
Journal of Network Intelligence ©2024 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 9, Number 1, February 2024

Enhancing Clustering Performance: A Fuzzy
Subspace Clustering Method with Local Correlation

and Sparse Feature Selection

Fei Yan

College of Computer and Information Engineering
Xiamen University of Technology

Xiamen, 361024, China
fyan@xmut.edu.cn

Xiaodong Wang∗

College of Computer and Information Engineering
Xiamen University of Technology

Xiamen, 361024, China
xdwangjsj@xmut.edu.cn

Longfu Hong

College of Computer and Information Engineering
Xiamen University of Technology

Xiamen, 361024, China
1393895211@qq.com

∗Corresponding author: Xiaodong Wang

Received June 12, 2023, revised September 17, 2023, accepted November 22, 2023.

Abstract. Despite the growing popularity of recent clustering techniques, most conven-
tional clustering methods often suffer from overlooking the local correlation among the
low-dimensional feature space of data points. In this scenario, they may encounter chal-
lenges in managing high-dimensional data. To address this issue, this article proposes a
fuzzy subspace clustering method that jointly combines feature selection and local learn-
ing. Concretely, the proposed method incorporates local relationships among data points
into the procedure of the clustering center calculation, which is optimized according to the
local tightness of data points, thereby improving the clustering accuracy and robustness.
Simultaneously, to filter out noisy features or abundant features, a sparse feature selec-
tion module is dynamically integrated into the clustering process. After that, the “local
learning, feature selection, and clustering” procedure is repeated until the objective func-
tion converges. We apply our method to several widely used datasets, showing superior
results to other state-of-the-art methods. Specifically, our method surpasses the second
best compared method by over 4% ACC on the Glass dataset, validating its effectiveness.
Keywords: Fuzzy clustering, Feature selection, Local learning.

1. Introduction. Clustering is a fundamental data processing technique that organizes
data into distinct clusters based on the principle that similar entities tend to group to-
gether, as seen in the proverb “birds of a feather flock together.” This method permits
a high degree of similarity within each cluster while minimizing the similarity between
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samples from distinct clusters. Over time, clustering methods have been extensively in-
vestigated and successfully implemented in a variety of fields, including data mining [1, 2],
pattern recognition [3, 4, 5], and image processing [6, 7, 8].

Table 1. Comparison of recent KM type subspace clustering methods
Methods type subspace local W/O EVD NR
KM hard ✗ ✗ ✓ ✗
Xu et al. [8] hard ✓ ✗ ✗ ✗
Bezde et al. [10] soft ✗ ✗ ✓ ✗
Li et al. [11] hard ✓ ✗ ✗ ✗
Hou et al. [12] hard ✓ ✗ ✗ ✗
Wang et al. [14] hard ✓ ✗ ✗ ✗
Xu et al. [17] soft ✓ ✗ ✗ ✗
Ours soft ✓ ✓ ✓ ✓

Existing clustering methods can be divided into different groups, such as partition-
based methods, hierarchical methods, density-based methods, and model-based methods,
depending on the rules of data aggregation in their cluster process [9]. Among them,
partition-based methods, such as K-means (KM), have garnered significant attention
from researchers due to their simplicity and low complexity. However, conventional KM
is known to be sensitive to initial clustering centers and susceptible to noise, making it
prone to local optimization and difficult to handle high-dimensional data, which often con-
tain noisy features. To solve this problem, some scholars have proposed to integrate the
subspace learning algorithm into KM, leading to the development of a range of subspace
K-means (KM) variants. For example, Li et al. [11] introduced the maximum margin cri-
terion (MMC) into KM, which can quickly extract low-dimensional feature subspaces and
effectively avoid model instability caused by the singularity of the total scattered matrix,
achieving better results on multiple high-dimensional datasets. Hou et al. [12] proposed a
framework that integrates primary component analysis (PCA) into conventional KM and
can flexibly balance the contribution of the matrix of the within-class scatter matrix and
the between-class scatter matrix, thus achieving high clustering performance on different
types of datasets. Although the aforementioned KM type subspace clustering methods can
effectively reduce data dimensions and mitigate noise interference by transforming high-
dimensional data into low-dimensional space, their sub-spatial solution procedure requires
complex eigenvalue decomposition, thus posing difficulties in handling high-dimensional
data [13]. In order to address this challenge, Wang et al. [14] proposed a fast KM type
subspace algorithm that introduces feature selection into the KM model. This approach
allows for the identification of representative features during the clustering process and
achieves superior clustering performance with reduced computational time across diverse
high-dimensional datasets.

However, the above methods use a “hard” cluster mechanism, that is, one data point
could only belong to one single cluster. In this case, when there are noise samples in
the dataset, the cluster performance of these methods may become unstable [15, 16]. To
address this problem, researchers have proposed to use the “soft” clustering strategy to
loosen the membership of each data point so that it can belong to multiple clusters at
the same time, thereby improving the model’s resistance to interference with noisy data.
Among them, fuzzy c-means (FCM) is the most representative “soft” clustering method
and has achieved superior performance than KM in a variety of application fields [17].
Nevertheless, similar to KM, FCM only considers the global geometry information among
data during its membership calculation process and is difficult to handle data samples
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with varying densities. To address this limitation, Xu et al. [17] proposed a robust FCM
clustering algorithm that utilizes the l2,1 norm-based distance calculation between data
points and their cluster centers. This approach can effectively suppress the impact of noise
on the model. Building upon this foundation, Zhang et al. [18] proposed to combine FCM
with non-negative spectral clustering to enhance the robustness of the clustering process.
This method is built on the similarity between samples, simultaneously optimizing the
clustering indicator matrix and the Laplacian matrix of the data. As a result, it achieves
better results across multiple datasets. However, they still simply average all the samples
within each cluster to determine the cluster centers, which may bias the clustering results.
Besides, the clustering process for the aforementioned “soft” clustering methods remains
confined to the data’s original feature space, which consumes expensive computational
resources when processing high-dimensional data. Lastly, the presence of noisy features
in high-dimensional data substantially compromises the clustering performance of these
methods. Table 1 shows the comparison of recent KM type subspace clustering methods,
where “W/O EVD” refers to “without eigenvalue decomposition” and “NR” refers to
“noise resistance”.

To solve the above issues, this article proposes a fuzzy clustering approach that jointly
integrates feature selection and local learning. Our approach incorporates local neigh-
boring relationships among data points into the calculation of cluster centers, thereby
optimizing them according to the local tightness among data points and improving the
clustering accuracy. In addition, our method combines feature selection with sparse struc-
ture into the dynamic clustering process to avoid the interference of noisy features. Exper-
imental results on multiple datasets verify the effectiveness of our method. The technical
contribution of our work lies in its pioneering approach to local fuzzy subspace clustering,
which addresses the limitations of existing methods. By leveraging local data relation-
ships and feature selection, our approach offers a comprehensive solution to enhance the
quality of clustering outcomes.

Below is the outline of this article. Section 2 provides an overview of related works.
Section 3 explains our local fuzzy subspace clustering method along with the optimization
strategy. Experimental results and ablation studies are reported in Section 4, followed by
the conclusion in Section 5.

2. Related Works. Given a dataset X = [x1, x2, . . . , xn] ∈ Rd×n containing n data
points with d features, KM type clustering methods aims to divide X into K groups,
making a higher similarity degree of samples in the same cluster and a lower similarity
degree of samples between different clusters. Let V = [v1, v2, . . . , vc] ∈ Rd×c be the cluster
center matrix and vi be the center for the ith cluster, where c refers to the number of
clusters. Suppose Y = [y1, y2, . . . , yn]

T ∈ {0, 1}n×c is the cluster indicator matrix for X.
yij = 1 if the ith sample belongs to the jth cluster, yij = 0 otherwise. Then, the objective
function of KM can be formulated as:

min
Y ∈{0,1}n×c,vj

n∑
i=1

c∑
j=1

yij ∥xi − vj∥22 . (1)

As indicated in previous studies [19], KM is sensitive to the initial cluster centers for
its hard membership determination strategy and is prone to local optimization. To solve
this issue, FCM, which incorporates fuzziness into the membership degree of data points,
was introduced, allowing one data point to belong to multiple categories at the same
time. Specifically, in FCM, the fuzzifier parameter m (ranging from [1,∞]) determines
the extent to which each data point belongs to a certain cluster. A higher value of the
fuzzifier parameter m indicates a greater degree of fuzziness in the clusters. This means
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Figure 1. Clustering mechanism comparison of our method and FCM

that data points can have membership degrees spread across multiple clusters, resulting
in softer boundaries between clusters. Conversely, when m is smaller, it will lead to
sharper boundaries between clusters, with data points having higher membership degrees
in a single cluster. This flexible framework of FCM makes it applicable to a wide range
of datasets. Mathematically, FCM relaxes KM’s class indicator matrix Y from discrete
{0, 1} to continuous [0, 1], where yij represents the extent to which the ith data point
belongs to the center of the jth cluster. It should be noted that FCM requires the sum
of each row of Y to be 1, that is, Y 1c = 1n, where 1c and 1n are the c-dimensional
and n-dimensional column vectors of all ones, respectively. In other words, by ensuring
Y 1c = 1n, the membership degrees of FCM can be viewed as probabilities or likelihoods
of a data point belonging to different clusters. The objective function of FCM can be
formulated as follows:

min
Y 1c=1n,Y >0,vj

n∑
i=1

c∑
j=1

ymij ∥xi − vj∥22 , (2)

where Y > 0 indicates that all of the elements in Y are strictly greater than zero.

3. Our Method.

3.1. Motivations. While FCM is effective in capturing global correlation relationships
between samples and cluster centers, it often overlooks the significance of local adjacency
relationships among data points. Consequently, in the presence of outliers within the
input data, FCM may exhibit noticeable clustering errors, as depicted in Figure 1. In
particular, Figure 1 (a) demonstrates that when the data to be processed contains dense
regions or outliers, such as the blue triangle, FCM tends to calculate distances between
each data point and the global cluster centers, leading to erroneous clustering outcomes.
Based on the above analysis and drawing inspiration from local learning techniques, we
argue that FCM can benefit from incorporating local relationships (purple dashed lines)
among samples into its clustering procedure. Concretely, when a sample has neighboring
samples that belong to a specific cluster, it is more likely to share similar characteristics
with its neighbors and should be influenced accordingly during the membership assign-
ment process. By considering the similarity in cluster assignments of neighboring samples,
we can enhance the FCM’s ability to capture the local structure of the data and better
handle datasets with complex structures, reducing the impact of outliers and improving
the overall clustering accuracy. For example, as shown in Figure 1 (b), after incorporat-
ing local inter-sample correlations, our method effectively mitigates the interference of
noisy data and attains superior clustering results. Moreover, from Figure 1, it is evident
that these two-dimensional data points exhibit a discriminative cluster structure in the
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low-dimensional feature subspace (x-axis), indicating the existence of abundant features
among the data. Motivated by this observation, we propose integrating a feature selection
technique into FCM. By identifying the most informative features, we can focus on the
relevant aspects of the data, thereby improving clustering accuracy and efficiency. We
substantiate these claims by demonstrating the efficacy of our approach on a synthetic
dataset, as detailed in Section 4.2.

3.2. Formulation. In this section, we formulaically introduce our proposed method.
Given an input dataset X ∈ Rd×n, we suppose xi and xj are the ith and the jth samples,
respectively. Follow the previous studies [20], we impose a knn-based distance matrix

D̃ ∈ Rn×n, where D̃ij = ∥xi − xj∥22 if xj is in the k-nearest neighbor of xi, D̃ij = 0
otherwise. We want to pay more attention to the local similarity of samples. To achieve

this goal, for Dij at the ith row and jth column of D̃, we determine it by normalizing D̃ij

as follows:

Dij =
exp(−

D̃ij
t

)∑
l∈N (xi)

exp(−
D̃il
t

)
, (3)

where N (xi) is an index set which consists of the indexes of the k-nearest samples of xi.
t is a parameter to control the spread range of similarity. Following previous works [21],

we set t as the mean value of the ith row of D̃, that is, t = 1
n

∑n
l=1 D̃il. Obviously, for Dij

in the ith row and the jth column of D, Dij ranges from [0, 1] and represents the local
similarity of xi and xj.

Based on the definition of FCM in previous section, we combine the local similarity
information into the membership of FCM as

∑n
r=1 driy

m
ij . Clearly, for the ith sample

xi, the possibility that xi belongs to the jth cluster is closely related to its neighbors. In
other words, if most of xi’s neighbors belong to the jth cluster, then xi itself also probably
belongs to the jth cluster. Formally, we propose to integrate the local information encoded
in D into the objective function in Equation (2) as follows:

min
Y,vj

n∑
i=1

c∑
j=1

n∑
r=1

driy
m
ij ∥xi − vj∥22

s.t.
c∑

j=1

yij = 1, yij > 0.

(4)

As mentioned earlier, FCM’s clustering performance is limited when processing high-
dimensional data due to the influence of noisy features. To overcome this limitation, re-
searchers proposed embedding subspace learning into clustering to obtain a low-dimensional
feature subspace during the clustering process. In these methods, clustering and sub-
space learning are jointly optimized to determine the optimal feature subspace, resulting
in enhanced clustering performance. However, most of these subspace clustering meth-
ods require complex feature decomposition operations and consume a large amount of
computational resources. To address this issue, inspired by previous works [22], this ar-
ticle proposes a dynamic combination of feature selection with Equation (4), introducing
a special sparse constraint into the construction process of the feature selection matrix.
The incorporation of this sparse structure allows the optimization process of our proposed
model to operate efficiently without relying on complex feature decomposition operations.
As a result, our method can effectively deal with high-dimensional data while mitigating
the computational burden.
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Suppose W = [w1, w2, . . . , wp] ∈ {0, 1}d×p, where p represents the reduced number of
features and wi ∈ {0, 1}d×1 refers to the ith column of W . In order to facilitate efficient
feature selection, we assume that matrix W maintains a sparse structure, wherein each
column contains only one nonzero entry. These nonzero entries in W correspond to the
indices of the selected features for the input data. Formally, W should satisfy W T1d = 1p

and there are p entries of W1p equal to 1 and the remaining elements equal to 0, that is,
∥W1p∥0 = p, where 1d and 1p are the d-dimensional and p-dimensional column vectors of
all ones, respectively. After integrating W into Equation (4), we arrive at:

min
W,Y,vj

n∑
i=1

c∑
j=1

n∑
r=1

driy
m
ij

∥∥W Txi −W Tvj
∥∥2
2

s.t.
c∑

j=1

yij = 1, yij > 0,

W ∈ {0, 1}d×p,W T1d = 1p, ∥W1p∥0 = p.

(5)

The advantages of the similarity matrix D. According to the construction process of
D above, it effectively captures the similarity vectors that depict the relationships between
each sample and its neighbors, allowing for a representation of the local relationships
within the dataset. The importance of one sample can be inferred from the density of
connections it exhibits with its neighbors. Specifically, by examining the sums of columns
in matrix D, we can assess the importance of each sample. Samples reflecting large sums
in D indicate a higher contribution to the overall structure and should be emphasized
during the clustering procedure. In contrast, samples with smaller sums may indicate
potential noise or less relevance to the underlying patterns and should be treated with
caution as they could be noisy or less informative data points. For instance, given the
following input matrix X with one outlier, x1 = [−5 − 5]:

X =

[
−5 2 5 5 5 6 8 8 7.5 8.5 8 9
−5 3 1 3 3.5 3.5 3 4 5 5 6 5

]
. (6)

We depict X in Figure 2. We can see that X is composed of two distinct classes,
which are labeled as blue and green. Additionally, there exists one outlier in the dataset,
which is labeled orange. From the discussion in Section 1 and the conventional objective
functions of KM and FCM in Section 2, this outlier may bias the cluster center, resulting
in a degraded clustering performance.

1

2
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4
5 6
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9 10

11

12

outlier

Figure 2. Illustration of X in Equation (6). Clearly, X consists of two
classes (labeled in blue and green) and one outlier (labeled in orange)
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We can construct the similarity matrix D with 5-nearest neighbors as follows:

D =



0 0.351 0.246 0.160 0.141 0.102 0 0 0 0 0 0
0 0 0.192 0.346 0.334 0.119 0 0 0.009 0 0 0
0 0.040 0 0.473 0.254 0.193 0.040 0 0 0 0 0
0 0.006 0.083 0 0.565 0.339 0.006 0 0 0 0 0
0 0.008 0.032 0.558 0 0.391 0 0 0.011 0 0 0
0 0 0 0.403 0.490 0 0.038 0.038 0.031 0 0 0
0 0 0 0 0 0.086 0 0.689 0.086 0.086 0 0
0 0 0 0 0 0 0.362 0 0.264 0.264 0.008 0.102
0 0 0 0 0 0 0.007 0.272 0 0.367 0.272 0.082
0 0 0 0 0 0 0.001 0.126 0.183 0 0.126 0.564
0 0 0 0 0 0 0.002 0.055 0.363 0.363 0 0.217
0 0 0 0 0 0 0.005 0.111 0.085 0.688 0.111 0



,

(7)
where the column associated with sample x1 is labeled in red. From Equation (7), we can
see that the outlier exhibits relatively loose relations with other samples (the elements in
D:1 are all zero). By incorporating the definition of Equation (5), it becomes evident that
our proposed method systematically assigns a weight of 0 (

∑n
r=1 dr1 = 0) to outliers, thus

successfully mitigating their interference.

3.3. Optimization. Our clustering model in Equation (5) contains unknown variables
W , Y , and V , which are jointly non-convex, and W is a discrete variable, making it
difficult to directly obtain its closed solution. In light of this difficulty and inspired by
the methodology outlined in reference [14], this article proposes the following iterative
optimization approach for solving this problem. Specifically, we alternatively optimize
one of these unknown variables by considering the remaining variables as constant values.
The detailed optimization procedure is listed as follows:

1) Firstly, fix Y and W to solve V . The objective function in Equation (5) can be
converted to:

min
V

n∑
i=1

c∑
j=1

n∑
r=1

driy
m
ij

∥∥W Txi −W Tvj
∥∥2
2
. (8)

Equation (8) is equivalent to solving each column of matrix V separately. Take its jth
column vector vj as an example, to optimize vj, we take the derivative of Equation (8)
w.r.t. j and make the derivative result zero. Then, we have:

n∑
i=1

n∑
r=1

driy
m
ijWW Tvj =

n∑
i=1

n∑
r=1

driy
m
ijWW Txi. (9)

In Equation (9) above, due to the special structure of W, the
n∑

i=1

n∑
r=1

diry
m
rjWW T on the

left-hand side of Equation (9) is singular and cannot be directly used to solve vj. However,
if we take a careful observation, we can find out that the elements of vj correspond one-to-
one with the elements of xi that are set to zero by WW T . In other words, vj and xi share
the same index set of zero entries. Therefore, we only need to solve the non-zero entries
of vj. Concretely, we can directly remove the WW T on the left side of Equation (9) to
solve vj, and get the following formula:

vj =

∑n
i=1

∑n
r=1 driy

m
ijWW Txi∑n

i=1

∑n
r=1 driy

m
ij

. (10)
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2) Secondly, fix V and W to solve Y . The Lagrange function of the objective
function in Equation (5) can be expressed as:

L (yij, λi,Λ) =
n∑

i=1

c∑
j=1

n∑
r=1

driy
m
ij

∥∥W Txi −W Tvj
∥∥2
2
+

n∑
i=1

λi

(
1−

c∑
j=1

yij

)
− ΛY, (11)

where λi and Λ are Lagrange multiplier. By combining the KKT condition of the Lagrange
function in Equation (11), we can obtain:

Λ = 0

λi =

(
c∑

j=1

(
mµ2

ijdii
) 1

1−m

)1−m

yij =

(
mµ2

ij

) 1
1−m(∑c

j=1

(
mµ2

ij

) 1
1−m

) ,
(12)

where µij = ∥W Txi −W Tvj∥22.
3) Finally, fix Y and V to solve W . Let ŷij =

n∑
r=1

driy
m
ij , the objective function in

Equation (5) can be converted to:

min
W

n∑
i=1

c∑
j=1

Tr
(
W T ŷij(xi − vj)

T (xi − vj)W
)

s.t. W ∈ {0, 1}d×p,W T1d = 1p, ∥W1p∥0 = p.

(13)

Considering the special structure of W in Equation (13), it can be found that the opti-
mal solution of W , that is, the entries of non-zero elements, is the subscript corresponding
to the first p smallest elements on the diagonal of matrix M , where M can be represented
as:

M =
n∑

i=1

c∑
j=1

ŷij(xi − vj)
T (xi − vj). (14)

Based on the above optimization analysis for our objective function, we summarize our
algorithm in Algorithm 1.

In this discussion, we offer a brief overview of the complexity associated with Algo-
rithm 1. The primary computational components involve the generation of the similarity
matrix D, the determination of the clustering center matrix, the computing of the cluster
indicator matrix Y , and the updating of the feature selection matrix. The complexity
of the aforementioned operations is O(dnlog(n)) (K-D tree solution), O(dn), O(nc), and
O(dnc). Therefore, our method can be applied to large-scale high-dimensional data and
is efficient for real-world applications.

4. Experiments.

4.1. Experimental Setting. Compared methods: In order to verify the effectiveness
of our method, seven popular clustering methods are selected for comparison. The relevant
comparison methods are described as follows:

1) KM: A classic hard clustering algorithm, which is chosen as the baseline for this
article.

2) FCM [10]: A classic fuzzy clustering algorithm that introduces a “soft” membership
calculation strategy.
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Algorithm 1 The optimization procedure for Equation (5)

Input:
The input data X ∈ Rd×n

The number of clusters c
The number of neighbors k
The reduced feature numbers p
The fuzziness parameter m

Output:
The cluster indicator matrix Y

1: Randomly initialize the cluster indicator matrix Y and make it satisfy Y T1c = 1n

2: Construct the similarity matrix D
3: Randomly initialize feature selection matrix W and and make it satisfy W T1d =

1p, ∥W1p∥0 = p
4: repeat

5: Compute the cluster center matrix V , that is, vj =

n∑
i=1

n∑
r=1

driy
m
ijWWT xi

n∑
i=1

n∑
r=1

driymij

6: Update Y according to yij =
(mµ2

ij)
1

1−m(∑c
j=1(mµ2

ij)
1

1−m

) , ∀i, 1 ≤ i ≤ n,∀j, 1 ≤ j ≤ c

7: Set the subscript corresponding to the first p smallest elements on the diagonal of
M in Equation (14) to 1 for the corresponding elements in W , and 0 for the rest

8: until Convergence

3)MMCKM [11]: A subspace clustering algorithm that imposes the maximum margin
criterion to solve “small sample” problems.

4) DEC [12]: A discriminative subspace learning framework, which jointly optimizes
PCA and KM while incorporating a single balancing parameter to regulate the influence of
both within-class scatter and between-class scatter matrices on the clustering procedure.

5) RSFKM [17]: An algorithm that introduces sparse constraints into the fuzzy C-
means clustering process, which can effectively reduce the impact of noisy data on clus-
tering results.

6) SRDEKM [8]: An enhanced KM type clustering method that leverages a re-
weighted optimization strategy to mitigate the impact of noise by imposing non-square
constraints on the distance calculation of each sample and its cluster center.

7) FAKM [14]: A fast clustering method that combines feature selection and K-means
clustering. It also uses the adaptive loss function to obtain the cluster indicator matrix,
which can quickly process large-scale high-dimensional data.

Datasets. We select various types of experimental data validation to verify the effi-
cacy of the proposed method, including one synthetic dataset and six publicly available
datasets. Among them, the synthetic dataset is artificially designed to analyze the un-
derlying mechanism of the proposed method. This dataset consists of two distinct sets of
data points distributed in a two-dimensional space. The first set, referred to as Cluster1,
consists of 200 randomly generated bottle-shaped data points with X-axis coordinates
ranging from [−1, 1] and Y-axis coordinates ranging from [−3, 3]; The second set, referred
to as Cluster2, comprises 200 circular data points. To generate Cluster2, we initially cre-
ate a 2D data point set of 200 samples distributed within a radius of [0.5, 1]. After that,
we apply an offset of 8.8 in the X and Y coordinate directions, resulting in the final data
point set for Cluster2. In addition to this synthetic dataset, we also introduce six popular
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publicly available datasets, including three UCI datasets (Glass, Breast, and Vehicle)1,
Umist2, Yale3, and WebKB [23]. Table 2 lists the detailed descriptions of the selected
datasets.

Table 2. Detailed description of our selected six publicly available datasets
Dataset number of classes number of samples dimensionality tuned feature range
Glass 6 214 9 {3,4,5,6,7,8}
Breast 2 699 10 {2,3,4,5,6,7,8,9}
Vehicle 4 846 18 {3,4,5,6,7,8,9,10}
Umist 20 575 644 {100,200,300,400,500}
Yale 15 165 1024 {100,200,. . .,900,1000}
WebKB 7 814 4029 {50,100,150,200,250,300}

To ensure a fair experimental comparison, the hyperparameters (if any) of all compared
methods in this article are set to the optimal values recommended in the original paper of
each method. In cases where the original paper does not recommend optimal parameters,
the grid-search approach introduced in [14] is applied to determine the optimal parameters.
Concretely, the search range is defined as {10−6, 10−4, 10−2, . . . , 102, 104, 106}. For fuzzy
type clustering methods like FCM, RSFKM, and our method, the fuzziness parameter m
needs adjustment, and the search range is set to [1.0, 1.2]. All experiments in this article
were implemented in an environment with a 3.7GHz CPU, 16GB of memory, and a 64-bit
Windows 10 operating system.

In this experiment, two evaluation metrics, that is, accuracy (ACC) and normalized
mutual information (NMI) are used to measure clustering performance [14]. Higher values
of both of these evaluation metrics indicate superior performance. Each compared method
is repeated 20 times on each dataset, and the average along with the standard deviation
of the experimental results corresponding to the optimal parameters are reported.

4.2. Results on the synthetic dataset. Firstly, a comparison and analysis with FCM
on the synthetic dataset were conducted, and the clustering results are shown in Figure
3. Figure 3 (a) shows the ground truth labels, and the cluster centers of the clustering
results are highlighted with dark large circles and diamonds. The figure reveals that
the data points on the mouth of the bottle-shaped dataset in Cluster1 are more densely
concentrated, whereas the data points on the body of the bottle-shaped dataset are scat-
tered. The data points in Cluster2 exhibit an overall concentration. From the clustering
results of these two compared methods, it can be observed that FCM has deviations in
the calculation of its clustering centers, resulting in misclustering of bottle mouth and
circle into a single cluster, as shown in Figure 3 (b). On the contrary, our method in
Figure 3 (c) achieves perfect clustering results. The reason may be that our method not
only calculates the membership between the data points and the cluster centers, but also
considers the adjacent relationships among data. In this case, the clustering center cal-
culated by our method is more inclined towards the data points with larger weight values
in each cluster (such as the bottle mouth (dense area)), which can obtain more accurate
clustering results. After we repeat the two compared methods 20 times on this dataset,
the average ACC of FCM is 74.2%, while our method is 100%. In this experiment, the
parameter k of our method is set to 200, the fuzziness parameter m is 1.35, and p is 2.

To comprehensively analyze the clustering performance of our method across diverse
application scenarios, we apply it to six open-source datasets and compare it with various

1http://archive.ics.uci.edu/ml
2http://images.ee.umist.ac.uk/danny/database.html
3http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html
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Figure 3. The visualization clustering results of FCM (b) and our method
(c) on the synthetic dataset

popular clustering methods. Table 3 and Table 4 show the comparison results under the
ACC and NMI evaluation metrics, respectively. From the results, we have the following
observations: 1) On most datasets, FCM achieves better clustering performance than KM,
indicating that incorporating the fuzziness mechanism into KM can enhance clustering
performance. 2) All subspace clustering methods, such as MMCKM, DEC, SRKEKM,
FAKM, etc., consistently outperform KM on most datasets, and most of their clustering
results are also more stable compared to KM (with smaller variance), indicating that
mapping high-dimensional data to low-dimensional subspaces helps reduce feature noise
and improve clustering performance. 3) Compared to traditional FCM, RSFKM achieves
superior results on some datasets with low-dimensional features such as Glass, Break, and
Vehicle. This suggests that introducing a sparse constraint mechanism into the cluster
center update process can improve FCM’s anti-interference ability against sample-level
noise. However, RSFKM has poorer clustering performance than FCM when process-
ing high-dimensional data such as Umist, Yale, and WebKB. The discrepancy can be
attributed to the clustering update process of RSFKM still employing the Euclidean dis-
tance calculation method in high-dimensional feature space, which is susceptible to noisy
features. 4) Our method consistently achieves the best clustering results across most
datasets. For instance, under the ACC evaluation criterion, our method surpasses the
second-highest method by over 4% on the Glass dataset, over 2.6% on the Yale dataset,
and nearly 1.9% on the WebKB dataset, illustrating the effectiveness of our method.

Table 3. Performance comparison using the ACC criterion with different
clustering methods on six datasets. We observe that our method obtains
the best results in most cases

Glass Breast Vehicle Umist Yale WebKB

KM 46.79± 4.07 95.28± 0.00 36.95± 0.75 42.79± 2.17 43.68± 4.37 56.64± 1.18
FCM 47.99± 3.71 95.27± 0.00 37.17± 0.72 44.30± 1.93 46.72± 1.72 55.17± 1.24

MMCKM 46.73± 2.47 95.42± 0.00 38.06± 0.00 43.74± 2.01 45.50± 2.86 53.28± 2.64
DEC 47.24± 2.82 95.42± 0.00 40.40± 0.90 43.56± 2.45 47.73± 3.14 57.13± 3.53

SRDEKM 47.87± 3.73 83.12± 0.00 42.07± 1.98 43.85± 2.38 46.06± 2.77 52.93± 2.99
RSFKM 49.35± 5.70 96.28± 0.00 38.89± 1.63 40.66± 1.61 43.52± 2.61 53.00± 1.60
FAKM 49.53± 5.96 95.57± 0.00 44.13± 2.38 44.35± 3.27 48.56± 4.82 67.09± 2.42
Ours 53.73± 2.41 96.42± 0.01 43.15± 0.54 44.45± 1.26 51.17± 2.33 68.92± 0.00

4.3. Convergence Analysis. To demonstrate that our iterative optimization algorithm
proposed in Algorithm 1 in Section 3.3 can monotonically reduce the objective function
value of Equation (5) until the model converges, we record the objective function values
throughout the iterative optimization process of our method on six datasets, as depicted
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Table 4. Performance comparison using the NMI criterion with different
clustering methods on six datasets. We observe that our method obtains
the best results in most cases

Glass Breast Vehicle Umist Yale WebKB

KM 32.77± 2.49 70.49± 0.00 11.32± 2.28 64.57± 1.70 51.44± 3.88 15.12± 1.37
FCM 33.68± 2.35 70.59± 0.00 11.38± 2.14 64.57± 1.14 53.81± 1.74 18.86± 1.09

MMCKM 34.25± 1.75 71.17± 0.00 10.41± 0.03 65.23± 1.59 51.86± 2.70 17.45± 0.94
DEC 33.62± 1.37 71.17± 0.00 10.20± 0.00 65.53± 1.41 54.19± 2.20 18.53± 0.92

SRDEKM 33.92± 4.10 29.72± 0.00 11.85± 3.68 65.02± 1.79 52.44± 3.01 17.34± 0.91
RSFKM 32.68± 3.51 75.60± 0.00 12.17± 1.62 60.16± 1.04 50.58± 2.26 14.10± 3.07
FAKM 33.81± 3.83 71.92± 0.00 17.87± 2.41 63.89± 2.39 54.63± 3.55 16.72± 1.42
Ours 37.44± 0.38 76.29± 0.40 15.98± 0.98 63.90± 0.72 53.66± 2.11 16.23± 0.00
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Figure 4. Convergence analysis of our method on different datasets

in Figure 4. From the results, it can be seen that our method converges on all the selected
datasets, albeit with varying convergence speeds. Generally, our method converges within
30 optimization iterations, indicating its efficiency.

4.4. Ablation Study. Our method consists of three core modules: the local learning
module, the feature selection module, and the membership fuzziness module. These three
modules are controlled by three hyperparameters, namely: 1) The parameter k, which
is used to build the similarity matrix, and governs the range of local relations among
data. A larger value of k directs our clustering model towards analyzing more global
information. 2) The parameter p, which determines the sparsity of the feature selection
matrix W , and controls the number of retained features during the clustering process. A
smaller value of p, leads to a reduced number of features and lower data dimensionality.
3) The parameter m, which sets the fuzziness level of our model. In this section, we only
focus on verifying the effectiveness of the first two modules, that is, the parameters k and
p. The sensitivity analysis of the parameter m will be discussed in Section 4.5.

In order to validate the efficacy of the local learning module and the feature selection
module, we examine their impacts on our clustering model in Equation (5) by individu-
ally removing each module. Specifically, the local learning module is removed from our
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Table 5. Performance comparison with our proposed two modules, that
is, local learning and feature selection, on the Glass dataset

Locality Feature selection ACC NMI

✗ ✗ 47.86± 3.76 34.04± 1.79
✓ ✗ 52.99± 0.42 36.53± 0.91
✗ ✓ 52.15± 2.31 36.42± 0.75
✓ ✓ 53.73± 2.41 37.44± 0.38

clustering model by setting k = 1, transforming the similarity matrix D into an identity
matrix. Consequently, our model solely focuses on each sample individually and ignores
the impact of its adjacent samples. Similarly, by setting p = d and initializing W as an
identity matrix, we remove the feature selection module. The clustering performance of
our method with different module combinations on the Glass dataset is shown in Table 5.
It is important to note that according to Equation (5) and the analysis in Section 2, when
the local learning module and the feature selection module are removed (for brevity, we
call it NON-LF), our method will degrade to FCM. From the results (the second row) of
Table 5, we observe that after removing both of these two modules, the performance of our
method is also close to FCM, confirming the aforementioned inference. Subsequently, we
remove only one module at a time and observe performance improvements. For example,
after adding the local learning module (the third row), our method outperforms NON-LF
by over 5.1% in terms of ACC. After adding the feature selection module (the fourth row),
our method outperforms NON-LF by nearly 2.4% in terms of NMI. Besides, after we add
both of these two modules, we obtain the best clustering performance. These results and
observations affirm the effectiveness of each module within our method.

4.5. Parameter Sensitivity. As described in Section 4.4, our method incorporates three
hyperparameters to control the effect of different modules on clustering. This section
focuses on discussing the sensitivity of each parameter separately. Firstly, we fix the
parameter k = 5 and analyze the parameters m and p. Three datasets, that is, Breast,
Umist, and Yale, are selected for analysis. From the results in Figure 5, it can be seen
that the performance of our model with different parameters m and p varies on the
selected datasets. For example, our model obtains the best ACC on the Breast dataset
when p ranges from [1.0, 1.05] and p ranges from [2, 4]. On the Yale dataset, our method
performs well when m ranges from [1.02, 1.05] and p ranges from [100, 400]. In addition,
it is important to note that the parameter p is used to control the number of retained
features, where a larger value of p implies more features being retained. Interestingly,
from the results on these three datasets, we can find out that increasing p does not always
lead to higher ACC, indicating the presence of redundant features in the data. This once
again demonstrates the importance of feature selection in this article.

Next, we fix the parameters m = 1.1 and p = d/2, and analyze the clustering perfor-
mance changes of our model with different k on different datasets. The results are shown
in Figure 6, with darker colors indicating higher values. From the results, it can be seen
that our method is greatly influenced by the parameter k. For example, on the Umist
dataset, a smaller value of k, such as k = 1, results in lower clustering performance, and
a similar trend also occurs on the Yale dataset. Additionally, when k becomes too large,
the clustering performance of our model may also deteriorate. For example, on the Yale
dataset, when k > 15, our clustering performance shows a significant downward trend
compared to that of k = 5. The above analysis highlights the fact that our method has
different optimal values of k on different datasets. Generally speaking, across the six
datasets of this experiment, our model approaches the optimal solution when k = 5.
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(a)Breast (b)Umist (c)Yale

Figure 5. Sensitivity analysis of parameters m and p of our method on
different datasets

Figure 6. Sensitivity analysis of parameters k of our method on different datasets

5. Conclusions. This article presents a local fuzzy clustering method with feature se-
lection, which can effectively address the challenges encountered in existing subspace
clustering methods. These challenges include the neglect of local correlations among
samples and vulnerability to noisy features. The proposed method overcomes these lim-
itations by integrating local adjacency relationships among samples into the clustering
center calculation process, thereby improving clustering accuracy. Moreover, our method
can dynamically combine sparse feature selection to mitigate the influence of noise inter-
ference. The experimental results show that our proposed method can achieve excellent
clustering performance across multiple datasets, verifying its effectiveness.

In future research, we aim to further optimize the construction process of similarity
matrices. This can be achieved by integrating adaptive learning algorithms to dynam-
ically construct similarity matrices and reduce their impacts on noisy features in high-
dimensional data. In addition, we will also explore the application of the proposed method
in other fields, such as image segmentation, natural language processing, and more.
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