
Journal of Network Intelligence ©2024 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 9, Number 1, February 2024

YOLOv5-LSMA: A Detection Algorithm for
Deep-sea Plastic Garbage

Jin Han∗, Shengxia Li

College of Computer Science and Technology
Shandong University of science and technology, Qingdao 266590, China

shnk123@163.com, 3504380998@qq.com

Chunhui Liu

Graduate School of Fisheries and Environmental Sciences
Nagasaki University, Nagasaki 852-8521, Japan

liuchunhuinanjing@163.com

∗Corresponding author: Jin Han

Received September 12, 2023, revised November 16, 2023, accepted December 24, 2023.

Abstract. With the development of industry and the passage of time, the problem of
deep-sea garbage has become more and more obvious. To more effectively detect deep-sea
garbage, this paper proposes a detection algorithm YOLOv5-LSMA based on YOLOv5
for deep-sea plastic garbage. Firstly, the loss-reduction down-sampling (LRDS) mod-
ule is proposed to reduce the feature loss in the process of down-sampling in the neck
network. Secondly, to improve the detection ability of the deep network, a multi-scale
channel attention mechanism (MCAM) module is proposed, and the dilated convolution
is introduced to make the deep network have a wider receptive field. Finally, to make
full use of the detailed information on shallow features, a simplified bi-directional feature
pyramid network (S-BiFPN) structure is constructed based on the simplification and im-
provement of the BiFPN structure. According to the experimental results, the detection
precision of the YOLOv5-LSMA algorithm proposed in this paper is 4.7% higher than
that of YOLOv5 algorithm, and the model detection capability is effectively improved. It
provides an effective algorithm for the identification of deep-sea plastic garbage.
Keywords: Underwater Plastic Garbage, Loss Reduction Down-sampling, Simplified
BiFPN, Multi-Scale Channel Attention Mechanism, Dilated Convolution

1. Introduction. With the continuous development of industry, urbanization, and sci-
ence and technology, the pollution of marine and lake environments is becoming more and
more serious, especially the marine environment, where the garbage pollution in rivers
and lakes will eventually flow into the ocean and aggravate marine environment pollution
[1]. Deep-sea trash includes discarded fishing nets, woven bags, disposable lunch boxes,
randomly discarded drinking bottles, discarded ropes, plastic bags, and various packaging
bags, some of which float on the surface of the water and some of which are sunk at the
bottom. According to statistics from the government’s marine litter test conducted in
2021 in 51 regions of China, plastic litter is the most abundant among floating litter on
the sea surface, beach litter, and bottom litter, accounting for 92.9%, 75.9%, and 83.3%
of the total respectively, which also reflects the seriousness of the harm of plastic litter to
the marine environment from the side. Since plastic waste is difficult to degrade naturally
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and can remain in the water for at least hundreds of years, it not only pollutes the ma-
rine and lake environment, affects the marine landscape and marine navigation, but also
gradually enters the food chain and threatens biodiversity [2, 3, 4, 5]. In recent years,
there have been cases of marine organisms accidentally eating plastic bags by mistake and
starving to death, which shows that plastic garbage poses a great threat to the life safety
of marine organisms.

At present, the detection and cleaning of deep-sea garbage mainly rely on manual labor,
which requires a lot of manpower and material resources, and the workable range is very
limited. Compared with manual processing, machine vision-based detection methods can
save a lot of labor and can work on a wider range of tasks with higher efficiency. How-
ever, traditional machine vision detection algorithms need to construct effective features
extraction algorithms based on different features of the target to be detected, with rela-
tively poor flexibility and generality. Deep learning algorithms are used to detect deep-sea
garbage, which not only provides better flexibility and generality, but also achieves higher
detection accuracy. So far, deep learning-based detection algorithms have not been widely
used in deep-sea garbage detection. Improving the detection accuracy of the detection
algorithm is the main goal of this study.

2. Related Work.

2.1. Research status of deep-sea garbage detection based on deep learning and
the history of YOLO development. In recent years, deep learning has been develop-
ing continuously, and the neural network has been widely used in various fields, such as
medicine [6], industry [7], intelligent transportation [8], video salient region detection [9],
image description [10], anomaly detection [11], etc. The existing deep-sea garbage target
detection algorithms are divided into traditional and deep learning-based detection algo-
rithms. Among them, neural network target detection algorithms are mainly divided into
two categories: two-stage and one-stage detection algorithms [12]. In 2014, the R-CNN
[13] two-stage detection algorithm was proposed by Girshick et al.. Subsequently, rep-
resentative two-stage detection algorithms, such as Fast R-CNN [14] and FasterR-CNN
[15], have been proposed. However, two-stage detection algorithms have poor real-time
performance. Therefore, since 2016, Redmon et al. proposed the YOLO series of repre-
sentative one-stage detection algorithms, such as SSD [16], YOLOv1 [17], YOLOv2 [18],
YOLOv3 [19], and YOLOv4 [20]. The real-time performance of the detection algorithm
is improved without reducing the detection accuracy. The details of the above YOLO
series of algorithms are shown in Table 1.

The related research is not hot due to the small number of early large underwater
visible image target detection datasets. Since 2017, the 3 most popular generalized target
detection models have been directly applied to fish detection, outperforming traditional
algorithms. In 2017, Sung et al. performed real-time vision-based fish detection using
the YOLOv1 algorithm [21]. In 2018, Christensen et al. utilized the SSD algorithm for
the detection, localization, and classification of fish and fishes under harsh conditions
[22]. In 2018, Mandal et al. evaluated fish abundance in underwater videos using the
Faster R-CNN algorithm [23]. Last few years, researchers have been using these detection
algorithms to progressively work in the field of deep-sea garbage detection. Xue proposed
a one-stage deep-sea garbage detection network ResNet50-yolov3 [24]. Tang and Gao
proposed a surface floating garbage detection algorithm based on an improved convolution
neural network [25]. Yuan and Zang proposed an underwater trash target detection
algorithm based on attention mechanism Ghost-YOLOv5 [26].



302 J. Han, S. Li and C. Liu

Table 1. History of development of YOLOv1 toYOLOv4.

Network
Proposed
timing

Proposer Strengths Weaknesses

YOLOv1 2016
Redmon et

al.

Low computational
volume, fast

running speed.

Poor detection of
dense targets

YOLOv2 2016
Redmon et

al.
Favorable for small
target detection

Poor detection of
dense targets

YOLOv3 2018
Redmon et

al.

The problem of
small target
detection is

basically solved.

Computational
volume has
increased

YOLOv4 2020
Bochkovskiy

et al.
Higher detection

accuracy.

Computational
volume has
increased

Because the light attenuation degree is higher in the deep-sea environment than in
the land environment, it affects the visibility of the target and makes the image blurring
intensify, which in turn affects the detection performance of the model in the deep-sea
environment and increases the detection difficulty. To address this problem, this pa-
per proposes an improved deep-sea plastic waste detection algorithm YOLOv5-LSMA
based on YOLOv5. Designing the loss reduction down-sampling module to reduce the
feature loss caused by ordinary convolution down-sampling; use the improved BiFPN (bi-
directional feature pyramid network) structure S-BiFPN (Simplify bi-directional feature
pyramid network) to balance the contribution of each feature map to the network and
extract more detailed information in the feature map; the multi-scale channel attention
mechanism is proposed to improve the network attention, and dilated convolution is in-
troduced to expand the deep network receptive field and improve detection performance.

2.2. The Introduction of YOLOv5 Algorithm. The YOLOv5 algorithm was pro-
posed by Glenn Jocher in 2020 and is one of the typical representatives of the one-stage
target detection algorithm. The algorithm directly extracts features on the input im-
age and performs classification and regression on the feature map. Compared with the
two-stage algorithm, its detection speed is faster and can better meet the real-time re-
quirements of the network. According to the size of the model, YOLOv5 is divided into
four different magnitude networks: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x,
which differ only in network depth and width.

A 640Ö640 standard RGB image is passed through the backbone network Darknet53,
which is down-sampled 4 times, 8 times, 16 times, and 32 times in turn to obtain effective
feature layers of sizes 160Ö160, 80Ö80, 40Ö40 and 20Ö20, respectively. Different feature
layers are equivalent to dividing the image into three (R, G, and B channels) SS (S is
the number of grids) grids of different scales. Each grid node is responsible for predicting
the target in its lower right corner and if the center of the detected target falls within a
grid, the node responsible for detecting this grid will detect the target. Three anchors of
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different sizes and N (N is the number of categories) categories probabilities are generated
for each grid node. Each anchor consists of five parameters, namely the offset (x, y) of the
center point of the prediction box relative to the center point of the grid, the width and
height scaling ratio w, h of the prediction box relative to the grid, and the confidence.
Finally, the redundant prediction boxes are filtered out by setting the IoU threshold and
non-maximum suppression.

Figure 1. Detection process of YOLOv5 algorithm.

The effective feature layers with sizes of 80Ö80, 40Ö40, and 20Ö20 are taken into the
feature fusion network, and the feature maps are fused and extracted using BiFPN to
obtain the semantic information and positioning information of the feature map. In the
end, the valid feature layers output from the feature fusion network are taken as input to
the detection head for detection and regression, so that the prediction box tries to fit the
position, width, and height of the real box. The algorithm detection process is shown in
Figure 1.

3. Improved Algorithm:YOLOv5-LSMA.

3.1. Overall architecture of YOLOv5-LSMA. In order to improve the detection
precision of deep-sea plastic waste, this paper proposes an improved deep-sea waste de-
tection algorithm based on YOLOv5. The major improvements include: designing a loss
reduction down-sampling (LRDS) module and replacing the ordinary convolution down-
sampling module in the original network module with this module, optimizing the down-
sampling process; proposing the Multi-scale Channel Attention Mechanism (MCAM) and
introducing dilated convolution; finally using the S-BiFPN for secondary feature extrac-
tion of the shallow feature map to enhance the feature expression capability of the feature
map. The overall structure is shown in Figure 2.

3.2. Loss reduction down-sampling module. The ordinary convolution down-sampling
process is shown in Figure 3, in which the feature map is down-sampled by convolution,
the width and height are changed to 1/2 of the original size, and the number of channels
remains the same. Therefore, the process of ordinary convolution is a process accompa-
nied by the loss of feature map information, and the loss of information in this process
will lead to a reduction in the effective information available to the network detection
part, which in turn will affect the detection precision of the module.

To reduce the above loss, we designed a loss-reducing down-sampling module with
the focus structure and dilated convolution to improve the detection performance of the
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Figure 2. Whole structure of YOLOv5-LSMA model.

Figure 3. Process of convolution down-sampling.

module. The Focus structure is used to reduce the loss of information during the down-
sampling, and the dilated convolution is used to increase the receptive field of the feature
map and capture the multi-scale context information. The specific method is as follows.

3.2.1. Focus structure. The Focus structure is shown in Figure 4. In the input feature
map, a value is taken every other pixel point, and an equal interval of 2 times down-
sampling is performed. The sampled pixel points are spliced according to the original
relative position, and the large input feature map is divided into 4 small feature maps
whose height and width are half of the original feature map. Then the 4 small feature
maps are spliced in the channel dimension, so that the height and width of the feature
map obtained are half of the original feature map, but the number of channels is expanded
to 4 times the original feature map. This process changes the width, height, and number
of channels of the feature map, which not only completes the 2 times down-sampling but
also reduces the loss of information in the down-sampling process.



YOLOv5-LSMA: A Detection Algorithm for Deep-sea Plastic Garbage 305

Figure 4. Structure of Focus.

3.2.2. Dilated convolution. As shown in Figure 5, the 3 figures represent the convolutional
layers with different dilation rates and are independent of each other. The black dots in the
image represent the convolution kernel of 3Ö3 size, and the blue shadow part represents
the size of the receptive field after convolution. The dilated convolution is to fill a certain
number of 0 in the middle of the standard convolution kernel. During the filling process,
a hyperparameter, the dilation rate (DR), can be set to determine the number of filled 0.
The dilation rate can be interpreted as the distance between two adjacent black dots, and
when different DRs are set, different sizes of receptive fields can be obtained. The dilated
convolution can expand the receptive field without increasing the number of parameters,
but the value DR is too large to produce a grid effect, resulting in the loss of more
feature information, or even the direct loss of the important pixels of the detection target,
which affects the detection performance of the model. In order to avoid the above grid
effect, which leads to the loss of important information about the target, three dilated
convolutions are used in this paper, with DRs of 1, 2, and 3, respectively.

Figure 5. Dilated convolution.

3.2.3. Loss reduction down-sampling module. In this paper, the above two structures are
used to design a loss reduction down-sampling module to reduce the feature loss in the
down-sampling process. As shown in Figure 6, the feature map is first down-sampled by
the focus structure and then passes through two branches, one branch passes through
three dilated convolutions with the size of 3Ö3, the step of 1, and the dilation rate of 1,
2, 3, respectively. It can increase the receptive field of the feature map while avoiding
the grid effect brought by the dilated convolution. The other branch is used as a residual
connection to add to the output of the first branch, and the feature information before
and after convolution is fused.
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Figure 6. Structure of LRDS.

The mathematical expression of the loss reduction down-sampling module is shown in
Formula (1):

OUT = DC3(DC2((DC1(LD(x))))) + LD(x) (1)

where LD denotes the focus down-sampling, DC1, DC2, and DC3 denote the dilated
convolution (dilation rate: 1, 2, 3), and + denotes the add operation.

3.3. Multi-scale channel attention machanism. A typical representative of the chan-
nel attention mechanism is SENet, whose core idea is to globally compress the feature
map and score it in the channel dimension, and adaptively calibrate the weight of each
channel to select important information and ignore unimportant information. Therefore,
the attention of the network to channels unrelated to the detection target can be weak-
ened and the attention of the network to channels related to the detection target can be
enhanced by introducing a channel attention mechanism, thus improving the characteri-
zation ability and detection precision of the model. However, global average polling leads
to a certain degree of spatial information loss.

In the proposed multi-scale channel attention mechanism, multi-scale feature polling
can compensate for the loss of spatial information caused by global average polling to a
certain extent, and then highlight the important channel weights by feature superposition.
The structure is shown in Figure 7, where a feature map of WÖHÖC (W , H, and C are
the width, height, and number of channels of the feature map in order) is input, and its
height and width are compressed by multi-scale adaptive average polling in the W and
H dimensions to obtain 1Ö1ÖC, 2Ö2ÖC, and 4Ö4ÖC features with the global receptive
field in each channel. Then the features of 2Ö2ÖC and 4Ö4ÖC are subjected to general
operations such as dimensionality reduction and then added with the features 1Ö1ÖC to
obtain the features compressed by multi-scale pooling. Finally, the compressed features
are excited and the weights are assigned according to the importance of the channels.

Figure 7. Multi-scale channel attention mechanism.
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3.4. S-BiFPN. Figure 8(a) shows the structure of BiFPN. Unlike the PANet, the Google
team believes that the amount of available effective information provided by different
feature maps to the network is inconsistent, and proposes the BiFPN structure and balance
the degree of their contribution to the network by assigning weights to the feature maps,
so that the network obtain more effective feature information.

Inspired by the BiFPN, the weighted bi-directional feature fusion idea of the BiFPN net-
work is combined with the FPN+PAN feature fusion network and applied to the YOLOv5
module. Since only the last three effective feature layers output by the YOLOv5 backbone
network are utilized for feature fusion, the number of input nodes of BiFPN is changed to
3 to make it consistent in structure. Drawing on the core idea of BiFPN, a shortcut con-
nection from the input nodes to the output nodes is introduced between the nodes of the
effective feature layers with the same resolution, and the shallow feature map with more
detailed information is fully utilized to better balance the contribution of each effective
feature layer to the network, thereby improving the detection performance of the model.

Figure 8. Structure of BiFPN and S-BiFPN.

As is shown in Figure 8(b), P3, P4 and P5 are the input nodes, P4TD is the middle layer
node, P3out, P4OUT and P5OUT are the output nodes. The mathematical expressions of
the output nodes and the middle layer node are shown in the Formula (2)-(5):

P4TD = Conv(
ω1 · P4 + ω2 · Upsampling(P5)

ω1 + ω2 + ϵ
) (2)

P3OUT = Conv(
ω3 · P3 + ω4 · Upsampling(P4TD)

ω3 + ω4 + ϵ
) (3)

P4OUT = Conv(
ω5 · p4 + ω6 · P4TD + ω7 ·DownSampling(P3OUT )

ω5 + ω6 + ω7 + ϵ
) (4)

P5OUT = Conv(
ω8 · P5 + ω9 ·Downsampling(P4OUT )

ω8 + ω9 + ϵ
) (5)

where Pi is each input node; POUT
i is each output node; ωi is each path weight coefficient,

which is obtained by learning; Upsampling and Downsampling denote up-sampling and
down-sampling operations, respectively, which serve to make the resolution of the feature
map for feature fusion consistent; Conv means convolution operation; ϵ denotes learning
rate with a value of 0.0001, which serve to avoid the value instability.
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Figure 9. Partial dataset example.

4. Experiment and Analysis.

4.1. Dataset and experiment environment. In this paper, the experiments mainly
focus on deep-sea plastic debris as the detection target, and the dataset uses the plastic
deep-sea debris dataset published by Fulton et al. [27]. There are 7666 images in the
dataset, including plastic, bio, and rov labels, which represent plastic, biological, and
machine respectively, and the detection precision is represented by AP0, AP1, and AP2

respectively. Before the experiment, the dataset was divided into training sets, test sets,
and validation sets, and the proportions were 0.75, 0.1, and 0.15 respectively.

A partial dataset sample is shown in Figure 9, the first row is the plastic part, the
second row is the rov part, and the third row is the bio part.

The experiments in this paper use Python programming language and Pytorch deep
learning framework to build the model, and the optimizer is SGD, epoch is set to 100,
batch is set to 64, the image size is set to 640Ö640, and the detection threshold is set to
0.5.

4.2. Model evaluating indication. In the object detection task, the correctness of
the detection result is generally determined by the set value of IoU and the confidence
threshold, and the precision of the detection results is judged by mAP .

IoU refers to the overlap ratio between the detection box and the real box, and its
formula is:

IOU =
Area(Detection) ∩ Area(True)

Area(Detection) ∪ Area(True)
(6)
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Figure 10. Precision recall curves.

where Area(Detection) denotes the detection box area, Area(True) denotes the real box
area, ∩ denotes the intersection set, and ∪ denotes the union set.
The mean average precision (mAP ) is generally used to measure the detection effect

of the detection algorithm. The value of mAP is positively correlated with the precision,
and its formula is:

AP =

∫ 1

0

P (R)d(R) (7)

mAP =
1

classes

classes∑
i=1

∫ 1

0

P (R)d(R) (8)

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

where P is the precision rate, R is the recall rate, TP is the true positive sample, FP is
the false positive sample, FN is the false negative sample, and classes is the number of
categories.

The precision-recall curve can be obtained by calculating the above formula, and the
area under the line indicates the AP value. As shown in Figure 10: where Recall denotes
the recall rate and Precision denotes the accuracy rate. From Figure 10, it can be seen that
the YOLOv5-LSMA model has a larger area under the line, the AP value has improved,
and the precision rate and recall rate have also improved.

In order to show more intuitively the improvement effect of this algorithm of these two
detection algorithms, as shown in Figure 11, it can be seen that the algorithm in this
paper effectively improves the accuracy and reduces the leakage rate.

4.3. Comparison and analysis of experiment results. The detection algorithm of
this paper is compared with other detection algorithms, and the comparison results are
shown in Table 2. As shown in Table 2, the algorithm of this paper has the highest mAP of
86.2% compared with Faster R-CNN, SSD, YOLOv2, Tiny-YOLO, YOLOv3, YOLOv7,
YOLOv7-tiny-silu, and YOLOv5. The detection precision of the detection algorithm of



310 J. Han, S. Li and C. Liu

Figure 11. Comparison detection results.

Table 2. Comparison of experimental results.

Methods AP0/(%) AP1/(%) AP2/(%) mAP/(%)

SSD [27] 69.8 6.2 55.9 67.4

YOLOv2 [27] 82.3 9.5 52.1 47.9

Tiny-YOLO [27] 70.3 4.2 20.5 31.6

Faster R-CNN [27] 83.3 73.2 71.3 81.0

YOLOv3 89.1 80.6 69.8 79.9

YOLOv7 88.6 82.5 69.3 80.1

YOLOv7-tiny-silu 88.1 71.6 67.2 75.6

YOLOv5 90.4 80.5 73.7 81.5

YOLOv5-LSMA 91.3 87.8 79.6 86.2

this paper for each category is higher than other models, which reflects the superiority of
the algorithm.

4.4. Ablation experiment. In order to verify the effectiveness of each module, abla-
tion experiments were carried out in this paper. All ablation experiments use the same
experimental environment, experimental parameters, and dataset, and all of them were
improved with the YOLOv5 module as the baseline, and the modules were added to the
baseline algorithm model in turn. The experimental results are shown in Table 3.

As can be seen from Table 3, adding S-BiFPN to the YOLOv5 model, its mAP is
improved by 1.5% compared with the baseline, which better balances the contribution
of each feature map to the network, and the shallow feature of the network is better
utilized. Adding the loss-reducing down-sampling module to the basis of the YOLOv5
module, its mAP is improved by 3.3% compared with the baseline, which effectively
reduces the loss of feature information in the down-sampling process. The introduction
of the dilated convolution based on the YOLOv5 module improves the mAP by 0.4%
compared with the baseline, which effectively improves the deep network receptive field
size. Adding the MCAM module to YOLOv5 improves its mAP by 0.5% compared
with the baseline, and the model is more reasonable in channel weight distribution. In
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Table 3. Comparison results of ablation studies.

Baseline
Dilated
convo-
lution

MCAM S-BiFPN LRDS AP0/(%) AP1/(%) AP2/(%) mAP/(%)

✓ 90.4 80.5 73.7 81.5

✓ ✓ 90.3 81.8 73.6 81.9

✓ ✓ 91.0 82.2 72.8 82.0

✓ ✓ 91.1 81.3 76.4 83.0

✓ ✓ 91.3 84.3 78.7 84.8

✓ ✓ ✓ ✓ ✓ 91.3 87.8 79.6 86.2

summary, the improvement of YOLOv5 in this paper is effective in the detection of deep-
sea plastic garbage.

5. Conclusions. Aiming at the detection of plastic waste in deep-sea scenes, this paper
proposes an improved YOLOv5-LSMA algorithm based on the YOLOv5 detection algo-
rithm. Firstly, the S-BiFPN is used to balance the degree of contribution of each feature
map to the network, so as to make full use of the detailed information of the shallow
feature maps. Secondly, the loss reduction down-sampling module is proposed to reduce
the feature loss of the network during the Neck part down-sampling process. Finally, the
multi-scale channel attention mechanism module is proposed, and the dilated convolution
is introduced to enable the model to better assign the weights of each feature channel and
expand the receptive field of the deep network, which has better detection performance.
The experimental results show that the YOLOv5-LSMA algorithm proposed in this paper
has a better detection effect on deep-sea plastic waste detection. However, the current
model is computationally intensive, has many parameters, and is very difficult to deploy
to resource-constrained removable devices. Therefore, in the future, the algorithms can
be considered to be lightweight so that they can be deployed to mobile devices.
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