
Journal of Network Intelligence ©2024 ISSN 2414-8105

Taiwan Ubiquitous Information Volume 9, Number 1, February 2024

Natural Gas Transfer Pump Fault Diagnosis on
Multi-Sensor Fusion and Machine Learning

Xu-Bin Dong∗, Chen-Yong Li

School of Electronic Information
Chongqing University of Engineering

Chongqin 4001320, China
xubindong0826@sina.com, 15111820484@163.com

Sofia Patel

College of information technology
Waikato Institute of Technology
Hamilton 3240, New Zealand

qv6290@163.com

∗Corresponding author: Xu-Bin Dong
Received August 30, 2023, revised October 21, 2023, accepted December 28, 2023.

Abstract. Machine learning (ML) techniques have great engineering value in the field
of natural gas transfer pump fault diagnosis. However, the traditional spectral analysis
method is difficult to extract the characteristic components of the fault in transmission
pump fault diagnosis. In addition, the existing fault diagnosis methods cannot accurately
distinguish what fault mode the fault component belongs to. In order to solve the above
problems, this paper proposes a natural gas transfer pump fault diagnosis method based
on multi-sensor fusion and machine learning. Firstly, the vibration signals of the natural
gas transfer pump are collected by multiple acceleration sensors, and the original data
are processed by Complementary Ensemble Empirical Mode Decomposition (CEEMD) to
obtain multiple vibration fault characteristic IMF components. Then, the IMF compo-
nents are denoised by Tunable Q-factor Wavelet Transform (TQWT). As an improved
method of wavelet transform, TQWT can obtain data that can express all the features of
the original data with less noise by adjusting the Q-factor. Finally, the local and global
kernel functions are linearly summed using weights to form a multi-core support vector
machine to identify vibration fault features. The experimental results show that the com-
bination of CEEMD and TQWT can effectively eliminate modal aliasing and obtain IMF
components that clearly characterise fault features. Meanwhile, the fault diagnosis accu-
racy of the multicore support vector machine is improved from 77.5% to 87.6% compared
with the existing methods.
Keywords:Conveyor pump; Fault diagnosis; Empirical modal decomposition; Support
vector machine; Acceleration sensor

1. Introduction. With the rapid development of the global natural gas industry, natural
gas transfer pumps have been widely used and have now become an indispensable and
important mechanical equipment in the process of natural gas extraction, transmission and
pressurisation. However, transfer pumps may directly lead to failures during operation
due to human factors or other factors. The occurrence of transfer pump failures can
directly hinder the daily operation of the entire natural gas system [1, 2]. In order to
reduce the economic property losses caused by natural gas transfer pump failures, it is
urgent to research and develop advanced fault diagnosis techniques.
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Currently, the core theory in the field of mechanical fault diagnosis is to judge or predict
the state of mechanical operation by monitoring the state information in the process of
mechanical operation and combining data analysis and mechanical fault theory. The
purpose of mechanical fault diagnosis is to ensure that the power equipment can run
stably for a long time and at full load [3, 4]. As mechanical equipment tends to be
intelligent and precise, resulting in the production and manufacturing cost of mechanical
equipment is also higher and higher. If the equipment is damaged, the repair cost will also
be quite high. Being able to repair the faults in time when they first occur can minimise
the repair costs.

In the early stage of the development of detection technology, people diagnosed faulty
equipment based on their subjective experience [5]. Through sound perception or visual
observation, people can rely on their past experience to diagnose the faulty equipment’s
working condition. This method does not have an objective theoretical basis, so there
is no fixed model or principle to follow. Due to a strong subjective consciousness, the
empirical analysis method often results in many detection errors [6]. With the continuous
maturity of detection technology, expert systems, artificial neural network technology and
support vector machine technology on fault diagnosis have been gradually developed [7,
8].

Mechanical fault diagnosis technology is a kind of multidisciplinary integration of sci-
ence and technology, which has been developed rapidly in the 1960s thanks to the emer-
gence of fast and efficient Fourier transform. Nowadays, the emerging signal analysis tech-
nology (filtering technology, spectral analysis technology) and intelligent control technol-
ogy (expert system, neural network) are tried to be applied in the field of fault diagnosis,
which has led to the increasing improvement of mechanical fault diagnosis technology.
Mechanical fault diagnosis technology mainly includes two aspects of condition moni-
toring technology [9, 10] and fault diagnosis technology [11, 12]. Condition monitoring
technology is mainly the application of certain means (such as sensors, signal collectors,
etc.) to track and monitor the operating status of mechanical equipment [13]. Diag-
nostic technology, on the other hand, is to analyse the collected relevant information and
judge the possible mechanical failure of the equipment according to the mechanical failure
theory.

The main purpose of condition monitoring technology is to collect information related
to the operating state of the equipment and provide a source of information for fault
diagnosis technology. Fault diagnosis is usually achieved by studying and processing
various parameters, which must be able to reflect the working state of various types
of equipment, including vibration, heat, noise, current, power, speed and so on. Among
them, the vibration signal and the detection of fault information is the basis of mechanical
fault diagnosis. Vibration signals can intuitively reflect the fault-related characteristics
and characterise the various indicators of equipment operation. Therefore, checking and
identifying whether the vibration signals of natural gas transfer pumps are normal or not
has become an important method for its fault diagnosis.

1.1. Related Work. Currently, natural gas transfer pumps are divided into two main
categories: centrifugal pumps and reciprocating piston pumps. The object of this work is
centrifugal pump. Centrifugal pumps use the centrifugal force of the impeller to raise the
gas pressure, including single-stage centrifugal pumps and multi-stage centrifugal pumps.
Centrifugal pumps are suitable for small and medium flow rates of natural gas.

When a centrifugal pump failure occurs, it must be accompanied by vibration. At
the same time, the damage produced by long-term operation, all of which can cause
abnormal operation, will also exacerbate the changes in vibration. Studies have shown
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that vibration contains a large amount of information. Therefore, the vibration analysis
method is commonly used in the current centrifugal pump fault diagnosis application
[14]. The core content of vibration analysis method includes how to effectively collect
information, analysis and processing of vibration signals, extraction of feature vectors,
state identification and analysis, fault diagnosis and decision-making.

Fault diagnosis techniques based on vibration analysis methods can be divided into
two types: 1) non-adaptive analysis methods and 2) adaptive analysis methods. Among
the non-adaptive analysis methods, people often choose time-frequency analysis meth-
ods, such as Fourier transform, short-time Fourier transform, Wigner-Ville distribution,
and wavelet transform, etc. Satpathi et al. [15] proposed a fault diagnosis method for
DC transfer pumps based on short-time Fourier transform. Cheng et al. [16] proposed a
short-time Fourier transform-based fault detection method for polymorphic switches. The
short-time Fourier transform can traditionally make up for the shortcomings of the Fourier
transform in analysing non-stationary signals, but the short-time Fourier transform has
the problem of unchangeable resolution. Compared with other methods, wavelet trans-
form is abler to directly characterise the local features of the signal in time and frequency,
and there is more resolution. Wavelet transform can be used to analyse both smooth
and non-smooth signals. Dong et al. [17] proposed a hob fault diagnosis method based
on spectral wavelet transform and random forest. Wang et al. [18] proposed a bearing
fault diagnosis method based on sparse bootstrap empirical wavelet transform. However,
none of these methods can select the corresponding environmental factors based on the
characteristics of the signal data itself, thus generating a cumulative error and causing a
reduction in the accuracy of the system.

The Hilbert-Huang transform shows better advantages in dealing with nonlinear non-
smooth signals. The Hilbert-Huang transform can be divided into two parts, one of which
is Empirical Mode Decomposition (EMD), which achieves adaptive separation of signals.
Sun et al. [19] proposed a bearing fault diagnosis method based on Empirical Mode
Decomposition and Improved Chebyshev Distance. Hu and Li [20] proposed a rolling
bearing fault diagnosis method based on adjustable envelope EMD and support vector
machine. However, when the signal is not pure white noise, the EMD may suffer from
modal aliasing due to the loss of some scales. This modal aliasing phenomenon changes
the time-frequency distribution of the signal, making the physical meaning of the IMF
components unclear, resulting in a significant reduction in the accuracy of the decom-
position. In addition, the IMF component has a lot of noise on the low-frequency data,
resulting in the traditional support vector machine cannot accurately distinguish what
fault mode the fault component belongs to.

1.2. Motivation and contribution. Through the above analysis, it can be shown that
compared with the non-adaptive method, the EMD-based adaptive method achieves a
more excellent fault diagnosis effect on nonlinear signals. Therefore, in order to solve
the modal aliasing problem of EMD and the low-frequency noise interference problem,
a natural gas transfer pump fault diagnosis method based on multi-sensor fusion and
machine learning is proposed.

The raw data are processed by Complementary Ensemble Empirical Mode Decompo-
sition (CEEMD) to obtain multiple vibration fault characteristic IMF components. The
IMF components are denoised by Tunable Q-factor Wavelet Transform (TQWT). The
local and global kernel functions are linearly summed using weights to form a multi-core
support vector machine to identify the vibration fault features.

The main innovations and contributions of this paper include:
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(1) In order to solve the problem of modal aliasing that exists in the traditional EMD
method in the signal processing process, the method of using CEEMD instead of EMD is
proposed in order to solve the shortcomings in the EMD method, and its effectiveness is
verified;

(2) By adjusting the Q-factor and r-factor, the application of TQWT technique in
noise reduction of IMF components of vibration fault features is realised to reduce the
interference of low-frequency noise;

(3) The local and global kernel functions are linearly summed using weights to form
a multi-core support vector machine to identify vibration fault features, which helps to
improve the accuracy of fault identification.

2. Causes and analyses of conveyor pump failures.

2.1. Common failure types of transfer pumps. The parts of conveyor pumps that are
prone to failure under most working conditions are usually divided into three categories:
bearings, rotors and stator coils. Among them, the chance of bearing failure is usually
higher. Therefore, this paper focuses on the detection and diagnosis of bearing failures.
The following are the research analyses of the causes of such failure characteristics. These
analyses will be used as the theoretical basis for the subsequent fault detection research
work.

Conveyor pumps typically have a range of different levels of vibration and noise during
operation. These characteristics will change greatly when the transfer pump is in differ-
ent working conditions. We can analyse these vibration frequency, noise size and other
operating parameters, so as to determine whether the pump is working properly, or there
may be parts of the failure. There are many faulty parts of induction transfer pumps,
which can be roughly summarised into the following three categories [21, 22]:

(1) Stator faults: Common stator fault problems generally occur in the stator winding
section. Stator winding faults belong to a kind of electrical faults. Stator faults can be
divided into two categories, one is symmetrical and the other is asymmetrical;

(2) Rotor failures: common rotor failure problems occur mostly in the rotor winding
section. The causes of rotor failures include manufacturing hazards, operational fatigue,
thermal loads and electromagnetic shocks during start-up [23];

(3) Bearing failure: Mechanical damage on the surface of the bearing combination is
the most common, in which rolling elements, cages, etc. are susceptible to corrosion and
wear. The main function of bearings is to support the rotor of the transfer pump and
reduce the friction coefficient during its movement. Bearings can ensure the accuracy
of rotor rotation and are one of the most common and easily damaged parts in transfer
pumps. The working condition of bearings is inseparable from the operating efficiency of
transfer pumps.

2.2. Bearing failure mechanism analysis. Centrifugal pumps typically use two types
of bearings, plain and rolling bearings. Sliding bearings have no difference between the
inner and outer rings and no rolling element. Rolling bearings change the type of friction
between two contact surfaces from sliding to rolling. There is a primary cause for any type
of bearing failure, including wear, fatigue spalling, plastic deformation, bearing corrosion,
fracture, and gluing.

The rolling bearing consists of four parts, as shown in Figure 1. When the bearing
fails suddenly, we can monitor the signal. The vibration frequency is the characteristic
frequency of the bearing itself. When there is an abnormality in the bearing, there will
be a series of shocks on a certain frequency, which is called the failure frequency of the
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Figure 1. Rolling bearing structure of conveyor pumps

bearing. The monitoring of this failure frequency and its analysis of the data is the key
issue in identifying bearing failures.

If the pitch diameter of the bearing is set to D (the pitch diameter refers to the diameter
of the circle formed by the centre points of the rollers in the ideal operating condition),
the diameter of the rolling element d, the outer diameter of the bearing r1, the inner
diameter of the bearing r2, the contact angle α, the number of rolling elements in the
rolling bearing N , and the rotational frequency fr, then the characteristic frequency of
the rolling bearing can be expressed using the following methods.

The bearing characteristic frequency fa in the event of an inner ring failure is shown
below:

fa =
N

2

[
1 +

d

D
cosα

]
fr (1)

The bearing characteristic frequency fb in the event of an outer ring failure is shown
below:

fb =
N

2

[
1− d

D
cosα

]
fr (2)

The characteristic frequency fc in the event of a rolling body failure is represented as
shown below:

fc =
N

2d

[
1−

(
d

D

)2

cos2 α

]
fr (3)

The rotation frequency of the cage is f .

f =
1

2

[
1− d

D
cosα

]
fr (4)

As you can see from the formula above, the failure characteristic frequency values are
usually small, ranging from tens to hundreds of Hertz. When a bearing fails, the rotating
shaft begins to run slightly, which causes the air gap of the centrifugal pump to become
unbalanced. The magnetic flux flowing through the air gap will then also be affected.
We can sense the corresponding harmonic current components within the coil windings
of the stator section. The relationship between the harmonic current frequency and the
vibration frequency is shown below.

fd = |f1 + kfv| (5)
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where k is the frequency of the external power supply, and fv is one of the characteristic
frequencies of vibration when the bearing is abnormal.

By studying the digital indicators under these two signals, bearing faults can be detected
precisely. The converted frequency domain information is compared with its intrinsic
frequency to determine whether the bearing is faulty or not.

3. Fault feature extraction for transfer pumps based on CEEMD-TQWT.

3.1. Data acquisition with traditional empirical model decomposition. Three-
dimensional acceleration sensors are chosen as the sensors for data acquisition in order
to directly represent the vibration of the conveyor pump bearings in x-axis, y-axis and
z-axis. Since the conveyor pump vibration signals are non-stationary signals, most of the
methods use EMD to decompose the data as follows [24, 25]:

Step 1: Assuming that the observed signal is x(t), find all the extreme points of the
signal x(t);
Step 2: Fit the upper and lower envelope curves;
Step 3: Obtain the mean curves mi(t) of the upper and lower envelopes;

mi(t) =
xmin(t) + xmax(t)

2
(6)

Determine whether hi(t) satisfies the conditions of the IMF, if so, perform Step 4. If
not, replace x(t) with hi(t) and repeat the above steps until hi(t) satisfies the criteria.

Step 4: Calculate the margin ri(t);

ri (t) = x(t)− ci(t), ci(t) = hik(t) (7)

Step 5: Determine whether ri(t) is a single signal, if yes, the whole decomposition
process is finished. Otherwise, replace x(t) with ri(t) and repeat the above steps until
ri(t) meets the judgement condition;
After the EMD method the original signal x(t) is decomposed into a linear superposi-

tion:

x(t) =
N∑
i=1

ci(t) + rn(t) (8)

where N denotes the total number of IMFs, ci(t) denotes the i-th IMF component, and
rn(t) denotes the remaining component after multiple iterations.

It can be seen that EMD has good adaptive properties. Wavelet analysis requires a
known basis function to be selected before application. However, unlike wavelet anal-
ysis, EMD only needs to decompose the features of the signal itself to obtain the IMF
components of the frequencies. When the signals being decomposed are different, the
frequencies of the IMF components obtained by the decomposition also differ. The EMD
decomposition method is outstanding in nonlinear and nonsmooth processing.

3.2. CEEMD. Numerous research results have shown [26] that the white noise is de-
composed by EMD, and the uniformly distributed frequency components contained in it
are regularly separated. However, when the signal is not pure white noise, modal alias-
ing may occur in EMD due to the loss of some scales, which is due to the fact that the
nature of EMD is a binary filter. The modal aliasing problem in EMD changes the time-
frequency distribution of the signal, and the physical significance of each component of
the IMF becomes less clear, resulting in a significant reduction in the accuracy of the
decomposition.

In order to solve the problem of modal aliasing that exists in the classical EMD, re-
searchers try to add more white noise and obtain some suppression effect. However, it
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is not possible to add white noise indefinitely in practice, which will greatly increase the
computational volume and lead to a long decomposition time. As an improved EMD
method, CEEMD [27] can not only effectively suppress the modal aliasing, but also im-
prove the computation speed to a certain extent. The specific implementation steps of
the CEEMD method are as follows:

Step 1: Assume that the input signal is x(t). The white noise amplitude to be added
is initialised and decomposed m times using EMD. A pair of additive and subtractive
noise signals (same amplitude and opposite phase) are added to the original signal x(t)
to obtain: {

Hm(t) = x(t) + nm(t)

Jm(t) = x(t)− nm(t)
(9)

where nm(t) denotes the m-th added white noise.
Step 2: Take the signals nm(t) and Jm(t) as objects and apply EMD to decompose

them so as to obtain the IMF components of both of them, as shown in the following
procedure. 

Hm(t) =
q∑

j=1

c+j,m(t)

Jm(t) =
q∑

j=1

c−j,m(t)
(10)

where c+j,m and c−j,m both denote the j-th IMF obtained after decomposing the signal and
q is the number of IMFs.
Step 3: Calculate the average of the IMF components obtained fromM decompositions.

cj =
1

2M

M∑
m=1

(
c+j,m(t) + c−j,m(t)

)
(11)

Since EMD will have the problem of modal aliasing when processing the signal, which
will lead to the loss of some information of the signal. Therefore, in this paper, CEEMD
is chosen to process the vibration signals of conveyor pumps and evaluate and analyse the
signals in two directions, namely, stability and time. Different frequencies correspond to
different feature signals and represent the local information of the original signal, and there
is aliasing between the IMF components, which means that the same IMF component is
mixed with different frequency components. This phenomenon makes the time-frequency
distribution of the signal unclear, and therefore cannot effectively restore the feature
information of the original signal.

In order to verify the existence of modal aliasing in EMD, three components, IMF5,
IMF6 and IMF7, were selected and processed by EMD and CEEMD, respectively. The
IMF spectra obtained by the two methods are shown in Figure 2 and Figure 3, respectively.

From Figure 2, it can be seen that there is a cross overlap in the spectrum corresponding
to IMF5, IMF6 and IMF7, which is not conducive to fault feature extraction for conveyor
pumps. From Figure 3, it can be seen that CEEMD is able to reduce the frequency overlap
and reduce the internal confusion of EMD. The number of crossings of IMF components
in the spectrogram is significantly reduced, which verifies the superiority of CEEMD
processing.

In order to further illustrate the efficiency of CEEMD, time calculations are performed
for both treatments separately and the comparison results are shown in Figure 4. From
Figure 4, it can be seen that the difference in time consumed by EMD and CEEMD is
small and belongs to the same order of magnitude. Although, the calculation time of
CEEMD is longer than that of EMD, the results are more accurate.
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Figure 2. EMD processed IMF spectra
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Figure 3. IMF spectrum after CEEMD processing

3.3. TQWT. As a novel time-frequency analysis method, the tunable quality factor
wavelet transform (TQWT) [28, 29] realises the scale decomposition of non-smooth signals
on wavelet bases with different quality factors by means of the iterative operation of two-
channel filters and the fast Fourier transform. The TQWT overcomes the disadvantage of
the constant quality factor of the traditional wavelet transform with full reconstructibility
and completeness. As an improved method of wavelet transform, TQWT can obtain data
that can express all the characteristics of the original data with less noise by adjusting
the Q factor.
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Figure 4. Calculation times for different methods

The Q factor (Quality Factor), is a physical quantity used to describe the damping
of a system of oscillators in physics. The magnitude of the Q factor reflects the speed
of oscillation of a signal’s time-domain waveform. The Q factor is usually expressed
as the ratio of the resonance frequency to the resonance frequency bandwidth, and is a
dimensionless quantity.

Q =
f0
∆f

(12)

where f0 is the resonance frequency and ∆f is the bandwidth of the resonance frequency.
Figure 5 depicts the time-domain waveform and frequency-domain distribution of the

signal when the Q factor is 1 and 3, respectively. It can be seen that when the Q factor is 3,
the time-domain waveform of the signal oscillates faster and the focusing in the frequency
domain is better, while when the Q factor is 1, the time-domain waveform of the signal
oscillates slower and the focusing in the frequency domain is worse. This shows that the
magnitude of the Q factor reflects the speed of the oscillation of the signal waveform in
the time domain and the focusing of the signal in the frequency domain.
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(c) Time-domain waveforms (Q=3)
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Figure 5. Time-domain waveforms and frequency-domain distributions

Taking the 3-layer decomposition reconstruction as an example, the TQWT can be
represented as a two-channel decomposition filter bank, as shown in Figure 6. Compared
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Figure 6. Decomposition filtering

with the traditional constant quality factor wavelet transform, the biggest advantage of
TQWT is that its quality factor can be freely adjusted. Setting the quality factor of
TQWT as Q and the redundancy factor as r, the number of decomposition layers j is
the maximum value allowed by the theory, which is calculated as shown in the following
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formula [30]:

j =
lg
(

Ns

4(Q+1)

)
g
(

Q+1

Q+1− 2
r

) (13)

where Ns is the signal length.
In order to retain the original data information, the noise must be smoothed. There-

fore, this paper reduces the characteristic data noise of transfer pump through TQWT
processing, which is able to smooth the noise amplitude at low frequency, effectively re-
taining the characteristics of the original data, and providing better data preparation for
subsequent troubleshooting processing.

4. Multi-core SVM based fault diagnosis of conveyor pump system. Traditional
SVM will choose a certain kernel function for different application scenario requirements.
But such a model will lead to a weak generalisation ability of SVM learning, which cannot
cope with the complex conveyor pump data sample situation.

Therefore, the fault diagnosis method based on traditional SVM cannot accurately
distinguish what fault mode the fault component belongs to. Since the combined kernel
has the ability to map data from multiple kernel functions, SVM based on combined
kernel functions can better cope with real case requirements.

Multi Kernel SVM (MKSVM) solves the problem of blindness in the construction of
kernel function and the selection of parameters of traditional SVM in fault diagnosis.
Therefore, in this paper, MKSVM is used to classify the data, thus optimising the SVM
and further improving the diagnostic accuracy. In this paper, the local and global kernel
functions are linearly summed using weights to form a multikernel SVM, in which the
combined kernel function K(x, z) is:

K(x, z) =
M∑
j=1

βjkj(x, z), β ≥ 0,
M∑
j=1

βj = 1, j = 1, 2, ...,M (14)

where βj denotes the weighting factor and kj(x, z) denotes the single kernel function.
Compared with the single kernel function learning method, the combined method can

obtain higher classification accuracy and sample generalisation ability.
Substituting the kernel function into the decision function for classification gives:

f(x) = sgn

(
m∑
i=1

αiyiK(xi, zi) + b

)
(15)

The definition of the decision function of the linear weighted MKSVM is shown below:

f(x) = sgn

(
m∑
i=1

M∑
j=1

αiyiβjK(xi, zj) + b

)
βj ≥ 0 ,

M∑
j=1

βj = 1 (16)

In this paper, the global kernel function POLY and the locality kernel function RBF
are chosen to form the combined kernel function, thus taking into account both global and
local sample features. Therefore, the combined kernel function K(x, z) can be expressed
as:

K(x, z) = βRBFkRBF (x, z) + βPOLY kPOLY (x, z) (17)

βRBF + βPOLY = 1 (18)

where βPOLY and βRBF denote the weight factors of the global kernel function POLY and
the localised kernel function RBF, respectively.
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5. Experiments and analysis of results.

5.1. Experimental environment. The diesel transfer pump is used as the object of
the fault diagnosis study to validate the transfer pump fault diagnosis method (CEEMD
+ TQWT + MKSVM) proposed in this paper.

The diesel transfer pump used in the experiment is shown in Figure 7, and its main
parameters are shown in Table 1. Experimental process: (1) use multiple acceleration
sensors to collect the vibration signals of the diesel transfer pump, with the parameters
shown in Table 2; (2) perform CEEMD operation on the screened information in order
to refine the vibration signals according to the time scale, making the typical signal
information more prominent; (3) select the best combination of parameters from the
point of view of signal noise reduction, and perform TQWT processing on the feature data
obtained from the CEEMD processing; (4) use MKSVM analysis to analyse the feature
vectors required for MKSVM. TQWT processing, in order to obtain the feature vectors
required by MKSVM; (4) use MKSVM analysis to identify the state of the conveyor pump
bearing signals. The TQWT algorithm has a quality factor Q = 1 and a redundancy factor
r = 1.

Figure 7. Natural gas transfer pumps used in the experiment

Table 1. Main Parameters of Diesel Engine

Parametric Numerical value
Model number WP6D180E201
Input voltage 380 V
Typology centrifugal pumps

Discharge calibre 40 mm
Power (output) 4 kw

Flow rate 10 m3/h

The vibration signal of the diesel engine shown in Figure 8 shows that the regular-
ity of the diesel engine shock characteristics is more obvious, and the frequency band
distribution is stable, so there is no abnormal situation of the diesel engine.

From Figure 9 diesel engine vibration signal found that the regularity of the diesel
engine impact characteristics is obvious, the high-frequency band shows the unique vi-
bration characteristics of reciprocating machinery, industrial frequency and its harmonic
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Table 2. Acceleration Sensor Parameters

Parametric Numerical Value
Model number ACC326 Triaxial Digital Accelerometer
Signal type RS232/RS485/TTL

Supply voltage 9V-36V
Resolution (of a photo) 0.01g
Operating temperature -40°C-85°C
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Figure 8. Diesel Engine Vibration Signal (no abnormality)

components appear in the low-frequency band, indicating that the bolts may be signs of
loosening.
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Figure 9. Diesel Engine Vibration Signal (Abnormal)

All signals were decomposed by CEEMD and 34 sets of decomposition results were
obtained for the four working conditions, as shown in Table 3.

5.2. Multiple kernel function combination tests. In order to verify the optimal
parameter settings for combining multiple kernel functions to classify the recognition
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Table 3. CEEMD decomposition for four operating conditions

state of affairs IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7
1 0.73 0.534 0.639 0.516 0.258 0.096 0.069
2 1.617 1.152 0.659 0.489 0.366 0.171 0.074
3 0.83 0.799 0.634 0.584 0.297 0.174 0.036
4 1.198 0.851 0.633 0.577 0.345 0.18 0.054

model, 50 repetitions of the test were conducted for multiple combinations of kernel
functions. The results of performance comparison of multiple kernel functions are shown
in Table 4.

Table 4. Multicore Function Performance Comparison

kernel function (math.)
Kernel function
parameter values

Accuracy/per cent

RBF core + POLY core α = 4.5, d = 2 85.3
RBF core + POLY core α = 4.5, d = 3 87.6
RBF core + RBF core α = 4.5, d = 4.5 76.5

POLY core + POLY core d = 4.5, d = 2 72.2

As can be seen from Table 4, the accuracy of MKSVM is significantly improved com-
pared to the single kernel function SVM. Moreover, when the value of the kernel function
parameter is α = 4.5 and d = 3 (RBF kernel+POLY kernel), MKSVM has the highest
classification accuracy.

5.3. Diagnostic performance comparison. To further validate the performance of the
proposed CEEMD + TQWT + MKSVM diagnostic method, it was compared with SVD
+ LMD + SVM [31], SVD + EMD + SVM [32], and EMD + TQWT + LSSVM [33],
which were trained with 400 samples. The results of the comparison of the diagnostic
performance of different methods are shown in Table 5 and Figure 10, where the kernel
function parameters take the values of α = 4.5 and d = 3.

Table 5. Comparison of Accuracy of Different Methods

arithmetic
Accuracy of fault
diagnosis/per cent

Time/s

SVD+LMD+SVM 77.5 4.7
SVD+EMD+SVM 78.4 4.8

EMD+TQWT+LSSVM 82.1 5.3
CEEMD+TQWT+MKSVM 87.6 5.7

From Table 5 and Figure 10, it can be seen that the EMD-based SVM diagnosis method
has a better accuracy rate compared to the LMD-based SVM diagnosis, which is due to
the fact that the EMD exhibits better robustness. Moreover, among the EMD-based
SVM diagnosis methods, the CEEMD + TQWT + MKSVM method has the highest
recognition rate, and the conveyor pump fault diagnosis accuracy reaches 87.6%. This
is because CEEMD is an improved EMD method that can effectively suppress EMD
modal aliasing without significantly increasing the computational complexity. Meanwhile,
TQWT effectively removes the low-frequency noise. In addition, it can be seen that
compared with other diagnostic methods, the method in this paper has some sacrifices in
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Figure 10. Comprehensive performance comparison of different methods

terms of time efficiency, because of the use of more complex combined kernel functions,
and the judgement of the solution time is increased to a certain extent.

6. Conclusion. Aiming at the modal aliasing problem of EMD and the low-frequency
noise interference problem, a natural gas transfer pump fault diagnosis method based on
CEEMD + TQWT + MKSVM is proposed. Multiple vibration fault characteristic IMF
components are obtained by processing the raw data using CEEMD. The IMF components
are denoised by TQWT. The local and global kernel functions are linearly summed using
weights to form a multikernel SVM to identify the vibration fault features. The results
show that the combination of CEEMD and TQWT can effectively eliminate modal aliasing
and obtain IMF components that clearly characterise fault features. Meanwhile, compared
with the existing methods, the fault diagnosis accuracy of multicore SVM is improved from
76.7% to 83.1%. CEEMD suppresses mode aliasing to a certain extent, but there is a lack
of theoretical selection basis for the setting of the optimal white noise parameters in the
EMD decomposition method. Therefore, the follow-up study is to carry out an in-depth
research on this issue.
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