the cross-solution function, a new food source
will be generated, and that bee will be transported to the new source as a worker bee.
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Firstly, this function chooses double non-dominated solutions randomly in the EA. Then,
it merges them from a random overlap to generate a new solution [62, 63, 64, 65, 66, 67].
The Swarm Intelligent Optimization Algorithm for Abnormal Link Prediction (SIOA-
ALP), that selects the optimal solution according to that non-dominated set (called Pareto
boundary) in the inner of EA as the seed set optimization solution, can be represented as
Algorithm 4 shown.

Algorithm 4 Anomaly link prediction swarm intelligent optimization algorithm

Input: G = (V,E), x ∈ V , e ∈ E, EA, k, FN , maxIteration, ch, β, EA size
Output: S
1: x← Random (1 . . . β∗|S|)
2: for i = 1 to x do
3: y = Random(1 . . . |S|)
4: S ′[y]← Replace (G,S ′)
5: end for
6: S1 ← select a member in EA randomly
7: S2 ← select a member in EA randomly
8: p← Random (2 . . . (|S1| − 1))
9: for j = p to k do

10: S1[i] = S2[i]
11: end for
12: return S

4. Simulation and Empirical Research.

4.1. Experimental Design. Our study evaluated the performance which belongs to the
proposed technology with the three grid structures used in literature [15, 16, 17] (the data
structures have be expressed in Table 1 and the topology of Data Set 1 can be seen in
Figure 1). These three different datasets have different characteristics, divided into two
types: directed graph and undirected graph. The number of nodes and the number of
node boundaries are both large, providing different complex environments for algorithm
validation in the following text.

Our research is based on MATLAB software for timing simulation, combined with
Python framework implementation, and works on two Linux OS servers (Intel Xeon pro-
cessor (34 GHZ) 64GB RAM), each has a 6-core CPU, two NVIDIA Titan X GPUs and
a 100 GB RAM. Since the results of the experimental public opinion control model may
be different in each run, the evaluation results are set to be the average value after 500
iterations, with the standard deviation of 1.415.

Table 1. Characteristics of Grid Data Set

Network
Serial Number

Dataset
Number

Type
Number
of nodes

Number of
node boundaries

Average
Node

Average Path
Clustering
coefficient

1 Dataset 1 Directed 2414 64959 3.19 2.12 0.429
2 Dataset 2 Undirected 2310 79610 4.18 3.41 0.120
3 Dataset 3 Directed 4285 75592 3.12 2.24 0.245

Our study compares the proposed Swarm Intelligent Optimization Algorithm for Abnor-
mal Link Prediction (SIOA-ALP) with the benchmark algorithms mentioned in Section 3.1
and 3.2. Two precision functions, that is Mean Absolute Error (MAE) and Root Mean
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Figure 1. Topology grid used in the experiment.

Square Error (RMSE), which are based on the reference [30]. The specific calculation
method is shown in Equation (27) and Equation (28) respectively.

MAE =

√√√√ 1

N

N∑
i=1

|fi − yi| (27)

RMSE =

√√√√ 1

N

N∑
i=1

(observedi − predictedi)2 (28)

Where as the problem of opinion dissemination in social networks is usually thought as a
binary classification task, and shown in the matrix which is in confusion for the evaluation
of binary classification tasks with two categories [11]. There are four metrics, including
True Positive (TP), indicating the quantity of the links which are predicted correctly;
True Negative (TN), indicating the quantity of correctly unpredicted links; False Positive
(FP), indicating the quantity of incorrectly predicted links; and False Negative (FN),
indicating the quantity of incorrectly unpredicted links. Based on this, the following
metrics are obtained, such as True Case Rate/Recall Rate/Sensitivity. Among them, the
calculation of True Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate
(TNR) and Precision Rate (PR) can be found in the literature [26]. And the results
can be evaluated based on two metrics, namely the Area Under the Receiver Operating
Characteristics curve (AUROC) [18] and the Average Precision (AP) [19].The ROC curve
describes the true case rate on the Y-axis ( sensitivity) and the false positive rate (1-
specificity) on the X-axis. Meanwhile, the area which is located under the ROC curve is
the single point summary statistics between [0, 1], which can be calculated following the
trapezoidal rule, summing every trapezoids under the curve. The AUROC value of the
link prediction method ought to be greater than 0.5, and if the AUROC value gets higher,
the performance of the link prediction method can be better. The average precision can
be thought as one single point summary value calculated according to different recall
thresholds, and is the average precision value of the recall values when facing the interval
[0, 1]. Specifically, it is shown in Equation (29). Where, p denotes the precision rate under
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different recall r thresholds, and R is the set of different thresholds.

AP =
R∑

k=1

p(k)∆r(k) (29)

4.2. Experimental results. The experimental results fully demonstrate that the SIOA-
ALP algorithm proposed in this paper is superior to other general benchmark algorithms.
In Table 2, we can see the area values under the curve of the SIOA-ALP anomaly link
prediction swarm intelligent optimization algorithm and other benchmark methods with
the grid data set. We found that the proposed SIOA-ALP swarm intelligence optimization
algorithm has better experimental results. Table 3 reports the average accuracy results of
SIOA-ALP anomaly link prediction swarm intelligent optimization algorithm and other
benchmark social network public opinion propagation control methods. According to the
results, the proposed SIOA-ALP algorithm has higher average precision in all experimental
data sets. Combined with the comparison of single operation time of the algorithm shown
in Table 4, the operation efficiency of the SIOA-ALP anomaly link prediction swarm
intelligent optimization algorithm proposed in this research when facing the grid data set
is also improved compared with other existing algorithms.

Table 2. Area values of different methods under the curve on each dataset

Dataset Number CN AA PA RA

Dataset 1 0.6385 0.4618 0.5713 0.6274
Dataset 2 0.4758 0.5825 0.4829 0.5028
Dataset 3 0.2104 0.5839 0.3019 0.3481

Dataset Number LP ERA PIC SIOA-ALP

Dataset 1 0.3251 0.6389 0.7095 0.9127
Dataset 2 0.3942 0.5692 0.4910 0.9218
Dataset 3 0.6484 0.4280 0.6849 0.9342

Note: The values shown in bold indicate good algorithm performance.

Table 3. Average precision values of different methods on each data set

Dataset Number CN AA PA RA

Dataset 1 0.3274 0.2618 0.2874 0.2306
Dataset 2 0.2958 0.2475 0.2503 0.3418
Dataset 3 0.1947 0.2138 0.2758 0.4537

Dataset Number LP ERA PIC SIOA-ALP

Dataset 1 0.2959 0.2419 0.4827 0.6838
Dataset 2 0.3859 0.4582 0.3058 0.7652
Dataset 3 0.3471 0.4857 0.3195 0.6748

Note: The values shown in bold indicate good model performance.

In conjunction with the literature [36], two precision functions are used here: Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE). Table 5 reports the MAE
and RMSE values which belong to the proposed SIOA-ALP anomaly link prediction
swarm intelligent optimization algorithm and other benchmark algorithms in different grid
topologies. Higher the MAE and RMSE values show lower the precision of the predictive
optimization algorithm. According to Table 5, the proposed grid optimization algorithm
generally outperforms other methods, because the proposed SIOA-ALP anomaly link
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Table 4. Comparison of single run time of algorithms

Dataset Number CN AA PA RA

Dataset 1 0.1419 0.5121 5.1410 3.2419
Dataset 2 0.6378 4.2218 6.4833 9.0412
Dataset 3 0.8124 1.0422 7.1923 5.5407

Dataset Number LP ERA PIC SIOA-ALP

Dataset 1 0.1538 0.2759 0.4634 0.1324
Dataset 2 0.4269 0.5846 0.6504 0.1726
Dataset 3 0.2435 0.4763 0.3638 0.1449

Note: The bold section indicates that the algorithm is relatively optimal under this parameter condition.

prediction swarm intelligent optimization algorithm has the capability of quick response
and real-time adjustment and optimization of the power grid, and it can also minimize
the grid loss.

Table 5. Comparison Results of Algorithms in Grid Topology

Index CN AA PA RA

Actual value
MAE 0.5839 0.5374 0.5741 0.4829
RMSE 0.6342 0.6103 0.5927 0.5840

Optimum value
MAE 0.5648 0.5829 0.5384 0.5390
RMSE 0.7302 0.6817 0.6739 0.7028

Index LP ERA PIC SIOA-ALP

Actual value
MAE 0.4291 0.5443 0.5738 0.3204
RMSE 0.5831 0.5603 0.6023 0.4210

Optimum value
MAE 0.4135 0.5024 0.5381 0.2804
RMSE 0.5582 0.5128 0.5429 0.3452

Note: The bold section indicates that the algorithm is relatively optimal under this parameter condition.

4.3. Statistical test. That statistical test has been performed for this study with refer-
ence to the literature [23] to report the significant differences between the proposed grid
voltage optimization methods and other benchmark methods. The Friedman test [47] was
used in this study to think whether there is an important difference between these grid
voltage optimization methods, which is a nonparametric pairwise analysis of measures
ANOVA which is repeated. The results of the Friedman test which belongs to the area
under the ROC curve (AUROC value) and the average accuracy (AP value) can be seen
from Table 6. The observed test values of the Friedman test for AUROC and AP, Ff ,
were 49.242 and 62.220 respectively, which were greater than the corresponding χ2 values.
As the confidence interval α = 0.05, the degree of freedom Df = 8, and the χ2 value is
16.25, the null hypothesis is rejected.

As the null hypothesis has been rejected, an post-hoc test will be performed. The
Friedman-Conversover post-hoc method is chosen to control the proposed optimization
method, and the normal Holm is used as the adjustment method. The Friedman-Convover
multiple comparison test results have expressed in Table 7. Meanwhile, the p-values are
corrected for AUROC and AP values using Holm method. It can be known according
to the table that the proposed grid voltage optimization method is significantly different
from other baseline methods, so there are significant differences between those methods.
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Table 6. Friedman Test Results for AUROC and AP Values

Metric Dataset Number CN AA PA RA

AUROC
Dataset 1 0.8348 0.9604 0.9856 0.9349
Dataset 2 0.8924 0.9340 0.9172 0.9647
Dataset 3 0.7827 0.7818 0.8104 0.7832

AP
Dataset 1 0.0030 0.0053 0.0025 0.1937
Dataset 2 0.0266 0.0514 0.3738 0.2291
Dataset 3 0.2514 0.3374 0.2438 0.1081

Metric Dataset Number LP ERA PIC SIOA-ALP

AUROC
Dataset 1 0.8035 0.7588 0.8572 0.7483
Dataset 2 0.8464 0.8371 0.7580 0.7563
Dataset 3 0.8938 0.8593 0.7583 0.8192

AP
Dataset 1 0.2482 0.3022 0.3922 0.6393
Dataset 2 0.2381 0.3229 0.3185 0.6255
Dataset 3 0.2859 0.3315 0.3846 0.6492

Table 7. Friedman-Convover multiple comparison test results (the con-
trol method is the proposed algorithm, and the correction method is Holm
method)

Metric CN AA PA RA

AUROC value 0.0001 0.0002 0.0094 0.0013
AP value 0.0001 0.0006 0.0005 0.0008
Metric LP ERA PIC SIOA-ALP

AUROC value 0.0014 0.0043 0.0153 0.0021
AP value 0.0032 0.0058 0.0046 0.0086

5. Conclusion. In this research, we constructed a complex meshwork model of the power
network by subspace reconstruction and availability analysis method, and designed the
prediction algorithm for the grid link network, which is improved by combining the anom-
aly value and the improved Dijkstra algorithm, and then we used the improved bee colony
algorithm to solve the model, so as to improve the high availability of the data service in
the complex multi-network center environment of the grid. The algorithm model proposed
in this article has multiple innovations. It not only proposes optimization schemes based
on benchmark algorithms such as bee colony algorithm and so on, but also innovatively
integrates some parameter optimization methods and provides innovative solutions for
intelligent prediction and data service prediction of power grids. Experimental results
have expressed that the Swarm Intelligent Optimization Algorithm for Abnormal Link
Prediction (SIOA-ALP) has better accuracy and efficiency than other benchmark algo-
rithms. Despite these important findings, this study has some limitations, some of which
may point the way for future further research. Firstly, the uncertainty of both nodes and
edges can be considered in the link prediction algorithm, which can further improve the
ability of the algorithm which is proposed to resist uncertainty. Secondly, the applicability
of the algorithm which is proposed can be verified in protein network, terrorist network,
scientific cooperative network and multi-layer network. Finally, advanced techniques such
as deep self-encoder will be used to better the precision and efficiency which belong to
the link prediction algorithm.
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