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Abstract. In modern electricity power systems, smart meters have been widely used
to monitor the systems. Time series data is one of the most common types of data in
these systems, such as household electricity power consumption, equipment running log
etc. Thus, detecting abnormal behaviour according to these time series data is a key
mechanism for power system management. In this paper, we focus on the problem of
detecting abnormality by a time series household power consumption dataset. Although
many researchers have provided methods for abnormality detection in electricity power
systems, they still face several challenges. Traditional abnormality detection methods
based on algebraic theory and signal-processing techniques are hard to deal with a large-
scale dataset as the data collected from the power systems are increasing sharply and
diverse. Deep-learning-based abnormality detection methods can deal with large and di-
verse data if the training data has been labeled between abnormal elements and normal
ones. However, how to label a large-scale dataset is also another challenge. With unsu-
pervised deep-learning-based models, some studies can avoid the problem of labeling data.
Nonetheless, accurately defining output and detection accuracy are the new challenges
for these approaches. To tackle the above challenges, we present a novel deep-learning-
based abnormality detection model that combines an unsupervised clustering model and
a recurrent neural network. The proposed model was trained on real power consumption
time series data. The result shows that the proposed model not only can get rid of the
trouble of labeling data but can also achieve higher accuracy than several existing recur-
rent neural networks.
Keywords: Abnormality Detection, Deep Learning, Time Series, Power Consumption

1. Introduction. Household electricity behaviour analysis plays a critical role in the
management of power grids for utility companies [1]. Abnormal electricity behaviours may
cause unfair electricity supply, and economic losses and even affect the safety of power
grid operation [2]. Therefore, abnormality detection in power consumption has drawn
great interest in the literature and industry [3–5]. It has previously been observed that
typical abnormal electricity behaviours include electricity theft, meter failures and power
systems attacks. Data from several studies suggest that household electricity consumption
data is the key data in abnormality detection with the advent of smart meters [6]. There-
fore, we focus on the abnormality detection based on the time series data of household
power consumption in this paper. Traditionally, studies for abnormality detection use
differential-algebraic theory along with signal-processing techniques to model the power
system [7, 8]. Although such approaches are built on well-established theories, they have
failed to address large computations caused by the modern power system with increasing
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size. Recently, deep-learning-based abnormality detection has become popular since its
good performance in learning information from the input data including the time series
data of household power consumption [9].

However, potential challenges are raised when using those deep-learning-based methods
[10]. Most of the conventional deep learning methods are trained in a supervised way which
means the training dataset should be classified between normal and anomaly elements.
However, the real power consumption data usually doesn’t have information about which
one is the normal one or the outlier. Even in some cases with information that can
indicate the outliers, it is still time-consuming to label large-scale data and the methods
may be unable to detect new types of faults. Therefore, semi-supervised or unsupervised
learning methods were present. These methods are able to find the difference between
the normalities and outliers without the existence of the labeled data or with a small
amount of labeled data. In contrast, unsupervised learning approaches also face a few
disadvantages. It might require human intervention to understand the patterns. The
sorting and output are difficult to accurately define. Furthermore, the results often have
less accuracy.

This study set out to explore a novel deep-learning-based model for detecting abnormal-
ity in power systems which tries to tackle the aforementioned challenges. We obtain an
unlabeled dataset with measurements of individual household electric power consumption.
It’s a representative time series dataset in a power system. Thus, the proposed method
which can utilize this kind of data has a large potential promotion and application value.
The main idea of the proposed method is to combine an unsupervised clustering model
with a recurrent neural network (RNN) [11]. The unsupervised clustering model is used
to give a feature of cluster number for each element of the dataset. Then the recurrent
neural network is used to give a prediction of the whole trend of the electric power con-
sumption. Finally, those elements of the dataset that are incompatible with the trend will
be identified as outliers. In this way, the proposed model can address the aforementioned
challenges. Specifically, our contributions are summarized as follows:

• We propose a novel deep-learning-based model to detect the abnormality in power
consumption with time series data. The model combines an unsupervised clustering
model with a recurrent neural network. We conducted the experiments on a real
dataset of household electric power consumption. Compared with the well-known
time series deep learning models, the proposed model shows a better performance
for detecting the abnormality.

• As we have mentioned, there are two key challenges in the existing deep learning
models. One is to label the boundary between the normal elements and abnormal
ones in a large-scale dataset before training a supervised model. The other one is
to have a better abnormality detection accuracy by using an unsupervised model.
With an unsupervised clustering model and the assumption that the outliers should
off-track the trend of the whole dataset, the proposed model can address these two
problems well.

• The proposed model deals with time series data which is representative of a power
system and we randomly insert some manual outliers to examine its capacity to
detect new faults. As a result, the proposed model shows great potential ability to
be applied in more scenarios with time series data.

The remaining parts of the paper are arranged as follows. Section 2 describes the
related studies on abnormality detection. Section 3.2 shows the preprocessing of the
dataset. Section 3 introduces the construction of the proposed model. Section 4 gives the
experiment result of the proposed model. Finally, we conclude the work in Section 5.
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2. Related Work. In 2013, Alam et al. [12] surveyed the different fault detection tech-
niques proposed in the literature. Dealing with large-scale data in abnormality detection
in power systems had become a challenge at that time. Since the widespread of smart
meters in electricity systems, Wang et al. [5] provided an approach for clustering electric-
ity consumption behaviour in 2016. In this study, the time-based Markov model [13] and
symbolic aggregate approximation are used to transform the large dataset to transition
matrixes and tackle the challenges of big data. Later, due to the outstanding perfor-
mance in learning hidden information from a raw dataset, deep-learning-based methods
like convolutional neural network (CNN) [14] for abnormality detection are present. In
particular, a long short-term memory (LSTM) model is widely used to deal with time
series data [15].

3. Our Proposed Model. In this section, we will introduce the construction of the
proposed model. The proposed model combines two classical deep learning models. Thus,
before we discuss the details of the proposed model, we will briefly describe these sub-
models used in our model.

3.1. Overview of the Proposed Model. As is shown in Figure 1, the proposed model
contains a K-means clustering model, a GRU model and a fully connected layer. After the
data preprocessing, we have a dataset in which each row is a one-hour power consumption
data in a day. One row of data has 8 columns. The first column is the global active power
that our model tries to fit and predict. The remaining 7 columns are taken as the features
corresponding to the global active power. And because the dataset hasn’t labeled which
rows are outliers, we cannot construct a supervised deep learning model directly to train
and detect the abnormality. Therefore, we are trying to construct a novel mode to detect
the outliers. The proposed model is designed with the following steps:

• Step 1. As with most practices in deep learning, we divide the dataset into a training
dataset and a test dataset. Then input the training dataset into a K-means clustering
model. The purpose is to get a trained K-means clustering model to assign a cluster
number for each hour’s consumption data. Thus, an hour’s consumption data will
contain one global active power and 8 features. Based on the analysis of the raw
dataset in Section 3.2, we believe that the variant trend in the power consumption
data has something to do with the time series. It means the power consumption in
different hours or days may follow a distinct trend. For example, power consumption
on Sunday night will follow the same trend, while that on Monday morning will
display another distinct trend. Thus, we want to use an unsupervised algorithm to
cluster the data and give each hour’s data a cluster tag as a feature.

• Step 2. We then set 24-hour data as one group to predict the next hour’s power
consumption. The original training dataset will get a cluster number for each row
after the K-means clustering model. Then the new training dataset with cluster
numbers will be input into a GRU model. Thus, the shape of one input data becomes
(24, 8).

• Step 3. To fit the global active power, we connect the output of the GRU model
with a fully connected layer that has only one output. The output is a prediction of
the next hour’s global active power. The loss function is the mean absolute error [16].
Finally, we compare the predicted data with the real data, and real data that has
numerous deviations from the predicted data will be identified as an outlier. The
criteria to define the deviation is defined by the metric of the threshold of abnormal
power consumption in section 4.
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Figure 1 The Proposed Model

3.2. Dataset Preprocessing. The dataset we used in this paper is collected from the
individual household electric power consumption in Sceaux (7km of Paris, France) [17].
The elements of the dataset are given in every minute. And each element or power
consumption contains 9 variable information. The variable information is given in Table
1. The whole dataset contains 2075259 elements between December 2006 and November
2010 (47 months).

Table 1 Variable Information

Variable Name Description
Date In format dd/mm/yyyy
Time In format hh:mm:ss

Global active power Household global minute-averaged active power
Global reactive power Household global minute-averaged reactive power

Voltage Minute-averaged voltage
Global intensity Household global minute-averaged current intensity
Sub metering 1 Energy sub-metering No. 1 corresponding to the kitchen
Sub metering 2 Energy sub-metering No. 2 corresponding to the laundry room
Sub metering 3 Energy sub-metering No. 3 corresponding to

an electric water-heater and an air-conditioner

To train the proposed model and get a good performance, we need to preprocess the
dataset. Firstly, we should transfer the minute elements into hourly elements. As is shown
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in Algorithm 2, we sum the value of the variables of every 60 minutes. For the missing
value, we take the mean value of the other elements in the same hour as its value. The
data preprocessing is given in Algorithm 1. At the beginning, we delete the incoherent
elements which is the data in the same hour contains less than 60 elements. For example,
the data in the hour of 2006-12-15 17:00 which only contains 30 elements from 2006-12-15
17:30 to 2006-12-15 17:59 will be deleted. Then we combine the variables of Date and
Time as one variable. Next, we invoke Algorithm 2 in Line 13 and 15 to calculate the
sum value for every variable in an hour. Note that we take the mean value of the Voltage
variable in an hour instead of the sum value. At the end, we normalize the data in Line
22 to 25 with a function of MinMaxScaler which is a data preprocessing technique that
transforms numerical features by scaling them to a given range. It is often used as an
alternative to standardization, which scales features to have zero mean and unit variance.
The MinMaxScaler works by applying the following formula to each feature:

xscaled =
x− xmin

xmax − xmin

× (max−min) +min

where x is the original value, xmin and xmax are the minimum and maximum values of
the feature, and min and max are the desired range. After preprocessing, the shape of
the dataset becomes 17474× 8 which means it contains 17474 elements or rows and each
element contains 8 variables.

Algorithm 1 Data Preprocessing

1: reader = open(’raw dataset’)
2: writer = create(’new dataset’)
3: Delete the incoherent elements
4: HourlyData = []
5: repeat
6: Read a row from reader
7: HourlyData.append(row)
8: if len(data) == 60 then
9: newline = [HourlyData[0][0],HourlyData[0][1]]

10: for i in range(2, len(HourlyData[0])) do
11: col = [row[i] for row in HourlyData]
12: if 4 == i then
13: newline.append(sumlist(col)/60)
14: else
15: newline.append(sumlist(col))
16: end if
17: end for
18: writer.insert(newline)
19: HourlyData = []
20: end if
21: until The End of the dataset
22: dataset = read(’new dataset’)
23: dataset = dataset.iloc[:,2:]
24: scaler = MinMaxScaler(feature range=(0, 1)).fit(dataset)
25: scaled = scaler.fit transform(dataset)
26: return scaled
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Algorithm 2 sumlist

Require: a list of data including 60 elements
1: sum = 0
2: numMiss = 0
3: for item in list do
4: if item is a miss value then
5: numMiss += 1
6: else
7: sum += float(item)
8: end if
9: end for
10: if 0 == (60-numMiss) then
11: return 0
12: end if
13: sum = (sum/(60-numMiss))*numMiss+sum
14: return sum

3.3. Clustering. The basic idea of the K-means clustering model was first provided by
MacQueen et al. [18] in 1967 and then various extensions were proposed in the literature
[19]. It is an unsupervised way of grouping data into k clusters based on their similarity.
As is shown in Algorithm 3, the clustering method works by finding k points, called
centroids, that represent the center of each cluster. Then, it assigns each data point to
the nearest centroid, forming k clusters. This process will be repeated until the centroids
do not change much or a maximum number of iterations is reached.

Algorithm 3 K-Means Clustering

Require: Data set X = {x1, x2, ..., xn}, number of clusters k
Ensure: Cluster assignments S = {S1, S2, ..., Sk}, cluster centroids C = {c1, c2, ..., ck}
1: Initialize C by randomly selecting k data points from X
2: repeat
3: Assign each data point xi to the nearest centroid cj, forming k clusters:

Sj = {xi ∈ X : dist(xi, cj) ≤ dist(xi, cl) for all l ̸= j}

4: Update each centroid cj by computing the mean of all data points in Sj:

cj =
1

|Sj|
∑
xi∈Sj

xi

5: until C does not change or a maximum number of iterations is reached
6: Return S and C

3.4. LSTM and GRU Training. Except for the K-means clustering model, we also use
recurrent neural networks (RNNs) [11] in our model. That is because the household power
consumption data is typically time series data and RNNs are a type of neural network
that can well handle sequential data. GRU and LSTM are two types of RNNs. They
both use a gating mechanism to control the flow of information and avoid the problems
of vanishing or exploding gradients that affect standard RNNs.

LSTM: Long Short-Term Memory(LSTM) was introduced by Hochreiter et al. [20]
in 1997. LSTM can learn long-term dependencies and capture the context of the input
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sequence. LSTM can also generate new sequences that are similar to the training data,
such as text, music, or images. The basic unit in an LSTM is constructed as follows:

input gate: it = σ(Wi[yt−1, xt] + bi) (1)

forget gate: ft = σ(Wf [yt−1, xt] + bf ) (2)

output gate: ot = σ(Wo[yt−1, xt] + bo) (3)

candidate state: c̃t = tanh(Wc[yt−1, xt] + bc) (4)

cell state: ct = ft
⊗

ct−1 + it
⊗

c̃t (5)

hidden state: yt = ot
⊗

tanh(ct) (6)

where σ is the sigmoid function,
⊗

is the element-wise multiplication, W and b are the
weight matrices and bias vectors, xt is the input vector at time step t, yt is the hidden
state vector at time step t. Typically, a unit has three gates, namely the input gate, the
forget gate, and the output gate. The input gate decides how much of the new input to
add to the cell state, the forget gate decides how much of the previous cell state to keep
or forget, and the output gate decides how much of the current cell state to output as
the hidden state. The hidden state is the output of the network, and the cell state is the
internal memory of the network. The subscript t represents the index of each unit. All
the units combine sequentially as a whole network.

GRU: Gated Recurrent Unit (GRU) as another type of RNNs can also handle se-
quential data and time-series data well. A comparison among different types of recurrent
units in RNNs was given in 2014 [21]. Although LSTM was present earlier than GRU,
LSTM is more expressive and flexible than GRU. However, LSTM has more parameters
and is slower to compute. In contrast, GRU is simpler and faster than LSTM. And on
some tasks, GRU can perform even better than LSTM. In our experiment, we find GRU
outperforms LSTM as a sub-model of our model. Both LSTM and GRU use a gating
mechanism to control the flow of information and avoid the problems of vanishing or ex-
ploding gradients. The main difference between LSTM and GRU is that LSTM has three
gates (input, forget, and output) and two states (hidden and cell), while GRU has two
gates (update and reset) and one state (hidden). The basic unit in a GRU is constructed
as follows:

update gate: zt = σ(Wz[yt−1, xt] + bz) (7)

reset gate: rt = σ(Wr[yt−1, xt] + br) (8)

candidate state: ỹt = tanh(Wa[rt
⊗

yt−1, xt] + ba) (9)

hidden state: yt = (1− zt)
⊗

yt−1 + zt
⊗

ỹt (10)

where zt, rt are the gate vectors at time step t. The update gate decides how much
of the previous hidden state to keep or forget, and the reset gate decides how much of
the previous hidden state to use for computing the new candidate state. GRU can also
learn long-term dependencies, capture the context of the input sequence, and is easier to
modify and extend.
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4. Experiment Analysis.

4.1. Experiment Environment and Metrics for Assessment. Our model is trained
on a personal computer with a memory of 16GB, dual CPU of Intel(R) Core(TM) i7-
10510U 1.80GHz 2.30 GHz, 64bit OS of Ubuntu 18.04.6 LTS and without any GPU. We
use Python and Tensorflow to implement the model. To assess the performance of the
proposed model, we use several metrics defined as follows:

Mean Squared Error (MSE). Mean Squared Error [22] is a statistical metric that
evaluates how well a predictor approximates the true value of a quantity. In our model,
the final output value is the predicted household power consumption of the next hour.
Thus, the MSE is calculated by taking the average of the squared differences between the
predicted power consumption values and the real values. The lower the MSE, the better
the fit. The MSE can be expressed mathematically as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (11)

where n is the number of examples of the training or test dataset, yi is the real power
consumption values, and ŷi is the predicted values.

Threshold of Abnormal Power Consumption. We define this metric in our model
to identify whether household power consumption is an abnormal value. Firstly, the
trained model will output its prediction of household power consumption in the next
hour according to the former 24-hour data. Then, we calculate the deviation between the
predicted value and the real value as:

MAE =
|yi − ŷi|
ŷi + δ

(12)

where yi is a real power consumption value, ŷi is a corresponding predicted value and δ
is a minimal positive number to avoid the denominator becomes 0. Then we identify a
household power consumption as an abnormal consumption when its MAE exceeds the
threshold of abnormal power consumption. According to the analysis of our experiment,
we set the threshold be 0.4 to get the best performance. The soundness of this abnormality
detection assumes that the normal household power consumption should follow the trend
of the whole consumption dataset and the predicted values follow this trend. Then if a
real consumption value has a huge deviation from a predicted value, it is probably an
outlier.

Accuracy. Once the model has been trained, we input the test dataset to get a
group of predicted power consumption values. Then we compare the real values with
these predicted values to find those whose MAE exceeds the threshold of abnormal power
consumption. Note the set of these abnormal values as A and let n1 be the total number of
A. Since the original dataset doesn’t label which hour of the household power consumption
is an abnormal value, we randomly choose one hour in every 24 hours in the test dataset
and halve its consumption value. Then, these consumption values are thought to be
outliers. Note the set of these manual halved values as B and let n2 be the total number
of B. Finally, we input the new test dataset which includes the manual halved values
into the model and get a new group of predicted values. Note those values that exceed
the threshold of abnormal power consumption in the new group of predicted values as C.
Let D be the power consumption set whose index belongs to C ∩ (A ∪ B). Then we can
calculate the abnormality detection accuracy as follows:

Accuracy =
d

n3

(13)
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where d is the total number of D.
Efficiency. This metric is the percentage of outliers that can be detected. It indicates

the efficiency of abnormality detection and can be computed as follows:

Efficiency =
d

n1 + n2 −m
(14)

where m is the total number of the data with a common index in A and B.
Relative Ratio. Let a1 be the total number of the power consumption set whose

index belongs to C ∩ (A− (A∩B)) and a2 be the total number of the power consumption
set whose index belongs to C ∩ (B − (A ∩ B)). Thus, a1 represents the number of the
original outliers while a2 represents the number of the manually generated outliers. The
relative ratio can be computed as follows:

RR =
a2 × n1

a1 × n2

(15)

Therefore, the relative ratio indicates what kind of outliers are easier to be detected by
our model. Since the original outliers were detected based on the assumption that the
normal household power consumption should follow the trend of the whole consumption
dataset, we think the bigger the value of RR the better the model to detect the unknown
outliers.

4.2. Hyperparameters Tuning. In the proposed model, there are six key hyperparam-
eters that affect the result of the performance or metrics for assessment. To tune the
hyperparameters, we selected and changed one of them in a range while fixing the value
of the other hyperparameters. Then we compared the results in different values of each
selected hyperparameter. Since there are four metrics (Mean Squared Error, Accuracy,
Efficiency, and Relative Ratio) for assessing the model, the trade-off among the results of
these metrics should be taken into account. Specifically, the tuning process is as follows:

The Number of Epochs. The hyperparameter of the epoch in a deep learning model
indicates the number of times that the learning algorithm will work through the entire
training dataset. As is shown in Figure 2, the accuracy and efficiency decrease when the
number of epochs increases. Whereas, the relative ratio and MSE get a better performance
at the beginning. Thus, we suggest the number of epochs is 25.

The Learning Rate. The hyperparameter of learning rate represents the speed at
which the model learns and controls the amount of apportioned error that the weights of
the model are updated with each time. As is shown in Figure 3, all the metrics get the
best performance at 0.002. Thus, 0.002 is the recommended value for the learning rate.

The Batch Size. The batch Size is the number of samples processed in each iteration
of the training process. As is shown in Figure 4, all the metrics except MSE get a better
performance at 32 or 64. Since the magnitude of the MSE is much less than the other
metrics, the difference of MSE in the figure seems not so obvious. However, from the
specific results, we can find that the MSE gets the biggest value at 64. Thus, 32 is the
recommended value for the batch size.

The Number of Units. This is the number of GRU cells in each layer of the network.
It determines the size of the hidden state and the cell state of each cell. Obviously, 24 is
the best choice for this hyperparameter as we can see from Figure 5.

The Number of Clusters. This is a hyperparameter of the K-means sub-model we
used. It determines how the data points are grouped into distinct regions based on their
similarity. There is no definitive answer to how to choose the best number of clusters for
a K-means model. As is shown in Figure 6, when choosing 170 clusters, the model gets a
better performance comprehensively.
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Figure 2 Results in different numbers of epochs

Figure 3 Results in different learning rate

The Training Ratio. This is the proportion of the available data that is used for
training the model. Apparently, in a ratio of 80 percentage, as is shown in Figure 7, the
model gets the best performance at all the assessment metrics.
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Figure 4 Results in different batch size

Figure 5 Results in different numbers of units
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Figure 6 Results in different numbers of clusters

Figure 7 Results in different ratios of training data
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Table 2 AUC COMPARISON WITH OTHER DEEP LEARNING MOD-
ELS

Models Accuracy Efficiency Relative Ratio Mean Square Error (MSE)
LSTM 0.93 0.909 0.446 0.0068
GRU 0.924 0.898 0.462 0.0068
Ours 0.957 0.931 0.595 0.0078

4.3. Comparison with other Models.
Eventually, we choose the best result of our model to compare with two well-known

RNN models (LSTM and GRU) which are good at dealing with time series data. As is
shown in Table 2, our model outperforms the other models comprehensively.

5. Conclusion. This paper develops a novel model for detecting abnormality in electric-
ity systems. The model was trained on a real dataset of household power consumption.
The chosen dataset is a kind of representative data in most electricity systems, and the
purpose of choosing a time series dataset is to apply the proposed model in more scenarios
in the future. The proposed model is a deep-learning-based model which combines the
unsupervised K-means model with the GRU model. Prior to this study, high abnormality
detection accuracy and the capacity to deal with a large-scale unlabeled dataset were
the two key challenges. The proposed model can address these challenges well. The ex-
periment result suggests that the proposed model outperforms several well-known RNN
models. However, this current study is limited by only fitting time series data. A more
general method can be found in the future.
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