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Abstract. As the power system increasingly grows in scale, recent year witness frequent
blackouts at home and abroad, which inflicts serious impact on people’s life and social
economy. In this study, the power grid results are modeled based on complex network
model, and the power grid environment was scheduled and optimized by multi-objective
container cloud scheduling technology. According to the K-Shell framework, the prediction
algorithm was proposed for the prediction of key panel points in the electrified netting.
Then, the complex power grid was monitored and early warned based on the optimal early
warning parameters to optimize distributed power grid in a specific scenario of complex
large-scale power grid, thus providing references for meeting cross-level and cross-center
service coordination requirements in power grid business. Through the results of the
experiment, it is easy to find that the model algorithm come up in this research is able
to predict the key panel points of the power grid effectively and implement effective risk
monitoring and early warning.

Keywords: Container technology; Complex power grid; Key node prediction; Risk
monitoring and early warning

1. Introduction. In this period of time, benefiting from the overall improvement in
manufacturing industry, the electrified netting industry, as an engine of manufacturing
industry, has created remarkable results [1]. In the domestic environment of gradually
open power market, there are more prominent uncertain factors affecting programming
and scheduling of power network, including the randomness of power supply, the fluctua-
tion of load and price, the failure of power network equipment, the changeable cost, etc.
The randomness of power sources refers to the randomness of the power sources that pro-
vide power support in a distributed power grid. Load fluctuation refers to the fluctuation
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in the impedance of components connected to both ends of the power supply in the power
grid and the power generated, converted, and consumed by electric power equipment dur-
ing operation. Price fluctuations refer to the fluctuations in the fees required to use power
grid resources. The failure of power grid equipment refers to the physical failure caused
by some force majeure factors during the operation of the power grid, which prevents
the normal supply of power grid resources in a short period of time. The above variable
costs refer to the cost price changes caused by some alternative energy substances when
using the power grid. These uncertainties result in random power market operation and
power grid operation mode, and also make it difficult for scheduling personnel to accu-
rately quantify the real system risks, which increases pressure for correct operation. In
the meantime, the system function loss due to the failure of the grid system components
greatly impairs the reliability of the power supply system and incurs immeasurable losses
to the society. In the power market environment, it’s of great necessity to realize static
safety check of the power system, select high-risk failure scenarios as the expected fault
set, search for weak system links, formulate prevention and control measures before the
failure, which is an effective way to avoid the system operation risk [2]. Grid stability
can be subdivided into frequency stability, voltage stability and power angle stability [3].
Frequency stability reflects the overall energy supply and demand balance of the power
grid [4]. Power grid faces disturbances such as load fluctuation, line disconnection from
time to time. These disturbances may lead to frequency collapse of the power grid, which
in turn causes cascading failures or blackouts, etc., or even induces more severe conse-
quences and huge losses [5]. Recent research by domestic and foreign academic researchers
reveals that blackouts closely correlate with some key panel points in the electrified net-
ting, while these key nodes are often quite significant to the safety and stability of the
operation of the electrical power systems. If these critical panel points fail, it can easily
trigger chain failure of the power grid, then leading to instability and collapse of the power
grid [6, 7]. Hence, finding a way to identify these key nodes accurately and quickly in line
with the actual condition is crucial for preventing large-scale chain failure. If these key
nodes in the electrical power system are identified accurately and quickly, it can let us
improve the pertinence in protection control strategy, strengthen safety and stability of
the electrical power system, and take precautions against blackouts caused by cascading
failures of the power system [8].

At present, steady progress is made in the containerization transformation of the ex-
isting business and equipment in the power industry. Issues such as different system
functions, high complexity, and multiple coexisting systems of multiple vendors become
major obstacles to the containerized migration of power grids [9, 10]. Containerization
of application system can be carried out mainly from the aspects of system development,
system deployment, operation and maintenance management, thereby achieving joint sys-
tem cloud management [11]. In the current technical means, micro-service architecture
is employed for system design and development, container cluster is adopted for micro-
service deployment, and container cloud operation and maintenance management system
is used for unified management of development, deployment and container cluster of all
systems, thereby forming an organic container-based application cloud platform. Con-
tainer technology represents a virtual server resource sharing mode for building operating
system application instances on demand [12]. Docker is a typical application of container
technology. In many projects developed around Docker, such as container operating sys-
tem, development platform, development tools, big data, system monitoring, etc., Docker
application program interface is mostly used for container management. The container
management system of power grid scheduling cloud application provides containerized op-
eration management of power grid scheduling, covering functions such as deployment and



348 P. Liu, Y. Xu and C. Deng

configuration of container services, definition, configuration, startup, initialization, status
management, service allocation of container service process [13]. With regard to control
service management module, service unit monitoring module and configuration operation
management module, power grid service unit monitoring module supports container clus-
ter monitoring, container monitoring, container application monitoring and application
process monitoring. Configuration power grid operation management module includes
system configuration tool and management process configuration [14, 15].

So far, some research results have been made in the discrimination of critical panel
points in the electrified netting. Some scholars suggested using the weighted average of
node degree and node power as importance indexes of nodes [16]. Some scholars utilized
the decline of network transmission efficiency before and after node failure to characterize
node fragility [17]. Some scholars defined the weight of a node as the sum of the ratio
between the branch power flow of all the edges connected to the node and the branch
capacity limit. On this basis, a fragility assessment method was introduced for nodes [18].
Some scholars used the clustering degree of network nodes after shrinkage to judge node
importance. The node to be solved in the network was integrated with its adjacent
nodes as a new node, and a greater number of branches after the merger suggest greater
importance of the original node [19]. In addition, based on quasi-steady power transfer
distribution factor, some scholars put forward an improved nodal degree evaluation model
combining power system tidal flow information to identify key nodes bearing an important
role in power transmission [20]. From network structure, scholars found that power grid
can maintain stability under most disturbances, but when the key power station node is
attacked, the power grid will experience great decline in synchronization ability [21]. Some
scholars carried out modeling research on cascaded failure of North American power grid.
Combining the actual topology of the electrified netting and thinking about the load and
overload of transmission substations, researchers found that failure in a small number of
substations would trigger network cascading failures [22, 23]. Existing literatures mainly
give considerations to the electrical distance of nodes, coupling connection degree, physical
meaning of electrical system, and network characteristics, as a way to find key nodes of
power grid more efficiently [24, 25]. In order to reflect the local and global importance
of nodes, some scholars modified the node importance matrix to more appropriately rank
node importance [26, 27], and proposed the use of the number of grid lines as an index for
identifying fragile lines [28, 29]. Based on the topology structure and system operation
status, the literature further draws on the power transmission relationship of the power
grid to make up for the shortcomings of the shortest path transmission in the hypothesis
of the existing power grid optimization model [30, 31].

The cloud resource scheduling problem mainly focuses on how to achieve reasonable
allocation of resources such as storage, computing, and network in the cloud computing
environment, and intelligently predict and manage the usage of resources, making the
scheduling process fully reasonable and effortless. The goal of this article is to construct
a high-performance container cloud scheduling technology based algorithm for predict-
ing and monitoring key nodes in complex power grids in the context of cloud resource
scheduling problems. In this research, one kind of cloud resource scheduling model, a
multi-objective container cloud scheduling model and a complex power grid model based
on community environment were constructed to search for the optimal future state and
improve the resource utilization efficiency, thereby providing a feasible operation scheme
for the scheduling and allocation of complex power grid resources. Then, this paper de-
scribed the classical key node prediction methods for power grid nodes. A critical panel
point prediction algorithm was raised based on improved hybrid K-Shell method and op-
timized based on container cloud scheduling. Simulation and comparative empirical study
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were performed on the improved hybrid K-Shell algorithm proposed herein and related
link prediction algorithms, which verified the superiority of the algorithm which was put
forward. This research took the topology structure of complex power grid as the research
object, built a resource scheduling model based on container cloud scheduling technology,
and introduced an efficient improved link prediction algorithm to provide theoretical basis
and practical guarantee for the key node prediction, risk monitoring and early warning in
complex power grid.

This article innovatively achieves many optimization and breakthroughs in models and
algorithms. This article innovatively combines the multi-objective cloud container sched-
uling model with the complex power grid model to achieve intelligent scheduling of power
grid resources in complex community structures. Moreover, the innovative algorithm pro-
posed in this article not only achieves high-quality node clustering, but also improves the
hybrid algorithm based on the neighborhood level of nodes, cloud container scheduling
technology, and optimal warning parameters in real grids, proposing some efficient and
stable innovative algorithms.

2. Model construction.

2.1. Cloud resource scheduling model. During the scheduling of power grid cloud
resources, different cloud resources will be allocated to different users in light of user
needs [32, 33]. First, the expression of cloud resource scheduling task should be calculated
to build the scheduling time matrix. Suppose the set of cloud resources involved in sched-
uling tasks is J, P represents the set of power grid cloud resources to be allocated. Then,
the scheduling task of power grid cloud resources can be described as J = {J1, J2, . . . , Jn},
P = {P1, P2, . . . , Pn}. Ji shows the i th scheduling target, and Pj shows the power grid
cloud resources to be allocated in the j-th scheduling task. The scheduling time matrix
is solved for grid cloud resource. Suppose ETC,ij represents the time consumed by grid
cloud resource scheduling task Ji in allocation of grid cloud resource Pj, and the grid cloud
resource scheduling task Ji requires shortest time ETC,ij when allocating cloud resource
Pj. Then, the scheduling time matrix of grid cloud resource can be calculated, as shown
in Equation (1).

ETC/CT,n∗m =


ETC,11 · · · ETC,1m ECT,11 · · · ECT,1m

...
. . .

...
...

. . .
...

ETC,n1 · · · ETC,nm ECT,n1 · · · ECT,nm

 (1)

In general, scheduling of grid cloud resources is to use the shortest time for scheduling.
xij is used to describe whether cloud resource scheduling task can independently allocate
grid cloud resource Pj. The objective function which belongs to the grid cloud resource
scheduling tasks can be seen in Equation (2).

S(J) = min

(
n∑
i=1

m∑
j=1

ETC,ij ∗ xij

)
, xij = {0, 1} (2)

To further improve the power grid resource allocation effect, this paper adopted a dual-
layer programming-based dynamic allocation algorithm for power grid cloud resources [34].
The multi-objective optimization method is often to calculate the weighted sum of each
objective, implement single objective optimization technique, and then optimize the ob-
jective. When this method is used for optimization, comparison is difficult due to the
inconsistent units between power network objectives of different nature. Moreover, opti-
mization objective is only the weighting of each objective and the operation progress of
each objective during the optimization [35, 36]. A, B respectively represent the upper
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and lower programming; D and d represent the objective function of upper and lower
programming respectively. S and s respectively represent constraint conditions. Both
x and y represent decision variables. The dual-layer programming model is introduced
into the dynamic allocation of power grid cloud resources, and the dual-layer program-
ming theory can be put into use to analyze this dynamic best allocation about power
grid cloud resources [37]. During optimization of dynamic allocation results of power grid
cloud resources, the objective function can be expressed as in Equation (3).

max {φ (Rk, Vj)} =

(∑m
j=1 v

C
j∑n

k=1 R
C
k

+

∑m
j=1 v

M
j∑n

k=1R
M
k

+

∑m
j=1 v

B
j∑n

k=1R
B
k

)/
3 (3)

The above objective function is solved to construct the cloud resource scheduling func-
tion F (·) in the dual-layer programming mode, as shown in Equation (4).

F (·) =

∑n
i=1 xij ∗min

(∑n
i=1

∑m
j=1ETC,ij ∗ xij

)
∗ ECT,n×m

PCT,n×m ∗
∑m

j=1 xij
(4)

2.2. Multi-objective container cloud scheduling model. The multi-objective con-
tainer cloud scheduling model is based on the assumption of rational resource allocation
requests, by controlling the central cloud to control edge cloud clusters, edge cloud nodes,
etc., to achieve the goal of reasonable allocation of cloud resources. By inputting pa-
rameters that express the amount and status of resources, a multi cluster load balancing
allocation scheme is obtained, which reduces the scheduling delay of cloud resources and
improves the average resource utilization rate. Owing to environmental changes, the
present distribution scheme of the grid container cloud changes into possibly non-optimal
present state. This paper aims to find the optimal future state on this basis [38]. This
model is oriented towards multi-node and multi-platform application frameworks, with
tasks between application frameworks independent of each other, so are tasks within the
application frameworks [39, 40]. Suppose the grid data center can supply M physical
resources, which is expressed as the matrix apropm ,m ∈ [1, . . . ,M ]. For instance, aCPU1 in-
dicates the CPU rate affordable for physical machine 1. Each power grid resource shares
the same instruction set, but the same instruction has different execution rates, showing
heterogeneity in memory size, network bandwidth, etc. [41]. If the power grid resources
are not assigned with tasks, it is in the off state; otherwise, it is in the on state. The
upper application framework submits N container tasks, with each represented as the
matrix cpropn , n ∈ [1, N ], prop ∈ PROP. For example, cCPU

1 indicates the CPU resources
required by task 1, and cJOOB1 indicates the job number of task 1 . The mapping scheme
between resources and tasks is indicated as o-1 matrix of N ∗ M , which is expressed
aspm,n,m ∈ [1, . . . ,M ], n ∈ [1, . . . , N ].

The new mapping scheme oNEWm,n is to establish new mapping from the randomly gener-
ated candidate schemes without considering the old one. The allocation of each attribute
resource in the power grid can be calculated using Equation (5).

spropm,1 =
N∑
n=1

(
cpropn oPRESENTm,n + cpropn oNEWm,1

)
(5)

Where, cpropn indicates N container tasks submitted by the upper-layer application
framework. When attempt is made to allocate resources satisfying the task requirements
of n grid containers on the power grid, the allocation scheme concerns the allocation
scheme of the previous n− 1 container tasks and resource demands of the previous n− 1
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container tasks, specifically as shown in Equation (6).

spropm,n = spropm,n−1 + cpropm,n−1o
NEW
m,n−1 (6)

Where, cpropn indicates N container tasks submitted by the upper-layer application
framework. Resource requests for all container tasks must meet the power grid cloud
resource constraints, spropm,N ≤ apropm . For the grid application framework, the fairest distri-
bution mode is to allocate required amount of resources to each upper framework. When
resource supply is between the two, the fairest distribution method is to let some frame-
works with less demand receive the required amount of resources, with the remaining
resources equally shared in other frameworks [42]. Based on this principle, the fairness
function FA(·) of resource and task mapping scheme is determined, as shown in Equation
(7), while the average resource value uAV Gj can be defined as in Equation (8).

FA(·) =

∑J
j=1max

{
1,
(

jvj
uIEDAL
j −1

)2}
−
∑M

m=1

∑N
n=1 o

FXED
m,n jcj,ncvn − 1/jvj(

min{Cvn|n∈[1, N ]}
max{jvj |j∈[1, J ]}

)2 (7)

uAV Gj =

{
uAV Gj−1 +

uAV G
j−1 −jvj−1

J−(j−1)
, jvj−1 < uAV Gj−1

uAV Gj−1 , jvj−1 ≥ uAV Gj−1

(8)

On the premise of meeting equal-value demands, supply of power grid resource should
be minimized to release excess resources, reduce resource waste and lower operating costs,
thereby increasing revenue [43, 44]. The value of releasable physical machine resources

without task load is used to indicate redundancy
∑M

m=1mvmW.W ∈ {0, 1} means the grid
node is on. However, after releasing the load-free grid cloud resources, the amount of grid
resources supplied by the container cloud should be not less than the scale of resources
which is in need for the task [45, 46]. The difference between supply and demand is
spread unevenly across multiple grid nodes. Balanced load distribution favors the system
stability and reliability. To this end, the power network load uniformity B(·) can be

defined, as shown in Equation (9). Where,
∑N

n=1
oFLXDc
m,n cvn
mvm

indicates the ratio between
the actual amount of resources affordable for each physical machine and the amount of
supplied resources.

B(·) = 1−
M∑
m=1

(∑N
n=1

F,n,nFIXDcvn

mvm
− satisfication∑M

m=1mvm-remain

)2

∗ W

M
(9)

2.3. Construction of complex power grid model. Complex power grid can be ex-
pressed as G(V,E), in which, V = {vi | i = 0, . . . , n}, E = {eij = eji = {vi, vj} | vi, vj ∈
V }.N can be the quantity of panel points in |V | = N , edge eij means connections between
vi, vj. In most literatures, the adjacency matrix A = [aij]V×V · aij = 1 is used to indicate
presence of edge between nodes vi, vj. Otherwise, aij = 0. The community structure in
the grid usually means that the nodes can be divided into subsets C = {C1, C2, . . . , Ck},
so that the panel points Cj have a close connection when facing the same subset, while
the links between various subsets can be relatively sparse. Existing studies mainly focus
on disjoint power grid structures with each node belonging to only one community [47].
Nevertheless, power grids often contain overlapping community structures where nodes
may have multiple community members. Suppose C = {C1, C2, . . . , Ck} is the community
structure of grid G(V,E). For any two communities Ci and Cj (Ci ∩ Cj = ϕ) in C,C is a
disjoint group if i ̸= j. Otherwise, C is referred to as overlapping cluster.
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In this study, V is viewed as a set of randomly generated labels, which has nothing to
do with the original features of grid nodes. Also, it is hypothesized that the set V can be
arbitrary traversal, and ordered subset of node is expressed as S ⊆ V = {v1, v2, . . . , vt}.
Where, vi ∈ S means i ∈ {1, . . . , t}. Ordered set of damage nodes in a given graph G
is expressed as = {s1, . . . , st}. Literature [48] proposed the use of distance from damage
node to simulate opponent vector rG(u | S) with regard to node u ∈ V , as shown in
Equation (10).

rG(u | S) = (dG (u, s1) , . . . , (dG (u, st)) (10)

Where, the distance dG(u, v) can be calculated by the quantity of edges which belong
to the path with the least distance connecting u and v. This vector is known as the metric
representation of u about S. It can be hypothesized that the system can re-identify these
nodes, and these nodes have a unique metric identifier relative to the set of damage nodes
under their control [49]. Thus, the grid manager must ensure that each node in the
released social network graph is at least indistinguishable from minimum number of other
nodes. This property can be defined by the concept of k inverse solution set as follows.
Suppose there is a maximum positive integer k in the graph G = (V,E) that makes each
v ∈ V (G)\S have nodes ω1, ω2, . . . , ωk−1 ∈ V (G)\S, and ω1, ω2, . . . , ωk−1 are mutually
different and meet the constraints shown in Equation (11).

rG(v | S) = (rG (ω1 | S) = · · · = rG (ωk−1 | S) (11)

If the damage node set S is compelled to be the inverse solution of k, then for every
victim node v, at least k − 1 other nodes cannot be distinguished from v by merely
examining the metric representation about S.

3. Algorithm design.

3.1. Classical key node prediction method. With the surging number of grid nodes
and the continuous optimization of the grid risk control technology in the industry, the
node-set identification of grid node influence has turned into a significant problem of
academic attention [50]. The existing methods simply fall into two categories. In centrality
measurement, scalability of one panel point depends on the location of this meshwork.
The panel point with higher degree figure in degree centrality [51] is more influential.
In closeness centrality [52], nodes with smaller total distances from other nodes have
greater propagation capability. In intermediate centrality [53], the first is to determine
the path with the least distance between the two panel points in the meshwork. The
quantity of paths where panel point vi is located depends on the centrality of panel point
vi. In k-shell centrality [54], the closeness between node vi and graphics core depends
on its propagation level. This measure depends on a k-shell figure to each panel point
vi, so those panel points near graph core have higher k-shell figure. k-shell iteration
factor centrality [55] is an improved k-shell centrality, which tries to divide panel points
with various propagation capability figures into one single shell according to the iteration
process in each k-shell stage. In clustering arrangement [56], panel points with smaller
relevance between adjacent nodes are deemed as panel points which have influence. The
centrality value of node vi can be calculated as shown in Equation (12).

CRi = f (cci)
∑
vj∈Ni

(
doutj + 1

)
(12)

Where, doutj can be the out-degree of panel point vj, cci can be the clustering coefficient
of panel point vi, Ni represents the neighborhood set of node vi, with function f being
defined as 10−cci . In hierarchical k-shell centrality [57], one hierarchical standard can be
first put forward to describe the topological position of panel points relative to the graph
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core in an increasingly accurate way , and the impact degree of each panel point can be
calculated according to the location of adjacent panel points. In entropy centrality [58],
the concept of entropy can be described to test the neighbor effection distribution of
panel points. For entropy centrality, nodes with greater neighbor influence are viewed as
influence nodes.

The seed set selection method is to search for a network node subset to solve the
node-set identification problem of power grid influence, which can be roughly divided into
two subcategories: (1) Greedy algorithm [59], wherein the propagation model is used to
determine the optimal subset, which is invalid from the perspective of time if the network
scale keeps expanding; (2) Method of using the centrality measure and thinking about the
distance from one panel point to another [60]. It searchers for the best seed set to ensure
all the selected set parts have minimal overlap. Providing that panel pointing vi is joined
into the seed set as an effective panel point, the centrality of its adjacent nodes will be
lowered by 1 , so that the seed set is selected within an appropriate distance. The process
continues its iterations until the first k panel points can be selected. Degree discount [61]
is similar to single discount, but different from the neighbor centrality reduction of node
vi, as shown in Equation (13).

ddi = dj − 2tj − (dj − tj) tjp (13)

Where, dj can be the degree of panel point vj, tj ca the part of neighboring nodes of
panel point vj which can be selected as a seed set member, and p can be the probability
of information propagation from panel point vi to vj. In degree distance [28], the panel
point which owns the highest order can be taken as the candidate panel point of the seed
set member in each stage. Providing that the distance from the candidate panel point to
the present seed set member exceeds the threshold, then, the panel point can be joined
into the set which is composed with seed. Then, Initial Multi-Spreader Nodes selection
(IMSN) [62] firstly ranks nodes using degree values, shells, and hybrid measure of neighbor
difference in various shells. The panel point with the biggest degree can be selected in
each stage. Providing that the coincidence from the candidate panel point to the present
seed set is a bit little, the panel point can be joined into the seed set as the part which is
new. In degree penalty [63], firstly, panel points can be arranged in order by degree. In
each period, a panel point is selected from the list of netting panel points and joined into
the subset vl. Providing that a panel point can be joined into the seed set as the part
which is new, then panel point vj can be located nearby, while node vl is located near vj.
According to the penalty function shown in Equation (14), its centrality value decreases
respectively. The sorted list is updated with changes in the neighbor centrality value of
node vi. This process keeps until the members with the quantity of k are selected.

{cj(t+ 1), cl(t+ 1)} = {cj(t)− di · w, cl(t)− dj.w
2} (14)

Where, cj(t) shows the centrality of panel point vj at the period t, and w shows the
factor which is used to implement penalties. In the coloring means which depend on
the distance [63], panel points can be sorted for the first according to the centrality
measurement method. Each panel point can be then assigned with a ranking based
index. Hence, the distance from one panel point to another whose same index exceeds
the threshold. Panel points which have the same index can get simultaneous sorting.
Each group of panel points can be then ranked in order depending on the centrality.
Additionally, the k members which own the highest ranking in the group can be regarded
as the seed set members. In heuristic clustering [64], the similarity measure between the
two nodes vi and vj is first introduced to perform clustering on nodes according to the
similarity degree. Firstly, k panel points can be selected in a random way which comes
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from the meshwork as clustering centers, and other panel points can be divided into
various clusters according to the similarity between nodes and clustering centers. The
power grid node with the highest similarity which belongs to each cluster can be deemed
as a clustering center which is new, while other panel points can be reassigned to the
cluster according to the similarity of cluster central nodes until the algorithm realizes its
convergence. Finally, the cluster center can be described as a seed set member, and the
similarity about the two panel points vi and vj can be calculated as shown in Equation
(15).

Simij = λ ∗ A(2) ∗ A(3) (15)

Where, A(r) shows the quantity which belongs to the paths with the length of r about
the double panel points vi and vj, and λ can be an adjustable parameter which is within
the interval of (0, 1).

3.2. Key node prediction algorithm based on improved hybrid K-Shell method.
It is easy to know that the classical hybrid K-Shell means can be used to reduce mono-
tonicity. Node degree, node distance measurement and node K-Shell index are used to
calculate the KSH (K-shell-hybrid) figure of all panel points in a complex meshwork, with
panel points ranked in order depending on this, specifically as shown in Equation (16).

k sh (vi) =
∑

vj∈ϕ(vi)

α (vi, vj) + µ ∗ k (vj)
d2 (vi, vj)

(16)

Where, ϕ (vi) is the neighborhood r-magnitude of node vi. α(vi, vj) is known as the

K-Shell power and can get the definition of
√
(ks(vi) + ks(vj)) · ks(vi) is the K-Shell

exponent of panel point vi. ks (vj) can describe the K-Shell index of adjacent panel point
vj. k(vj) represents the degree of panel point vj, and d(vi, vj) is the distance which is
shortest between panel points vi and vj.µ can be a free parameter which owns a figure
within the interval from o to 1 . Moreover, this method can be extended to incorporate
the ksh value of adjacent nodes, thus yielding the extended K-Shell mixed value (ksh+).
In this way, (ksh+)can show more positive information than (ksh), and its improved
expression is shown in Equation (17).

k sh+ (vi) =
∑

vj∈ψ(vi)

k sh (vj) (17)

The improvement of the hybrid K-Shell method in the complex grid scenario requires
the condition that node degree influence of the neighborhood decreases with the decrease
of the neighborhood level (l). That is, nearby neighbor has greater contribution than
the distant neighbor. In the hybrid K-Shell method, 0 < µ < 1 is used to reduce the
node-degree influence of panel points which are neighboring on the importance of the
selected panel point. The paper introduces a mathematical expression based on the
network parameter µ. The network parameter r gives consideration to the maximum
neighborhood level. For instance, the network diameter is d and r ≤ d. In studies with
different r values, Namtirtha et al. [41] observed that for most practical networks, node-
ranking performance will not be further improved if r > 3. This study also verified this,
with r = 3 set in all experiments. Hence, a function expressing µ as l is shown in Equation
(18).

µ(l) =
2 ∗ (r − l + 1)

r ∗ (r + 1)
(18)

Where,
∑r

l=1 µ(l) = 1, l represents neighborhood level, r is the maximum level of the
considered neighborhood. As a matter of fact, the nearest (l = 1) neighborhood has
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the highest µ value. When l = r, that is, if the farthest neighbor is considered, the
µ value becomes smaller. Moreover, according to the hypothesis, the outermost core
node (ks = 1) has lower importance than the inner core node. By multiplying the K-Shell
exponents between two nodes and then dividing them, it can more effectively demonstrate
the mutual influence between the two nodes. so the improved K-Shell can be defined as
shown in Equation (19).

αI (vi, vj) =
√

(ks (vi) ∗ ks (vj)) (19)

When both nodes in the above function derive from the inner core, its importance will
be greater, but if any one or two nodes belong to the outermost layer, its importance will
be smaller. Obviously, the original K-Shell power function is increasingly important for
panel points with ks = 1, but the improved K-Shell power function has bigger weight
on the inner shell panel points. In particular, when the complex network has incomplete
global structure, the reliable local proxy shows the sum of the nearest neighbors when
facing the measurement impact of panel points [65]. Based on this, this study incorporated
node degree k in the equation, and used parametrized µ as a basic discount for geodesic.
So, in the proposed improved hybrid K-Shell, the function IS (vi) of node vi with respect
to parameters α and µ can be expressed as shown in Equation (20).

IS (vi) =
r∑
l=1

∑
vj∈ϕ(vi,l)

αl (vi, vj) + µ(l) ∗ k (vj)
d2 (vi, vj)

(20)

Where, vj is magnitude l of the neighborhood (ϕ (vi, l)) with respect to node vi. Magni-
tude l rises to the maximum level r under consideration. Algorithm 1 reports the internal
mechanism of the improved hybrid K-Shell means which is proposed herein.

Algorithm 1 Improved hybrid K-Shell algorithm in the power grid scenario

Input: G(V,E), k, ks, r, m
Output: Rank[vi, IS(vi)]
1: The list Rank contains the nodes with corresponding IS(vi) value assigned
2: for vi ∈ V do
3: for level l = 1 : r do
4: Compute µ(l)
5: for vj ∈ (vi, l) do
6: Compute formula (19)
7: Compute the shortest distance between node vi and vj as d(vi, vj) = l

8: IS(vi, l)+ =
αI(vi,vj)+µ(l)∗k(vj)

d2(vi,vj)

9: end for
10: end for
11: Update the node entry in Rank [vi, IS(vi)]
12: end for

3.3. Algorithm optimization based on container cloud scheduling. Grid con-
tainer cloud scheduling is a new algorithm system for fitting and simulation of complex
grid system. Grid container is compatible with uniform distribution. The set gets the
definition of Zl,b(t) = {cl,b(t), vl,b(t)}. According to the construction level, power grid con-
tainers can be divided into two categories: primary level (with no subdivision downwards)
and parent level, as shown in Equation (21).

{Z0,b(t);Zl,u(t)} = {c0,b(t), v0,b(t);Zl−1,q(t), q ∈ Q} (21)
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Where, Q is the number set of the grid subcontainers, in other words, the parent
container is a set composed of containers with a smaller level. Concerning about the time
parameter t, the process which is used to realize an input/output can get the description
of an evolutionary process: overflow occurs when the level of content added to the grid
container exceeds the capacity which belongs to the container itself. Hence, the input
process about the original container, and the input process of the parent container can
get the definition in Equation (22) and Equation (23), respectively.

o0,b(t) =

{
0 c0,b(t) ≤ v0,b(t)
c0,b(t)− α0,b(t) ∗ o0,b(t)− v0,b(t) c0,b(t) > v0,b(t)

(22)

Zl,u(t) = {A(cl,u(t− 1), x(l, u, t), Q) + cl,u(t− 1), vl,u(t)} (23)

The parent container level has some basic similarities about the original level, and the
reduction function defines the way that the input from the parent container acts on the
child container. Thus, the parent container output process can get the definition and can
be seen in Equation (24).

cl,u(t) = cl,u(t− 1) +
∑
q∈Q

ol−1,q(t) (24)

Due to the intrinsic consistency between container and uniform distribution, different
container combinations can be replaced by one or more parallel or upward equivalent con-
tainer combinations. In this study, by encoding the output values of the central container,
the discrete state sequence S = {s0, s1, . . . , su} is established, and the known combination
of peripheral container coefficients are traversed to build a probabilistic structure based
on input and output, thus obtaining various peripheral output coefficients which owns the
uniformity to each central output state, and it can be seen in Equation (25).

ST (t) = su : [[Qu0, qu0] , [Qu1, qu1] , . . . , [Quku , quku ]] (25)

Where, quv is the occurrence times of different coefficient combination Qa,b correspond-
ing to the current state su. Pattern recognition based on container framework yields
peripheral output coefficient table mainly by fitting. The resulting evolution data can
be used for pattern classification. Seen from the nature of the method, the container
evolution itself is based on the peripheral output coefficient table, with the fitting pro-
cess equivalent to the training process, so the training method is also referred to as direct
fitting method. The core construction idea of the training method is to construct the com-
bination of feature sequences as the input, and there are two strategies for constructing
related output: Strategy one is the container fitting system with category as the output,
which yields the relevant peripheral output coefficient table through fitting and can be
directly used for pattern classification; Strategy two is to realize the mapping evolution-
ary outputs to intervals of o-1 and output the results through the CUP evolution system.
Finally, multi-classification mapping is performed, as shown in Equation (26).

Si =
eVi∑
j∈J

eVj (26)

In the real grid environment, the negative impact on the damage node often cannot
exceed a certain limit, so a constraint is applied in this study, namely, the upper bound
value c of Ψ2, in which c > 0 is the design parameter. In optimal design, the optimal early
warning problem can be solved as shown in Equation (27), and the optimal parameters
can be calculated as shown in Equation (28). Finally, the fixed point equation of the
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optimal early warning parameters can be established as shown in Equation (29).

min
w,b

Ψ1(w, b) s.t. Ψ2(w, b) ≤ c; 0 ≤ w ≤ 1; b ≥ 0 (27)

∂b(w)

∂w
=

c ∗ ᾱRc
(1− c) ∗ (c− ϵᾱRC)

(28)

∂β∗

∂w
= (1− β∗)

∂quR (β∗)

∂w
+β∗∂q

u
F (β∗)

∂w
+
∂β∗

∂w

(
quF (β∗) + β∗∂q

u
F (β∗)

∂β∗ − quR (β∗) + (1− β∗)
∂quR (β∗)

∂β∗

)
(29)

Based on this, the optimized early warning parameters can be solved by the improved
algorithm proposed herein, as shown in Equation (30).

wl+1 =

[∣∣∣∣wl − κl
∂Ψ1

∂w

∣∣∣∣
(w,b)=(wl,b(wt))

]
[0,1]∩{b(w)≥0}

(30)

Where, [·]A is the projection of A, and {κl} is the decreasing sequence of step size.

4. Simulation and empirical research.

4.1. Experimental design. In this study, the three power grid structures used in liter-
ature [15, 16, 17] were taken to access the performance of the means which has been put
forward. This study realized timing simulation depending on MATLAB software, imple-
mented the process on Python framework through the two servers with Linux operating
system (Intel Xeon processor (34GHZ) 64GB memory). Each machine had 6 CPUs. There
were two Titan X GPU and 100 GB RAM of NVIDIA. Since the public opinion control
model in the experiment may have different results in each run, the evaluation result was
set as the average value after 200 iteration runs. The research team used Tensorflow1.5.1
to implement the algorithm proposed herein and make comparison with the correlated
algorithms. The experiment was conducted by grouping, dividing the data into 10 groups.
The means of cross validation could be adopted, that is, the data set was divided into 10
equal parts, with a group of data selected as the test set each time and the other groups
used as the training set. Finally, the average value was calculated, resulting in three cases
of 2-fold, 4-fold and 10-fold respectively. All data was saved in CSV format in MySQL
database for data processing. Table 1 describes the features of the power grid data set.

Table 1. Feature description of the electrified netting data set.

Network
No.

Data set
No.

Type
Node

number
Number of
node edges

Average
degree

Node average
path

Clustering
coefficient

1 Data set 1 Directed 2414 64959 3.19 2.12 0.429
2 Data set 2 Undirected 2310 79610 4.18 3.41 0.120
3 Data set 3 Directed 4285 75592 3.12 2.24 0.245

In this study, the proposed improved Container Hybrid K-Shell (CH-KS) algorithm
was compared with reference algorithms including Degree Centrality (DC), Intermediate
Centrality(IC), Closeness Centrality (CNC), Ant Colony Optimization (ACO), Swarm
Optimization (SWO), K-Shell Centrality (KSC), and Weighted K-Shell Degree Neighbor-
hood (WKS-DN). Based on literature [30], two precision functions were fully utilized:



358 P. Liu, Y. Xu and C. Deng

Table 2. Area under curves of each data set in different methods.

Cross validation level Data set name

Optimization framework of grid
container cloud scheduling

DC IC CNC ACO

2-fold
Type 1 data set 0.4282 0.3532 0.3893 0.5355
Type 2 data set 0.4461 0.2411 0.4048 0.4985
Type 3 data set 0.3019 0.3199 0.3002 0.4810

4-fold
Type 1 data set 0.4318 0.3849 0.4012 0.5838
Type 2 data set 0.4579 0.3191 0.4127 0.5492
Type 3 data set 0.3628 0.4292 0.5228 0.5051

10-fold
Type 1 data set 0.4583 0.4055 0.4828 0.6638
Type 2 data set 0.4910 0.3525 0.5485 0.5729
Type 3 data set 0.4739 0.4660 0.5829 0.5391

Cross validation level Data set name

Optimization framework of grid
container cloud scheduling

SWO KSC WKS-DN CH-KS

2-fold
Type 1 data set 0.6010 0.5939 0.6584 0.8472
Type 2 data set 0.6239 0.5328 0.6749 0.8329
Type 3 data set 0.5029 0.5930 0.7381 0.8493

4-fold
Type 1 data set 0.6122 0.6638 0.6692 0.8938
Type 2 data set 0.6283 0.6573 0.6839 0.8492
Type 3 data set 0.6650 0.6019 0.7680 0.8204

10-fold
Type 1 data set 0.5383 0.6782 0.6949 0.8930
Type 2 data set 0.5839 0.6839 0.7382 0.8575
Type 3 data set 0.5291 0.6371 0.7029 0.8957

Note: All the values in bold indicate that the corresponding algorithm has good performance.

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Additionally, their
calculation means can be seen in Equations (31) and (32) respectively.

MAE =
1

N

N∑
i=1

|fi − yi| (31)

RMSE =

√√√√ 1

N

N∑
i=1

(fi − yi)
2 (32)

The power grid optimization problem is usually considered as the task of binary clas-
sification. In the evaluation confusion matrix of binary classification tasks with two cat-
egories [11], True Positive (TP) illustrates that the quantity of links is predicted in a
correct way. True Negative (TN) illustrates the correct quantity of unpredicted links.
False Positive (FP) illustrates that the quantity of links is predicted in an incorrect way.
False Negative (FN) illustrates the incorrect quantity of unpredicted links. Based on this,
the following indexes can be determined, such as true positive rate/recall rate/sensitivity,
etc. Where, True Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate
(TNR) and Precision can be calculated with reference to literature [26]. Evaluation was
performed based on the following two indexes, Area Under the Receiver Operating Char-
acteristics curve (AUROC) [18] and Average Precision (AP) [19]. The ROC curve is the
curve between the true positive rate (sensitivity) which locates on the Y-axis and the false
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positive rate (1-specificity) which locates on the X-axis. Additionally, the area beneath
the ROC curve can be the single point summary statistics between [0, 1], which can be
calculated using the trapezoid rule of summarizing all trapezoids under the curve. The
link prediction method has a AUROC value greater than 0.5 , and a higher AUROC value
indicates better performance of the link prediction method. The average precision is the
single point summary value calculated based on different recall thresholds, which is the
average precision of the recall value in the interval [0, 1], specifically as shown in Equation
(33). Where, p represents the precision under different thresholds of recall rate r, and R
is the set of different thresholds.

AP =
R∑
k=1

p(k)∆r(k) (33)

4.2. Experimental results. Table 2 reports the area under the curve of the proposed
CH-KS improved hybrid K-Shell algorithm and other reference methods in the power
grid data set. It was found in this study that the proposed CH-KS improved hybrid K-
Shell algorithm had better experimental results in all data sets. Table 3 shows that the
figures of average precision of the proposed CH-KS improved hybrid K-Shell algorithm
and other reference algorithms in power grid data sets. The results reveal that the CH-KS
improved hybrid K-Shell algorithm proposed herein has a high average precision value in
all experimental data sets of power grids. By comparison with the running time which
belongs to the algorithm which can be single can be found easily in Table 4, it can be
found that compared with other existing algorithms, the CH-KS improved hybrid K-Shell
algorithm which is put forward in the research has significantly improved the efficiency
when operating in the power grid data set. Table 5 reports that the proposed CH-KS
improved hybrid K-Shell algorithm owns lower costs than other compared algorithms
when facing topological power grids.

With reference to literature [36], two precision functions were fully utilized: Mean Ab-
solute Error (MAE) and Root Mean Square Error (RMSE). In addition, Table 4 reports
MAE and RMSE values of the proposed CH-KS improved hybrid K-Shell algorithm and
other reference algorithms in different power grid topologies. The higher the MAE and
RMSE figures are, the smaller the precision of the predictive optimization algorithm is.
According to Figure 1, the proposed power grid optimization algorithm is generally supe-
rior to other methods, because the proposed CH-KS improved hybrid K-Shell algorithm
features rapid response, real-time adjustment and optimization of the electrified netting,
which can minimize the loss of the electrified netting too.

5. Conclusion. Information system is an important component of power grid and an im-
portant technical means for differentiated competition of the electrified netting. Nonethe-
less, with this information system being constructed, there are problems such as increas-
ing system scale and growing need for resources. Through mathematical algorithms and
computer simulation operations, better cloud resource allocation solutions can be pro-
vided [65, 66, 67, 68, 69, 70]. In order to get the solutions of the issues above, in the be-
ginning, this paper constructed the cloud resource scheduling model, the multi-objective
container cloud scheduling model and the complex power grid model to represent the
relevant research variables in the power grid cloud resource scheduling and community
environment. Then, this paper described the classical critical panel point prediction
method in power grid risk control, proposed a critical panel point prediction algorithm
depending on improved hybrid K-Shell method, and carried out algorithm optimization
based on container cloud scheduling algorithm. By comparing the algorithm model pro-
posed in this article with numerical experiments of similar algorithms, it can be found that
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Table 3. Average precision of each data set in different methods.

Cross validation level Data set name

Optimization framework of grid
container cloud scheduling

DC IC CNC ACO

2-fold
Type 1 data set 0.2859 0.2729 0.3382 0.3291
Type 2 data set 0.2039 0.2049 0.4818 0.4293
Type 3 data set 0.2371 0.2385 0.3919 0.3527

4-fold
Type 1 data set 0.3271 0.3291 0.3418 0.3472
Type 2 data set 0.3391 0.2410 0.3204 0.4839
Type 3 data set 0.3204 0.2394 0.4491 0.4311

10-fold
Type 1 data set 0.2395 0.3417 0.4372 0.4638
Type 2 data set 0.3581 0.3921 0.3340 0.4953
Type 3 data set 0.3849 0.3100 0.4839 0.4552

Cross validation level Data set name

Optimization framework of grid
container cloud scheduling

SWO KSC WKS-DN CH-KS

2-fold
Type 1 data set 0.5395 0.5873 0.6497 0.6240
Type 2 data set 0.5856 0.5443 0.7354 0.8063
Type 3 data set 0.5748 0.6054 0.7703 0.8352

4-fold
Type 1 data set 0.5663 0.6281 0.6617 0.6512
Type 2 data set 0.6438 0.5985 0.6794 0.7445
Type 3 data set 0.6192 0.5474 0.7592 0.8186

10-fold
Type 1 data set 0.6479 0.5847 0.6873 0.7299
Type 2 data set 0.6753 0.6012 0.6944 0.7742
Type 3 data set 0.6191 0.6126 0.8205 0.8742

Note: All the values in bold indicate that the corresponding algorithm has good performance.

Table 4. Comparison results of algorithms in power grid topology.

Index DC IC CNC ACO

Actual value
MAE 0.6383 0.6738 0.6239 0.5371
RMSE 0.7362 0.6988 0.6582 0.5481

Optimal value
MAE 0.5353 0.6074 0.6248 0.5743
RMSE 0.6353 0.6428 0.6739 0.5938

Indicator SWO KSC WKS-DN CH-KS

Actual value
MAE 0.5382 0.5644 0.4272 0.2371
RMSE 0.5463 0.5738 0.4371 0.2492

Optimal value
MAE 0.4739 0.5192 0.4472 0.1281
RMSE 0.5291 0.5332 0.4738 0.2455

Note: The bold indicates that this algorithm is relatively optimal under this parameter condition.

the complex power grid key node prediction and risk monitoring early warning algorithm
based on container cloud scheduling technology constructed in this article has excellent
performance.

Future research directions for the innovative algorithm model proposed in this article
are as follows. First, in the prediction of key power grid nodes, uncertainty of both nodes
and edges can be considered to further improve the ability which belongs to the algorithm
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Table 5. Comparison results of algorithms in power grid topology for cost.

Index DC IC CNC ACO

Actual cost 143.53 153.90 110.42 105.53
Optimal cost 135.41 135.45 105.33 119.33
Indicator SWO KSC WKS-DN CH-KS

Actual cost 115.33 95.45 126.82 48.31
Optimal cost 135.86 84.30 93.59 38.01

Note: The bold indicates that this algorithm is relatively optimal under this parameter condition.

Figure 1. Time complexity comparison of algorithms

which can be proposed to resist uncertainty. Second, attempt can be made to optimize
the cloud application container management system of power grid scheduling based on
Kubernetes framework for the seek of further improving the efficiency and precision of
the proposed algorithm. Finally, advanced technologies such as depth autoencoder can
be used to get further improvement of the precision and efficiency which belongs to the
critical panel points prediction method for power grids.
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