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Abstract. The classification of vegetation resources based on remote sensing images
can provide important data support for forest resources survey, grassland monitoring, and
wetland vegetation change monitoring. Remote sensing images can quickly and widely
obtain the distribution of vegetation resources and its change information, combined with
classification algorithms can achieve the extraction of vegetation type and coverage, which
provides an effective means for the relevant departments to carry out the survey and mon-
itoring of vegetation resources, and greatly improves the work efficiency. Deep learning
methods show high performance as big data mining tools. However, when dealing with
remote sensing image tasks, such as the vegetation resource classification problem, it ex-
hibits low accuracy and efficiency. Therefore, a vegetation resource classification method
based on deep neural networks and composite remote sensing image data is proposed.
Firstly, composite Remote Sensing (RS) image data based on Geographic Information
System (GIS) is used to extract relevant attribute data and spatial data of vegetation
resources to form a preliminary input image. Following the extraction of several local
characteristics from the initial input picture, the deep neural network employed for judg-
ment is fed with these features. The assigned picture labels are used to categorize each
local feature. The overall image is adjudicated based on a simple voting method. Finally,
classification experiments are conducted using WorldView2 high resolution satellite re-
mote sensing image data, which shows that the proposed method outperforms other clas-
sification methods and has better classification accuracy and classification efficiency.
Keywords:Remote sensing imagery; GIS; Local classifiers; Deep learning; Deep neural
networks

1. Introduction. Remote sensing satellites are artificial satellites that allow remote sens-
ing in outer space and continuous observation of the corresponding areas of the earth’s
surface on demand. Currently, remote sensing technology is widely used in various fields.
Remote sensing data acquired by various sensors can be converted into visible images by
simulating human visual system techniques [1,2].

The classification of vegetation resources in remote sensing images can provide impor-
tant data support for forest resources survey [3], grassland monitoring [4], and wetland
vegetation change monitoring [5,6]. Remote sensing images can quickly and widely obtain
the distribution of vegetation resources and its change information, combined with clas-
sification algorithms can achieve the extraction of vegetation type and coverage, which
provides an effective means for the relevant departments to carry out the investigation
and monitoring of vegetation resources, and greatly improves the efficiency of the work [7].
The results of remote sensing vegetation classification can also be used for agricultural ap-
plications such as vegetation species identification, crop yield estimation, and ecosystem
service assessment [8,9]. In general, remote sensing vegetation classification is one of the
key techniques to achieve quantitative survey [10] and dynamic monitoring of vegetation
resources.

Fabbrocino et al. [11] proposed a spatial database and management system of hydrolog-
ical ecology based on Geographic Information System (GIS), which realised standardised
and visualised spatial information storage and management, and enhanced the efficiency
of vegetation resources research. However, there is a problem of poor accuracy in the
way of using only a single technical means of GIS. In recent years, Remote Sensing (RS)
technology combined with GIS technology has played an important role in green environ-
mental protection, Garouani et al. [12] carried out an in-depth study on the evolution of
vegetation cover and surface temperature based on RS and GIS, and used several remote
sensing images in the ENVI5.0 software [13] for the inversion of the calculation, which
provides data support for environmental protection. environmental protection.
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RS-based image classification is a very important task in computer vision tasks because
many practical social application scenarios require correct image classification results, such
as visual surveillance, marketing, object tracking, big data analysis, and so on. Image
classification, like other classification problems, is generally divided into several steps
[14,15]: target detection, image preprocessing, feature extraction and classification. Most
of the traditional high-resolution remote sensing image classification uses object-oriented
classification methods. In the detection stage, Patch sections in the picture are found and
separated. Following that, preprocessing methods are employed to minimize disparities
in size and lighting, and the patch objects are used as basic units to achieve classification.
However, object-oriented classification methods have too many classification attributes,
which results in generally low classification accuracy.

Deep neural networks have shown their excellent performance in computer vision tasks.
However, using standard deep neural networks to learn directly from the whole image is
sometimes very difficult, especially for complex data such as natural images. Extracting
information based on subregions of the original image can effectively solve this problem.
For example, unsupervised learning extracts useful features from image units [16], which
are called image blocks.

Therefore, the objective of this study is to develop an automated, generalised and highly
accurate vegetation classification technique using deep neural networks and composite
remote sensing (RS) image data, in order to provide better technical means for vegetation
resource investigation and monitoring.

1.1. Related Work. It is well known that feature extraction is a crucial step to achieve
good performance. Learning algorithms have become a very popular area of research
because they enable algorithms to automatically find the best representation of the data
[17, 18].

Deep neural networks can extract high-level semantic features from remote sensing im-
ages and identify different types of vegetation more accurately than traditional methods.
Deep learning technology can achieve end-to-end automatic classification without manual
extraction of features, and automatically monitor the distribution of vegetation resources
and its dynamic changes. The use of deep learning techniques to classify remote sensing
vegetation resources has become a hot direction in related fields. For example, Wang et
al. [19] trained a convolutional neural network model using UAV remote sensing images
with the idea of transfer learning to achieve the extraction of rice planting areas, and the
average classification accuracy reached 94%, and Zhou et al. [20] trained a deep learning
model to achieve the classification of vegetation by using the multi-temporal phase data
from Sentinel-2 satellite. Zhou et al. [20] used Sentinel-2 satellite multi-temporal data
to train a deep learning model to achieve vegetation classification, and the results show
that the deep learning method can significantly improve the classification accuracy. Zhao
et al. [21] constructed an integrated convolutional neural network and recurrent neu-
ral network to achieve the classification of vegetation time series based on hyperspectral
data, and the classification effect is better than that of a single model. Guo and Ren [22]
demonstrated that the composite remote sensing images of different temporal phases and
different wavelength bands can provide richer features, which is conducive to improving
the classification accuracy. features, which is conducive to improving the classification
accuracy. By constructing a more complex deep neural network model and optimising
it with a large amount of training data, a better generalisation ability can be obtained,
which can be adapted to the classification of vegetation types in different areas.

1.2. Motivation and contribution. Through the above analysis, it can be seen that
the current deep learning technology has been widely used in remote sensing vegetation
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classification tasks. By constructing models such as deep convolutional neural network
(DCNN) [23] and deep recurrent neural network (DRNN) [24], the high-level features
of the remotely sensed images can be extracted effectively to achieve the accurate clas-
sification and identification of vegetation resources. However, only using deep learning
techniques to achieve remote sensing image classification has reached a certain bottleneck.

Therefore, in order to effectively improve the accuracy and robustness of remote sens-
ing vegetation resource classification, this work adopts the combination of deep neural
network and RS image data for remote sensing vegetation resource classification. The
main innovations and contributions of this work include:

(1) Deep neural networks can learn advanced semantic features of remote sensing im-
ages, while composite multi-source remote sensing data can provide rich spectral, spatial
and temporal information, and the combination of the two can improve the accuracy of
vegetation classification.

(2) Different types and stages of vegetation exhibit complex spectral change character-
istics. RS data input into the deep network can learn more robust feature representations
and improve the adaptability of the model to complex environments.

(3) The local deep neural network is applied to remote sensing image classification, and a
new remote sensing image classification algorithm based on local features and deep neural
network is proposed. The experimental results show that compared with the traditional
DCNN model, the proposed local deep neural network has a better classification effect
with higher accuracy and classification efficiency.

2. RS data and its pre-processing.

2.1. Data storage. The adopted RS data storage system is divided into five main layers,
including the front-end part, Spring MVC control layer, service implementation layer
(service interface layer), persistence layer and database.

The database in the RS data storage system architecture is chosen to be managed by
Access 2016. Among them, except for the front-end part, the rest of them can be used
as a public service platform to provide API interfaces for other applications and achieve
network resource sharing. The project persistence layer is constructed using Mybatis
to achieve mapping of the spatial information body and data table of RS data. The
commonly used jar package for web applications is used in the Spring MVC control layer
[25]. Ajax asynchronous calls were used in the front-end part to visualise the spatial
information mainly in the user interface. In order to carry out accurate data matching
of the information and number of management subjects in the RS data storage system, a
rational design was carried out in terms of multiple attributes. In addition, the association
between map subject data and attribute data needs to be constructed in order to perform
graphical interaction. The remote sensing image vector information is stored in Access
database in Maplnfo standard file format. The association between the graphic file and
the attribute data is shown in Figure 1.

2.2. Image pre-processing. The remote sensing data sharing platform downloads two
remote sensing data separately, including the multiband remote sensing image with the
number of bands 7 and the multiband infrared remote sensing image with the number
of bands 11 taken by the satellite. The former was captured in August 2017 by Landsat
(WorldView2 Tm), which has higher spatial resolution and higher positioning accuracy,
and the latter was captured in November 2017 by Landsat (WorldView2 OLI), which has
a thermal infrared sensor. In addition, Digital elevation model (DEM) data downloaded
from the China Remote Sensing Data Network (CRSDN) [26] with a resolution of 30m×
30m was used.
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Figure 1. Graphics files associated with attribute data

For the pre-processing of RS data mentioned above, the remote sensing images collected
by the two satellites firstly need pre-processing such as radiometric calibration, FLAASH
atmospheric correction, band combination and image cropping, and then DEM is used to
realise terrain correction. The pre-processed remote sensing image is shown in Figure 2.

Figure 2. Pre-processed remote sensing images

2.3. Fusion of RS images. In general, it is difficult to obtain high-resolution remote
sensing image data when carrying out remote sensing vegetation resource classification,
which affects the final classification effect to a certain extent. Therefore, after combining
RS data preprocessing with GIS technology, in order to improve the accuracy of the
subsequent classification of vegetation resources, this paper also uses remote sensing image
fusion technology to process remote sensing images.

Specifically, multi-source remote sensing images with the same GIS information are
used to fuse the vegetation in a certain area, so as to get the information containing
more accurate and rich information. The method uses a variety of remote sensing images
with different resolutions and spectral resolutions under the same GIS conditions, which
not only enhances the feature information, but also enhances the terrain information.
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Feature-level fusion was used. Firstly, radiometric and geometric corrections are applied
to the multi-source remote sensing images to achieve the coordinate alignment of each
source data. Feature extraction, such as texture features, shape features, colour features,
etc., is performed on each remote sensing image. Common feature extraction methods
were used, including grey scale covariance matrix, LBP and HOG.

In order to use the fused features for subsequent classification tasks, extraction of
relevant attribute data and spatial data was carried out through RS and GIS databases.
The format of the 3D model data in the system is OSGB format file. For web presentation
in the front-end part, the 3D Tile format file of the 3D model data needs to be converted
and loaded [27]. Use Toolbox toolkit in GIS platform to convert relevant vector data into
shapefile file format, including selection, zoom in, zoom out, full-screen display, etc. The
geographic coordinates of remotely sensed vegetation resources are calculated as follows:{

tilex = |piexlx ÷ width|
tiley = |piexly ÷ width| (1)

In the formula, width denotes the side length of the block, which usually takes the
value of 256, tilex and tiley denote the horizontal and vertical coordinates of the block,
respectively.

Then, each feature is weighted and averaged according to its weight using the weighted
average fusion method [28]. The fused feature expression is:

Fusion =
∑

(wi · Fi) (2)

where wi is the weight of the i -th feature and Fi is the i -th feature.
Using Principal Component Analysis (PCA) fusion method, each feature is downscaled

to a lower dimension and then the lower dimensional features of different features are
fused. The expression of the fused features is:

Fusion = PCA(F1, F2, ..., Fn) (3)

where F1, F2, ..., Fn is the feature vector of different features after PCA dimensionality
reduction.

3. Vegetation resource classification based on deep neural network and RS
image data.

3.1. Local Classifiers. Local features extracted from different high resolution satellite
remote sensing image data using simple windows are called image blocks [29]. The image
blocks and local features are processed alternatively. In addition, in our proposed Local
DenseNet Neural Network (LDDNN), the main goal is to learn how to classify local
features based on image information. Finally, all classification test results are generated
by voting method.

In this paper, we set c = 1, ..., C as the classification variable. Assume that each local
feature is x[i], i = 1, ..., F . Each local feature contains information that is used for the final
classification label of x, so this paper sets the local classification variable to ci ∈ {1, ..., C}.

According to the above formulation, x belongs to the posterior probability of c and can
therefore be derived from the overall model (containing all local feature labels) analysis
[30]:

p(c|x) =
C∑

c1=1

. . .
C∑

cF=1

p(c, c1, ..., cF |x) (4)
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In this paper, the model is split into two sub-models, one of which computes the local
classification posterior (only x) and the other predicts the full classification posterior.

p(c, c1, ..., cF |x) = p(c1, ..., cF |x)p(c|x, c1, ..., cF ) (5)

In order to implement the model, an application-specific model needs to be constructed
for p(c|x). In this paper, the first sub-model is simplified by assuming that the local labels
are independent of x. The simplification method uses a plain Bayesian decomposition.

p(c1, ..., cF |x) =
F∏
i=1

p(ci|x[i]) (6)

where x[i] denotes the portion of x that is relevant to the prediction ci, such as the i-th
image block.

The simplification process assumes the independence of local features. By this sim-
plification method, a relatively simplified model can be obtained. Similarly, the second
sub-model also assumes that the overall labels depend only on the local labels, thus
achieving the simplification process as follows:

p(c|x, c1, ..., cF ) := p(c|c1, ..., cF ) (7)

In order to apply this simplified model to practical high-resolution satellite remote sens-
ing image classification scenarios, this paper further optimises the second sub-model by
assuming that α denotes the predefined reliable weights (representing the feature infor-
mation), and using each local feature i to complete the voting on cj:

p(c | c1, ..., cF ) =
F∑
i=1

αiδ(ci, c) (8)

where δ(·, ·) is the Kronecker function.

p(c | x) =
F∑
i=1

αip(c | x[i]) =
F∑
i=1

αip
[i]
c (9)

where p
[i]
c denotes the predicted probability of the feature x[i] (relative to the image x

global classification c).
A simple weighted average of the a posteriori probabilities of all local classifications c is

performed, where each feature still has the predicted weight αi ( 0 ≤ αi ≤ 1, i = 1, ..., F ,
and

∑
i αi = 1 ) to generate the final judgement [31]. For simplified analysis, this paper

assumes that all local features have the same weight.

α1 = α2 = . . . = αF =
1

F
(10)

In addition, for most αi, it is necessary to set the confidence or resolution of each local
feature, or at least some substitution information.

Finally, in this paper, the final classification result of the original image x is obtained
by using the classification with maximum local a posteriori probability weighted sum and
ensemble Bayesian decision criterion.

x → c(x) = p(c|x) =
F∑
i=1

αip
[i]
c (11)

Thus, the overall classification is computed based on the sum of local a posteriori
weights for each local feature. Then, the classification with the most votes among all
local features is selected as the final classification.
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3.2. Local Classification Posterior Estimation on LDDNN. The key problem in
using local features is that the classification decision boundary has nonlinear and mul-
timodal problems. For such special problems, the local classification posterior needs to
be estimated for small image chunks (containing partial information about the image).
These small image chunks often give rise to high multimodal distributions.

Therefore, in this paper, nonlinear and multimodal evaluation algorithms, such as the
nearest neighbour algorithm, are used to solve such probability distribution problems.
The neural network can handle the nonlinear problem. In addition, during the exper-
imental process, the classification posterior estimation is faster and the method can be
optimised by matrix operations, thus enabling batch processing. Based on the above
claimed problems, this paper proposes to use LDDNN for local classification posterior
estimation. In this paper, the deep learning architecture can solve the complex mapping
problem between image blocks and classification, as shown in Figure 3.

Input 

image

167

512

4

Output 

label

....

....

....

....

....

....
....

Figure 3. The LDDNN model

It can be seen that in this paper, multiple image blocks are extracted from the original
image and these features are fed to a deep neural network used for judgement. The network
includes multiple input layers and hidden layers (fully connected). The output layer
represents a posteriori probability of each local feature. Finally, a summation operation
is performed on all local a posteriori probability. In training, the neural network classifies
each image block according to the image label it belongs to. In experiments, in this
paper, the classification of all image blocks is processed and then that image is classified
according to the final labels.

There are many ways that can be used to define local features of an image, such as
size or shape. However, in this paper we only consider square windows of size. For
the locations extracted from these image blocks, the simplest method is to use a fixed
sampling grid for the input image [32]. However, due to the large number of image blocks,
this method results in a large computational cost. Therefore, in this paper, we choose to
use some of the image blocks containing high information content and discard the rest of
the image blocks with very low relevance.
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Following the above method, this paper first obtains a matching binary mask image
based on the input image. The centre of each image block to be extracted i.e. effective
pixel. Deep learning uses a pre-trained LDDNN as a feature extractor and adds a fully
connected layer on top of it for classification. A cross-entropy loss function is used for the
classification task and a stochastic gradient descent (SGD) optimiser is used for parameter
optimisation.

3.3. Methodology for the classification of remotely sensed vegetation resources.
This work uses the Keras library to build and train a remote sensing image classification
method based on LDDNN model and RS image data. First, the desired library is imported
and the RS data is preprocessed to extract relevant attribute data and spatial data, thus
forming the initial input image. Then, the DenseNet model is constructed and the global
average pooling layer and fully connected layer are added. Next, the DenseNet underly-
ing weights are frozen in order to remain constant during training. Finally, the model is
compiled and trained using the training data. Observe the process of Loss vs. Accuracy,
evaluate the performance of the model on the validation data, and make adjustments to
the parameters in order to obtain higher accuracy.

The forward propagation in the LDDNN model is shown below:

y = fc(fgp(fdb(fconv(x)))) (12)

where x is the initial input image data after preprocessing, fconv is the convolutional layer,
fdb is the DenseBlock, fgp is the global average pooling layer, and fc is the fully connected
layer, and y is the output classification result.

The loss function is calculated as shown below:

L = − 1

N

N∑
i=1

C∑
j=1

yij log(ŷij) (13)

where N is the number of samples, C is the number of categories, yij is the true label of
the i -th sample, and ŷij is the predicted label of the i -th sample.

The SGD optimiser for the LDDNN model is:

θt+1 = θt − α∇L(θt) (14)

where θt is the model parameter at the t-th iteration, α is the learning rate, and ∇L(θt)
is the gradient of the loss function L with respect to the model parameter θt.
The LDDNN-RS based remote sensing vegetation resource classification method is

shown in Algorithm 1.
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Algorithm 1 LDDNN-RS based remote sensing vegetation resource classification

1: # Import the required libraries
2: import os
3: import numpy as np
4: from keras.preprocessing.image import ImageDataGenerator
5: from keras.applications import DenseNet121
6: from keras.layers import Dense, GlobalAveragePooling2D
7: from keras.models import Model
8: from keras.optimizers import Adam
9: # Data pre-processing
10: train datagen = ImageDataGenerator(rescale=1./255)
11: test datagen = ImageDataGenerator(rescale=1./255)
12: train generator = train datagen.flow from directory(
13: train data dir,
14: target size=(img height, img width),
15: batch size=batch size,
16: class mode=’categorical’)
17: validation generator = test datagen.flow from directory(
18: validation data dir.
19: target size=(img height, img width),
20: batch size=batch size,
21: class mode=’categorical’)
22: # Constructing the DenseNet model
23: base model = DenseNet121(weights=’imagenet’, include top=False)
24: x = base model.output
25: x = GlobalAveragePooling2D()(x)
26: predictions = Dense(num classes, activation=’softmax’)(x)
27: model = Model(inputs=base model.input, outputs=predictions)
28: # Freeze DenseNet underlying weights
29: for layer in base model.layers:
30: layer.trainable = False
31: # Compile the model
32: model.compile(optimizer=Adam(lr=0.001), loss=’categorical crossentropy’, met-

rics=[’accuracy’])
33: # Training models
34: model.fit generator(
35: train generator.
36: steps per epoch=num train samples // batch size,
37: epochs=epochs,
38: validation data=validation generator,
39: validation steps=num validation samples // batch size)
40: # Evaluating models
41: score=model.evaluate generator(validation generator, num validation samples : batch

size)
42: print(’Test loss:’, score[0])
43: print(’Test accuracy:’, score[1])

4. Experimental results and analyses.
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4.1. Experimental environment. The operating environment for the experiments in
this work is divided into 2 main parts: the hardware environment and the software environ-
ment, the specific parameters are shown in Table 1. Classification tests for remote sensing

Table 1. Parameters of the environment in which the experiment will be run

operating
environment

parametric numerical value

hardware

environment

CPU Intel i5 9600KF@3.7GHz
hard drive 200GB

random access memory (RAM) 4GB
Graphic image processing equipment GTX1050@2GB GDDR5

software

environment

OS system Windows 10
development platform (computing) 3DMAX, ENVI, GIS, Python

comprehensive database Access

vegetation resource classification were conducted using DCNN [23]-RS and LDDNN-RS,
respectively, and the classification efficiency and accuracy of the three methods were com-
pared. The LDDNN proposed in this paper requires fewer parameters to be set, the size
of the image block is 13Ö13 pixels, the hidden layer has 512 Rectified linear unit (ReLU)
and the input layer has 4 units.

4.2. WorldView2 satellite remote sensing image data. WorldView2 high resolu-
tion satellite remote sensing images were used for the experiments in this work, and the
WorldView2 parameters are shown in Table 2. The dataset is divided into a training set
of 1500 sheets and a validation set of 645 sheets according to the ratio of 7:3. The training
set is used to train the model, and the validation set is used to adjust the hyperparame-
ters and evaluate the model performance during the training process. Each image in the
Panchromatic Band (PB) dataset contains 3 channels, the image format is an 8-bit TIFF
file, and the value domain of image elements is [0,255]. Each image in the Multispectral
Band (MB) dataset contains 6 channels, the image format is a 16-bit TIFF file, and the
value domain of the image element is [0,65535].

Table 2. Parameters of WorldView2

Transducers Spatial resolution/m Wavelength/nm

Panchromatic band (PB) 0.5
450-1040
400-450
450- 510

Multi-spectral band (MB) 1.8

510-580
585-625
630-690
705-745
770-895
860-1040

As shown in Table 3, all the image elements in the dataset are classified with labels, of
which 31.2 % are labelled as bare ground, 42.1 % are labelled as vegetation, and 20.6 %
are labelled as water. Another 5.9 % of the image elements are labelled as unclassified and
are ignored during model training and validation. In order to increase the generalisation
ability of the model during the training process, each image is randomly rotated, as well
as a certain degree of uniform random brightness adjustment for all bands, before entering
the model training.
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Table 3. Category proportion

No. Category Percentage %
0 bare ground 31.2
1 plant cover 42.1
2 (of clothes) classifier for number of washes 20.6
3 Uncategorised 5.9

4.3. Remote sensing vegetation resource classification results. Spectral images
and high-resolution single-band images are fused into a single image. The bilinear inter-
polation resampling method was chosen to obtain the best visual effect and information
extraction capability.

Using the Gram-Schmidt spectra sharpening tool in the ENVI software, multiple low-
resolution multiluminous were used to prevent network overfitting using an Early Stopping
strategy, i.e., training was stopped when the metrics no longer improved or began to de-
cline. The trained network models were evaluated for performance using the validation
set in each dataset, and the confusion matrix was used to calculate and count the accu-
racy. The confusion matrix metrics were used to quantitatively assess the classification
accuracy from four aspects, and the final results of the remote sensing vegetation resource
classification accuracy are shown in Table 4.

Table 4

Assessment of indicators Value %
error in grading 6.48

missmissing fraction error 2.90
Overall classification accuracy 91.66

Kappa factor 90.35

It can be seen that after the pre-processing of composite remote sensing data and fusion
of remote sensing images, the overall classification accuracy and Kappa coefficient of the
maximum likelihood classification results of vegetation resources are higher than 90%,
which meets the requirements of practical applications.

4.4. Comparison of classification performance. The comparison between the clas-
sification prediction results of the DCNN-RS model and the LDDNN-RS model is shown
in Figure 4, where yellow indicates bare land classification, green indicates vegetation
classification, and blue indicates water body classification.

It can be clearly seen that the PB image is rougher in the edge profile in the classification
results on the DCNN-RS model. Whereas, MB image performs better on the same DCNN-
RS model and is more accurate in predicting the classification of geomorphic edges. For
the DCNN-RS model, MB improves the overall classification accuracy by 11.83 % over
PB on training

In addition, for the MB image dataset, the LDDNN-RS model proposed in this paper is
compared with the DCNN-RS model and the DCNN model, and the results of the classi-
fication accuracy as well as the classification usage time are shown in Table 5. From Table
5, it can be seen that compared with the DCNN-RS model, the classification time of the
LDDNN-RS model proposed in this paper is slightly longer, but the average classification
accuracy is improved by 11.16%, which is due to the fact that, the nearest-neighbour
algorithm estimation in the LDDNN-RS model needs to analyse all the extracted local
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Figure 4. Classification results Results. (a) original image; (b) real labels; (c)
PB+DCNN-RS; (d) MB+DCNN-RS; (e) MB+LDDNN-RS

features, which is a more computationally intensive process. Compared with the tradi-
tional DCNN model, the average classification time of the LDDNN-RS model is reduced
by 1307.7s and the average classification accuracy is improved by 3.48%.

In summary, compared with the existing DCNN models, the LDDNN-RS model pro-
posed in this paper obtains higher classification accuracy and classification efficiency by
local feature extraction first and then deep learning based on these features.

5. Conclusion. The author proposed a classification method for vegetation resources
based on deep neural network and composite remote sensing image data. Using RS image
data, the relevant attribute data and spatial data of vegetation resources are extracted
to form a preliminary input image. From the initial input image, a variety of local char-
acteristics are retrieved and fed to a deep neural network for evaluation. The assigned
picture labels are used to categorize each local feature. Judge the overall image based
on a simple voting method. The experimental results on WorldView2 show that com-
pared to the DCNN-RS model, the classification time of the LDDNN-RS model is slightly
longer, but the average classification accuracy is improved by 11.16%; compared to the
traditional DCNN model, the average classification time of the LDDNN-RS model is re-
duced by 1307.7s, and the average classification accuracy is improved by 3.48%. From
the perspective of deep learning models, more excellent semantic segmentation models
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Table 5. Comparisons of results from three classification methods

Classification
Number of

classifications
Accuracy/per cent Time/s

DCNN

1 88.65 1673.76
2 88.68 1678.45
3 89.12 1685.61
4 86.32 1697.62
5 88.12 1685.92

average value 88.18 1684.27

DCNN-RS

1 81.57 297.22
2 81.06 301.13
3 79.51 308.92
4 79.32 306.82
5 81.07 299.56

average value 80.51 302.73

LDDNN-RS

1 91.72 381.95
2 91.78 361.07
3 92.21 384.63
4 91.02 374.42
5 91.58 381.03

average value 91.66 376.62

have appeared in the field of image segmentation in recent years, such as Segment and
Deeplabv3. Therefore, the subsequent research will try to use more advanced seman-
tic segmentation models as the benchmark models to further improve the classification
accuracy.
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