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ABSTRACT. : Spectral clustering is widely used due to its excellent performance in non-
linearly separable data. Therefore, how to integrate spectral clustering algorithms applied
to network data resource recommendation are of great research value. However, due to
the high time complezity and space complexity, spectral clustering requires a large amount
of time to complete the clustering task when facing data with high dimensionality and
certain sparsity. To address this problem, this work proposes a Spark-based fast spectral
clustering algorithm. Firstly, the morphological similarity distance is used instead of Fu-
clidean distance as the similarity measure to improve the clustering accuracy. Secondly,
the local optimum problem caused by the improper selection of the initial clustering cen-
tre is improved by the Max-distince criterion. In addition, the KL scatter is used as
the distance metric for clustering, and the information provided by the elements in the
dataset is fully utilised to measure the interrelationship of different datasets and guide
the clustering of data, which improves the problem of sparse data distribution to a cer-
tain extent. Finally, the proposed fast spectral clustering algorithm is implemented in
the Spark distributed data processing framework. The experimental results show that the
proposed fast spectral clustering algorithm has higher accuracy and coverage compared
with other commonly used source recommendation algorithms, and is more adaptable in
real-time recommendation of massive network data resources, obtaining higher quality
and efficiency of clustering.

Keywords:Big data; Parallel computing; Resource recommendation; Spectral cluster-
ing; Spark

1. Introduction. The number and size of available data sets in the world is growing
rapidly with the use of more and more mobile devices, sensors. According to the IDC
report, global network data resources will grow exponentially between 2013 and 2020. In
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the context of today’s big data, how to better utilise and process network data resources
has become an important and difficult issue [1,2,3].

Cluster analysis, also known as cluster analysis, is a technique that is widely used for
data mining analysis in many fields, including machine learning, data mining, pattern
recognition, image analysis and bioinformatics [4,5]. Clustering is the process of dividing
similar objects into different groups or more subsets by means of static classification, so
that the member objects in the same subset all have some similar properties, and gener-
ally classifies data clustering as a kind of unsupervised learning [6,7]. Clustering analysis
can be classified in various ways from different perspectives; on the one hand, data clus-
tering algorithms can be divided into structural and decentralised algorithms. Structural
algorithms use previously successfully used clusters to classify, while decentralised algo-
rithms determine all classifications at once [8,9]. Structural algorithms can be computed
in both directions from top to bottom or bottom to top [10]. Bottom-up algorithms start
with each object as a separate classification and continuously fuse similar objects within
it. Top-down algorithms, on the other hand, classify all objects as a whole and then
gradually subdivide them into smaller ones [11,12]. Spectral clustering algorithms were
first used for clustering images in image segmentation. Subsequently, methods based on
spectral clustering algorithms have also been used in areas such as text clustering, so-
cial network analysis, and biological data analysis. In contrast to traditional algorithms
such as K-means and hierarchical clustering, spectral clustering algorithms can handle
arbitrarily shaped clusters and do not need to assume a particular form of data distri-
bution. In addition, spectral clustering algorithms can use different similarity measures,
such as Euclidean distance and cosine similarity. Spectral clustering algorithms are more
stable, less sensitive to initial values and noise, and more accurate clustering results than
traditional clustering algorithms.

However, spectral clustering algorithms have more obvious drawbacks in terms of run-
ning time. Since the time complexity of computing the similarity matrix is O(N?), the
time overhead of the spectral clustering algorithm to compute the similarity matrix is
large for large-scale datasets [13]. For high-dimensional data, spectral clustering algo-
rithms need to be pre-processed using dimensionality reduction algorithms, which them-
selves consume a large amount of computational resources [14,15]. As a result, spectral
clustering algorithms take longer to run on large-scale datasets, cannot handle super-large-
scale datasets, and require careful selection of parameters and eigenvalue decomposition
methods to obtain better clustering results. Over the years, there have been a number of
improved big data spectral clustering algorithms that seek to reduce the time and qual-
ity of big data spectral clustering. However, due to the high time complexity and space
complexity, spectral clustering requires a lot of time to complete the clustering task when
facing data with high dimensionality and certain sparsity. Therefore, how to achieve high
quality spectral clustering of big data in a faster time has become an important research
topic.

Traditional serial spectral clustering algorithms are effective in handling small amounts
of data, but are not feasible for large data [16], so we need to implement them on dis-
tributed computing frameworks and process them on computer clusters. Currently, dis-
tributed computing frameworks [17] are divided into three types of frameworks, batch
processing framework, stream processing framework and hybrid processing framework,
depending on the form of the processed data. The main objective of this work is to
achieve high efficiency and high precision spectral clustering under the Spark distributed
data processing framework, so as to solve the big data spectral clustering problem.
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1.1. Related Work. Clustering is widely used in machine learning and data mining
tasks, with spectral clustering being widely used in clustering tasks due to its good
performance. However, spectral clustering requires O(N?) time complexity and space
complexity to compute and store the Laplacian graph between data. Therefore, spectral
clustering requires a lot of memory and time for big data tasks, which is difficult to im-
plement on resource-limited machines, so speeding up and reducing memory requirements
for spectral clustering turns out to be a very important research topic.

In the past decades, spectral clustering of big data has been a hot research topic at
home and abroad, and many spectral clustering improvement algorithms have been pro-
posed to achieve certain improvements in space complexity and time complexity.Wang
et al. [18] used the K-means algorithm to select a number of columns from the N x N
Laplacian graph, and then combined it with the Laplacian graph to construct a low-rank
approximation matrix and perform eigen decomposition, and finally approximated by ma-
trix multiplication to obtain the eigenvectors of N data. Wang et al. [19] transformed
the Laplacian eigendecomposition problem into a weighted clustering problem by approx-
imating the solution, which significantly reduced the eigendecomposition time complexity.
Based on this, Ahmadi et al. [20] weighted only some of the data points and used the
obtained cluster cores to classify the remaining data points, further reducing the time
required.

Although the above algorithm significantly reduces the time required for Laplacian
feature decomposition, the above spectral clustering algorithm still requires a significant
amount of time to complete the clustering task if the data is of very high dimensionality
and exhibits considerable sparsity. This is because traditional spectral clustering algo-
rithms, consider more the distance between common items and ignore the information
that may be embedded between non-common items. In information theory, KL scatter
is used to measure the information loss incurred when one distribution is fitted to an-
other. The use of KL scatter allows for the introduction of probability distributions from
statistics, taking into account the overall distributional properties of the data and the
information provided by the different data in the dataset.

Spark has attracted a lot of attention as the emerging and most widely used open
source framework for big data processing. Heidari et al. [21] implemented the K-means
algorithm using MapReduce and experimentally demonstrated that placing cluster heads
with some minimal distance is better than placing cluster heads randomly. Mbyamm et al.
[22] used Hash sampling function and MapReduce computing framework to process data
clustering and improve the execution efficiency of clustering algorithms. Compared with
Hadoop, Spark is designed to be memory-based from the beginning. Such a distributed
framework can store the intermediate data processing results in memory, and there is no
need to read HDFS data repeatedly for each iteration of data processing, which reduces
the I/O load. At the same time, Spark-based clustering algorithm design based on Spark
DAG task scheduling execution mechanism, better than the Hadoop MapReduce iterative
execution mechanism.

1.2. Motivation and contribution. Based on the above analysis, a fast Spark-based
spectral clustering algorithm is proposed in this work to improve the accuracy of clustering
and the execution efficiency of the algorithm in the face of clustering tasks for datasets
with sparsity and high-dimensional attributes.

The main innovations and contributions of this work include:

(1) Using morphological similarity distance instead of Euclidean distance as a similarity
measure to improve the accuracy of spectral clustering, and improving the local optimum
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problem caused by improper selection of initial clustering centres through the maximum-
distince criterion;

(2) With the help of KL scatter as a distance indicator for spectral clustering, the
information provided by the elements in the data set is fully utilized to measure the
interrelationship of different data sets and guide the clustering of data, which improves
the problem of sparsity of data distribution to a certain extent;

(3) The spectral clustering algorithm is optimised and implemented under the Spark
parallel computing framework to improve the processing capability of massive data and
significantly reduce the time required for clustering of large data.

2. Analysis of the relevant principles.

2.1. Principle of the spectral clustering algorithm. Spectral clustering algorithms
are derived from spectral graph theory. The standard spectral clustering algorithm divides
the data by a Laplacian graph of similarity relations between them, so that the similarity
within clusters is high and the similarity between clusters is low. Spectral clustering
consists of two main parts: the construction of the Laplacian graph and the cutting of
the Laplacian graph.

The Laplacian diagram is constructed mainly by first constructing the corresponding
adjacency matrix, where w;; represents the elements of the i-th row and j-th column of the
adjacency matrix. It is important to note that this element also represents the similarity
of the i-th data to the j-th data. The adjacency matrix is then normalised to obtain a
Laplacian graph, and the algorithms for constructing the adjacency matrix are generally
classified as e-neighbour, k-nearest neighbour and fully connected. Spectral clustering
achieves clustering category delineation through the Laplace partitioning method, and the
number of partitioned subsets is equal to the number of clustering categories. Spectral
clustering requires solving for the vertex similarity and the eigenvalues of the partitioned
subsets. Let the Laplacian graph G = (V| E) contain a total of n vertices. The set of
edge relations formed by all vertices is £ = {e;; = (v;,v;)|v;, v; € V'}, where the degree
of similarity between the vertex v; and the vertex v; is w;.

—al\v;,v4 2
Wi = eXP(%)»%‘ ek (1)
/ 0, otherwise

where ¢ is a constant and d(v;, v;) is the distance between two vertices.

The calculation of the distance value is related to the dimension chosen and the common
method is the grey scale value. The similarity between all vertices is calculated to form
the similarity weights W.

N Wiy, €45 ek
Wi, j) = { 0, otherwise (2)

Let the similarity of the i-th vertex in the Laplacian graph G to all other vertices be
D;;, which is calculated as shown below:

Dy = Z W (3)

The similarity of all vertices can be calculated from the above equation. The total
similarity of all vertices in G can be constructed by combining multiple similarities D.
Assume that the non-normalized Laplace coefficient is L.

L=D-W (4)
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The normalized Laplace coefficient is Ly, and the transfer coefficient is L,..
Ly=1-D WDz (5)
L,=D'L=1-D"'Ww (6)

In spectral clustering, clustering accuracy is closely related to the partitioning scheme
of the Laplacian graph, in addition to the need to focus on the similarity relationships
between vertices.

Let the undirected graph have k connected subsets Aj, As, ..., Ag, then the cut set
between connected subsets is as follows

k
1 _
cut(Ar, g, ... A) = 5 Y W(A;, A (7)
=1

There are more ways to derive cut-set solutions, and the normalised cut-set method is
chosen for this work.

k - k y
NCUt(Al,AQ,...,Ak):§;W:ZW (8)
UiGAZ
j=1

Let the normalised cut set divide the graph G into the k categories Ay, As, ..., A,. The
calculation of the k categories is represented by the set h; = {hy;, hoj, ..., hn;}.

L ,U; € Aj
hij = vol(4;) ™~ (11)
0, otherwise

Finally, we construct the set of categories as a subset H = {hy, ha,...,hs}. For the k
categories, the normalised cut set can be optimised to the features corresponding to the
k eigenvalues of L, to obtain the features corresponding to L,.

2.2. Spark architecture. This work chooses Spark to implement the spectral clustering
algorithm instead of MapReduce, mainly because Spark extends the MapReduce computa-
tional model while retaining the advantages of MapReduce. Compared with MapReduce,
the intermediate results of SparkJob computation can be stored in the node’s memory
without the need to read data from HDFS or disk. The system architecture of Spark is
shown in Figure 1.

The Spark platform provides for one master node and all other nodes are slaves. When
a new slave node joins the Spark platform, it must first register with the master node.
When the user submits a clustering task to the master node, the master node decomposes
the task and sends it to the slave nodes, and gives the user feedback on the address of the
assigned slave node. Based on the feedback, the user registers with the slave node and
establishes a connection with the slave node. When the slave node loads the task, the
user side submits the calculation results to the user. All node operations are implemented
in Resilient Distributed Datasets (RDD), which improves data access efficiency and thus
enhances clustering in real time.

3. Fast spectral clustering algorithm.
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Figure 1. The System Framework for Spark

3.1. Morphological similarity distances. This work optimises the standard spectral
clustering algorithm by using morphological similarity distances [23] and the maximum
distance distance criterion to establish the location of clustering centres in relation to data
points. The similarity measure is generally derived from the Minkowski distance and the
main applications are the Euclidean distance and the Manhattan distance.

The morphological similarity distance Dj;sp is calculated as shown below:

D= (13)

> (Xji—Yy)
=1

where SAD denotes Manhattan Distance, FD denotes Euclidean Distance, Xj; denotes
the i-th attribute value of variable j, Y, is the i-th attribute value of variable ¢, and m
denotes the feature dimension.

An example of the calculation of distances between variables is shown in Table 1. It
can be seen that if D/ASD = 1, then the morphological similarity distance Dysp is the
Euclidean distance.
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Table 1. Example of distance calculation between variables

Feature difference ED SAD D MSD
(-1,3,-2) 3.74 6 6 7.48

3.2. Max-distance criterion and fast localisation. The Max-distance algorithm is
an improvement of the maximum-minimum distance algorithm [24], which selects the
initial cluster prime according to its maximum distance principle.

Firstly, a point near the boundary (not a boundary point) is selected as the cluster
centre 7 and C' is defined as the set of cluster centres. Then, the data point furthest
from the cluster center (] is selected as the second cluster center Cs. Second, the distances
between the other data points and C; and C5 are calculated, and the smallest of them is
calculated.

oy = [0 =y [,y = 1,2 (14)
d, = min [dy,dy|, 2 =1,2,....n (15)
d; = max,[min|d,, dyo]] > 0.n1 — no (16)

where 0 is the specified parameter.
If there are k (k! = K) cluster centres, calculate the distance from each sample point
to the cluster centre of mass d,, and d;.

d; = max,[min|d,,, d..]] > 0 -n, —n, (17)

where y! = z and y, 2z € C.

To reduce the amount of redundant computation in the spectral clustering algorithm,
the spatial location of data points in relation to the cluster centres is introduced. For
any point in the initial data set, if its spatial location in relation to the cluster centre of
mass is known, it is possible to determine which is the nearest cluster centre of mass, so
that there is no need for multiple calculations and the data point is simply assigned to
the appropriate class cluster.

For an arbitrary data point s(x,y, z) in the space-rectangular coordinate system. As-
suming that the maximum value of the dimension in which x is located is maxz, the
minimum value is minz, and the number of segments of the grid in this dimension is
xNum. Assuming that the maximum value of the dimension in which y is located is
maxy, the minimum value is miny, and the number of segments of the grid in this di-
mension is yNum. Assuming that the maximum value of the dimension in which z is
located is maxz, the minimum value is minz, and the number of segments of the grid
in this dimension is zNum. Based on the coordinates of the points in the dataset, the
grid location of point s can be quickly located at (2/,y/, '), thus effectively reducing the
computational effort between point s and the cluster centre of mass.

z = T e - xNum (18)
Maxx — mine + «

' = Yy -yNum (19)
maxy — miny + «

2 = © s - zNum (20)

maxrz — minz + o
where « is a positive decimal.
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3.3. Characterization based on KL scatter. KL scatter belongs to relative entropy.
Let P(z) and Q(x) be two probability probability distributions for the values taken by
X. The relative entropy is shown as follow

DIPIIQ) = 3 P (2)log H (o1)

The outstanding feature of relative entropy is that it is non-symmetric, i.e. D(P||Q) and
D(Q||P) are not equal. However, both represent the distance between P and Q).
Assume that the data to be clustered is X = {X;, Xs,..., X;,_1, X,,}, N denotes the
total number of samples, M denotes the total number of sample attributes, V' denotes
the total number of non-empty samples and K denotes the sparsity of the sample set.

v

Typically, when the K value is under 5 %, these type of information sets can be categorized
as sparse. The basic distribution of spatial data sets is shown in Table 2.

Table 2. Basic distribution of spatial data sets

X
X 1 2 . m-1 m
Xy X1 Xi2 Xi(m—1) Xim
Xo Xog X2 Xo(m—1) Xom
Xy X1 X2 Xn(mfl) Xom

The spectral clustering process is divided into a process based on the formation of a
probability matrix, a process based on the formation of a distance matrix and a circular
iterative process. The probability matrix formation process generates a probability matrix
of n x k.

P Pry

Puy=| : . (23)
Pnl Pnk

Based on the probability matrix above, the KL distances between any row in the matrix
and any other row are calculated separately to form the KL matrix on the overall data
set. As also discussed in the introduction to KL scatter, KL has an asymmetric nature
and the average of the calculated distances between any two rows from each other is used
here as the actual KL value. The remainder is filled with zeros, resulting in the upper
triangular probability matrix shown below:

0 DM, --- DMy,
DM=|: & - (24)
0 0 R 0

With the KL matrix formed, the two rows of data represented by values less than a
certain precision in the distance matrix are merged to form a new data set. For the
merged data set, a new probability matrix and distance matrix are formed according to
the above process, and the merging of data is completed again. The clustering of all the
data sets is completed by repeating the process until the K matrix fails to achieve the
accuracy of the merged data.
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4. Parallelization and implementation of Spark-based fast spectral clustering
algorithm.

4.1. Implementation of morphological similarity distances. The parallel comput-
ing framework for big data is shown in Figure 2.

Hadoop+Spark (Batch layer)

MapReduce Spark

| t data .
nee e Batch views
index
Output data

Query

II
< > <=

A

Spark Streaming (Speed Layer)

Figure 2. Parallel computing framework for big data

Based on a parallel computing framework for big data, the proposed fast spectral clus-
tering algorithm uses morphological similarity distances instead of Fuclidean distances.
The key Java pseudo-code for computing the morphological similarity distance between
two specific points is shown in Algorithm 1.

Algorithm 1 Pseudo-code of morphological similarity distance between two points

public static Double distance(Point a, Point b)

// Calculate the morphological similarity distance between two points

double sum = 0.0

for (int i = 0; i < a.alsize(); i++) do
// Each dimension is subtracted to take the absolute value and then summed
sum += Math.abs(a.alget(i) - b.alget(i))

end for

return sum

4.2. Implementation on Spark. The data point furthest away from the known center
of mass is selected each time when picking the remaining initial center of mass. The idea
of the algorithm for selecting the point furthest from the selected centre of mass for each
iteration is as follows:

(1) Loop to find the remaining k-1 initial points.

(2) Calculate and record the minimum distance between the data point and the centre
of mass, and output jminimum distance, data point> key-value pairs.

(3) The above key-value pairs are arranged in reverse order so that the maximum
distance is at the top.

The key Java pseudo-code for implementing the fast spectral clustering algorithm on
Spark is shown in Algorithm 2.
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Algorithm 2 Parallelization of Spark-based fast spectral clustering algorithms

1: JavaPairRDD< Double, String > data distance center = data.mapToPair((
2: (PairFunction< String, Double, String >)p—{

3: Point data point = Point.StringToPoint(p).

4: List< String > center_data= init_center_broadcast.value().

5: double min_distance = Double. MAX_VALUE.

6: for String s : center data do

7: Point center = Point.StringToPoint(s).

8: double distance = Point.distance_paradigm(data_point center).
9: if min_distance> distance then

10: min_distance = distance.

11: end if

12: end for

13: return new Tuple2<>(min_distance p).

14: })

15: // Sorted by minimum distance

—_ =
N

: String new center = distance_order.take(1).get(0).

5. Experimental results and analysis.

5.1. Experimental data and environment. To validate the performance of the fast
spectral clustering algorithm for online learning resource recommendation under the Spark
platform, performance simulations were performed on the common 4-class public network
dataset in Table 3. The experimental environment consists of five virtual machines,
including a Master master node, which is responsible for the operation and management
of the driver. The remaining four Worker slave nodes act as execution nodes.

The experiments were run on the following hardware environment: 64G RAM, 2T hard
disk, 40 Intel Xeon(R) SSilver4114 CPUs at 2.20GHz. software environment: Ubuntu
18.04.6LTS, JDK1.8.0311, Spark-2.4.8-bin-hadoop2.7. Firstly, validate the fast spectral
clustering algorithm’s clustering performance for different samples. Secondly, resource
recommendation is performed using stand-alone spectral clustering and fast spectral clus-
tering algorithms under Spark platform respectively. Finally, the performance of the
proposed fast spectral clustering algorithm is compared with the commonly used resource
recommendation algorithms.

Table 3. Data sets

Data set name Number of samples Number of users Number of resources
Goodbooks-10k 860214 44647 13333
Mooc 414443 85868 4635
CiteULike 230318 8884 20313
MOOPer 256585 50077 8483

5.2. Network resource recommendation performance. Fast spectral clustering of
the above four classes of network data resources using a single node, and their cluster-
ing performance is shown in Table 4. It can be seen that the accuracy of the spectral
clustering performance is high for all four classes of datasets, with the highest accuracy
of 0.7791 in the MOOPer set, and 0.7629 even in the lowest accuracy Goodbooks-10k

: JavaPairRDD< Double, String > distance_order=data_distance_center.sort ByKey (false)
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Table 4. Clustering Performance Analysis

Data sets Accuracy AUC Clustering time/s
Goodbooks-10k 0.7629 0.5877 185.2578
Mooc 0.765 0.579 146.1038
CiteULike 0.7724 0.6493 137.6618
MOOPer 0.7791 0.6628 140.7928

dataset, indicating that the proposed fast spectral clustering has a high degree of clus-
tering adaptation for the four classes of network data samples. In terms of AUC, the
AUCs of all four data sets exceeded 0.58, indicating that fast spectral clustering has a
high degree of aggregation for network data resources. In terms of clustering time, it
took 185.2578 s on the Goodbooks-10k set and 137.6618 s on the CiteULike set. The
reason for the large time difference between the two may be due to the different number
of sample sets involved in clustering, with the Goodbooks-10k set having a significantly
larger sample size than the CiteULike set.

After obtaining the clustering results, resource recommendations need to be made ac-
cording to the categories and the results are as shown in Table 5. It can be seen that the

Table 5. Accuracy and coverage of resource recommendations

Data sets Accuracy Coverage
Goodbooks-10k 0.8026 0.8111
Mooc 0.8073 0.8232
CiteULike 0.8141 0.8193
MOOPer 0.8214 0.8282

accuracy of the recommendations for all four sample sets is higher than 0.80, while the
coverage rate is higher than 0.81. Therefore, the proportion of resources accepted by users
for all recommended resources is up to more than 80%. At the same time, the proportion
of users using the recommended resources versus actually using all resources reached over
81%, which indicates that the performance of network data resource recommendations
has been significantly improved through spectral clustering.

5.3. Efficiency improvement of Spark for fast spectral clustering. To verify the
extent of Spark platform’s impact on recommendation efficiency, the single-node recom-
mendation time 7} and Spark multi-node recommendation time 75 were solved with differ-
ential settings of the number of Spark nodes, and the speedup ratio K = T was calculated
as shown in Table 6. It can be seen that for the four types of network data sample sets,
the recommendation efficiency is significantly improved after Spark parallel computing.
The speedup ratios for the Goodbooks-10k set, Mooc set, CiteULike set and MOOPer
set were 40.833, 28.183, 26.845 and 36.885 respectively when the number of nodes was
7. This indicates that the time required by the fast spectral clustering algorithm was
significantly reduced by the Spark platform. The parallel computing framework of Spark
has a significant impact on the recommendation efficiency of the clustering algorithm.

5.4. Recommendation performance of different algorithms. Collaborative filter-
ing [26], standard spectral clustering [27], multiview spectral clustering [28] and fast
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Table 6. Spark Acceleration Ratio

Data sets Number of nodes K
3.177
20.507
40.833
2.89
16.769
28.183
2.98
18.629
26.845
3.242
23.443
36.885

Goodbooks-10k

Mooc

CiteULike

MOOPer

N OSSNSO e

spectral clustering were used for network data resource recommendation simulations re-
spectively. To eliminate the effect of Spark parallel computing framework, all four recom-
mendation algorithms were done on a single machine and their recommendation accuracy
is shown in Figure 3, Figure 4, Figure 5 and Figure 6.
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Figure 3. Goodbooks-10k

It can be seen that for all four datasets, the collaborative filtering recommendation
algorithm has the lowest recommendation accuracy and the proposed fast spectral clus-
tering algorithm has the highest recommendation accuracy. In the Goodbooks-10k set,
CiteULike set and MOOPer set, the accuracy of Multiview spectral clustering and the
fast algorithm are very close, and the standard spectral clustering is slightly inferior to
these two algorithms. In the Mooc set, the recommendation accuracy of the proposed fast
spectral clustering algorithm is significantly better. In terms of recommendation time,
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the collaborative filtering algorithm takes the shortest time and the proposed fast spec-
tral clustering algorithm takes the second shortest time. However, the standard spectral
clustering and Multiview spectral clustering are the most time consuming because the
time complexity and space complexity of spectral clustering are high when dealing with
data with high dimensionality and some sparsity, thus requiring a large amount of time
to complete the clustering task.
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To further compare the recommendation performance, the four algorithms were imple-
mented on a Spark platform with a node count of 5 and the recommendation coverage
values were calculated and the results are shown in Table 7.

Table 7. Recommended coverage and recommended times

Data sets Spark-based }?arallelization Coverage Reco_mmended
algorithms time/s
Collaborative filtering 0.6287 5.9939
Standard Spectral Clusterin 0.7396 10.3389
Goodbooks-10k set Multiview spectral clustering 0.7508 10.5699
Fast spectral clustering 0.7751 9.4579
Collaborative filtering 0.6308 5.4029
Mooc set Standard Spectral Clustering 0.7536 9.8499
Multiview spectral clustering 0.7722 9.7839
Fast spectral clustering 0.784 9.2439
Collaborative filtering 0.6661 4.8949
. . . Standard Spectral Clusterin, 0.7593 8.2879
CiteULike Collection Multiview spectral clustering 0.777 8.4959
Fast spectral clustering 0.7833 7.7639
Collaborative filtering 0.6682 3.9519
. Standard Spectrum Clustering 0.7631 7.1379
MOOPer Collection Multiview spectral clustering 0.7836 7.6139
Fast spectral clustering 0.7922 6.2009

It can be seen that the performance of different algorithms varies significantly for the
recommendation coverage of the four types of sample sets, with fast spectral clustering
having the highest coverage and collaborative filtering having the lowest coverage. After
using Spark acceleration with five nodes, the recommendation efficiency of all four algo-
rithms improved significantly compared to the recommendation time of a single node, so
the addition of the Spark platform can effectively improve the recommendation efficiency
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for these four types of recommendation algorithms when dealing with massive network
data resources.

6. Conclusion. In this work, a Spark-based fast spectral clustering algorithm was pro-
posed for solving the problem of recommending massive network data resources. Morpho-
logical similarity distance is used instead of Euclidean distance as the similarity measure
to improve the clustering accuracy. Secondly, the Max-distince criterion is used to im-
prove the local optimum problem caused by the improper selection of initial clustering
centres. In addition, the KL scatter is used as a distance metric for clustering, which
makes full use of the information provided by the elements in the dataset to measure
the interrelationship of different datasets and guide the clustering of data, improving the
problem of sparse data distribution to a certain extent. In the clustering process, parallel
computation of similarity and feature vectors is achieved with the help of Spark platform
to improve the efficiency of spectral clustering. Follow-up research will try to construct
feature values using different cut-set methods to verify the performance of the spectral
clustering algorithm for network data resource recommendation under different cut-set
methods, and also optimise the feature point clustering method for spectral clustering
to further improve the adaptability of the spectral clustering algorithm in network data
recommendation applications.
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