Journal of Network Intelligence (©2024 ISSN 2414-8105 (Online)
Taiwan Ubiquitous Information Volume 9, Number 1, February 2024

Parallel Binary Tumbleweed Algorithm and Its
Application for Intrusion Detection Systems

Ruo-Bin Wang

School of Information Science and Technology
North China University of Technology
Beijing 100144, China
robin945@163.com

Fang-Dong Geng

School of Information Science and Technology
North China University of Technology
Beijing 100144, China
gfd21@qq.com

Lin Xu*

STEM
University of South Australia
Adelaide 5095
callyxul005@Qgmail.com

*Corresponding author: Lin Xu

Received September 15, 2023, revised November 2, 2023, accepted December 27, 2023.

ABSTRACT. The tumbleweed algorithm(TA) is a newly proposed population-based meta-
heuristic algorithm that cannot be directly used to solve binary optimization problems. In
this paper, we propose a parallel binary tumbleweed algorithm(PBTA) for solving the fea-
ture selection problem of intrusion detection systems using a novel time-varying transfer
function. In addition, a parallel mechanism and two communication strategies are intro-
duced to enhance the diversity of the population to achieve better algorithm performance.
The proposed PBTA 1is verified on the CEC2013 benchmark and in comparison with
some popular algorithms, and the results demonstrate the superiority of PBTA. Eventu-
ally, PBTA is employed to solve the problem of feature selection for intrusion detection
system, and the experimental results prove that PBTA is effective in finding the optimal
feature subset which improves the classification quality while minimizing the amount of
features employed.

Keywords: tumbleweed algorithm; parallel binary; intrusion detection system

1. Introduction. In the presence of increasingly complex optimization problems in the
real world, the search for efficient novel optimization approaches has become a focus of
attention. Generally, statistical methods are employed to solve real-world application
problems in various fields [1]. Unfortunately, these mathematical methods encounter
great challenges in addressing complex optimization problems, like multimodal problems.
In consequence, nature-inspired meta-heuristic algorithms have been designed to solve
various combinatorial optimization problems [2]. Although they cannot find the optimal

599

600 R.-B. Wang, F.-D. Geng and L. Xu

solution of the problem every time, they continue to be capable of finding near-optimal
or optimal solutions within limited resources [3].

Meta-heuristic algorithms can be categorized into two categories: evolution-based as
well as swarm intelligence-based. Evolution-based algorithms mimic the process of evolu-
tion in nature, including concepts such as heredity and mutation. Popular evolutionary
algorithms include genetic algorithms [4][5] and differential evolutionary algorithms [6][7].
In recent years, some novel evolutionary algorithms have been widely applied in a va-
riety of real-world applications. For example, Hu et al. proposed a deep reinforcement
learning-assisted co-evolutionary differential evolution, which can effectively use reinforce-
ment learning to help evolutionary algorithms solve constrained optimization problems
[8]. Nazeri et al. proposed a centrality-based genetic algorithm by introducing novel ge-
netic operators and chromosome representations to solve the graph burning problem [9].
Kang et al. optimize the hyperparameters of gaussian process regression using non-inertial
particle swarm optimization with elite mutation and apply it to uncertain measurement
and prediction of non-smooth time series [10]. Chen et al. proposed a genetic algo-
rithm combined with simulated annealing to provide an alternative approach for solving
the time-varying network problem [11]. Shaik et al. proposed gaussian mutation—spider
monkey optimization model, which obtained high accuracy in solving scene classification
problems [12]. Swarm intelligence-based algorithms achieve the solution or optimization
of a problem by simulating the interaction and cooperation between individuals in a pop-
ulation. These algorithms have inspiration from the behavior of groups in nature, such
as ant colonies [13][14], bird swarm [15][16][17], and fish schools [18][19]. A number of
meta-heuristic algorithms based on swarm intelligence have been proposed extensively for
the solution of complex optimization problems [20]. For instance, Dhiman et al. designed
a seagull optimization algorithm based on the migration and attack behaviors of seagulls,
which is applicable for solving challenging large-scale constrained problems [21]. Khishe
et al. proposed a chimp optimization algorithm, which simulates individual intelligence
in group hunting, and it provides a new option for solving high-dimensional optimization
problems [22]. Pan et al. proposed the gannet optimization algorithm inspired by the
feeding behavior of gannet, which is a good choice for solving engineering optimization
problems [23].

Tumbleweed algorithm is a newly proposed swarm intelligence algorithm, which can
effectively solve the logistics center location problem [24]. Yet, the algorithm is incapable
of solving discrete and binary optimization problems, such as the intrusion detection
system(IDS) feature selection problem. While the binary tumbleweed optimization algo-
rithm has been proposed to solve binary optimization problems, the algorithm does not
have competitive performance in solving the intrusion detection system feature selection
problem [25].

In this paper, we propose a parallel binary tumbleweed algorithm (PBTA) that employs
a new time-varying transfer function, and two parallel strategies are introduced to enhance
the diversification of the population to achieve better computational efficiency of the
algorithm. A summary of the main contributions of our work can be presented as follows:

e A parallel binary tumbleweed algorithm is proposed which employs a novel time-
varying transfer function, a parallel mechanism and two communication strategies
are employed to achieve better performance of the algorithm.

e We tested the performance of PBTA on CEC2013 benchmark functions and com-
pared it with popular algorithms.

e PBTA is applied to solve the problem of feature selection for intrusion detection
system.

Parallel Binary Tumbleweed Algorithm and Its Application for Intrusion Detection Systems 601

The remainder of this paper is presented as shown below: section 2 describes the origi-
nal tumbleweed algorithm, section 3 introduces the proposed parallel binary tumbleweed
algorithm, section 4 evaluates the performance of the algorithm on the CEC2013 test
function, PBTA is used to solve the feature selection problem for intrusion detection
systems in section 5, and section 6 summarizes the work in this paper.

2. Tumbleweed Algorithm. The Tumbleweed Algorithm (TA) is a novel swarm intel-
ligence optimization algorithm inspired by the seedling growth and seed reproduction of
tumbleweeds [24][26]. In TA, N tumbleweed seedlings are denoted by X;(i = 1,2,...,N)
and their fitness is denoted as fitness(X;). Only one of the most vigorously growing
of the N seedlings was capable of growing into a complete tumbleweed plant, which is
denoted by Xgpest, and spread its seeds. During the seedling growth stage, the growth of
seedlings is always influenced by two parts of environmental factors. One part is the effect
of the strong seedling on the seedling, denoted by F'1, and the other part is influenced by
factors including light and soil, denoted by F2. The expression formulae for F'1 and F2
are shown in Equation 1 and Equation 2.

F1=r1% (Xgpest — Xiq) (1)
)

F2 = , . 2

fitness(X},,) 11 ()

sum(fitness(Xo1q))

where 71 is an influence coefficient that decreases linearly from ¢ to 0 with iterations of
the algorithm, as shown in Equation 3. And r, stands for the factor of environmental
impact, which takes values from 0 to 0.1.

iter

(3)

where ¢ takes the value 2, iter stands for the iteration in progress, and Max_iter indicates
the iteration limit. Lastly, the position update equation for the seedling growing phase
appears in Equation 4.

ri=tx(l - ——
! (Max_iter

X’:;zew:Xgld_FFl_l—FQ (4)

At the phase of propagation of the seed, only a most vigorous seedling grow into a complete
tumbleweed and spread the seeds, with position updated as shown in Equation 5.

; iter
X, = ngest + Vi

new (5)
where V; denotes a random value from [lb, ub], (b and ub denote the upper and lower

boundaries of the search space, respectively. The pseudo-code of TA is shown in Algorithm
1.

Max_ater

3. Parallel Binary Tumbleweed Algorithm. In the continuous version of TA, tum-
bleweeds update their positions in the continuous search space. In the binary version of
TA, however, the position can only take values of 0 or 1. Many discrete and binary op-
timization problems can be solved using these two values, such as the knapsack problem
and the feature selection problem.

602 R.-B. Wang, F.-D. Geng and L. Xu

Algorithm 1 Pseudo-code of the TA
input: N: size of population; dim: dimensions of the problem; f(z): evaluation function;
gre: growth cycle; Max_iter: maximum iterations
output: Xy and f(Xpest)-
Initialize the position of the solution X; in the population randomly;
While (iter < Maz_iter) do
Evaluate the fitness score for all individuals;
Update Xbest and f(Xbest);
if mod(Max _iter, grc) < gre/2 do
compute F'1 and F2 by Equation 1 and Equation 2;
update r; by Equation 3;
update X, by Equation 4;
else
update X, by Equation 5;
end if
Boundary value processing;
end while

3.1. Transfer function. Transfer functions play an important role in the conversion of
a continuous algorithm to a binary algorithm and they have a significant impact on the
performance of binary algorithms [27]. The family of commonly used S-type transfer
functions is presented in Table 1, and the curves are plotted in Figure 1. As can be
seen from Figure 1, the S1 function have a high probability of positional change, which
makes it easy for the algorithm to get rid of local traps. However, this still prevents
the algorithm from converging to an optimal value. Consequently, we propose a novel
time-varying transfer function to prevent the algorithm from converging prematurely, as
shown in Equation 6, and the function curve is shown in Figure 2. As can be seen in
Figure 2, the proposed transfer function changes with the iteration of the algorithm. In
the early stage of the algorithm, the switching rate of 0 and 1 is large, which is conducive
to the algorithm’s large-scale search; in the late stage of the algorithm, the switching rate
of 0 and 1 slows down, which is conducive to the local optimization search.

TABLE 1. The family of S-type transfer functions.

Name Transfer func-
tion
S1 T = m;—h
82 - ﬁ
83 - 1_1
14e— 2
S4 T=—
14e 3
S(z) = . 0
('T) - 1 + e Mzzfe,iter (2—0.5) ()

3.2. Parallel mechanism. A parallel binary tumbleweed algorithm(PBTA) is proposed
for further improving the performance of binary algorithms. In PBTA, a population of
size N is equally divided into 3 groups. Each subpopulation operates independently and
exchanges through two communication strategies. The first communication strategy is

Parallel Binary Tumbleweed Algorithm and Its Application for Intrusion Detection Systems 603

BRI

0.7

0.4r

03[

iter=1

01k iter=Maxiter/2

~

.......... iter=Maxiter

Q Frawemratilto

FIGURE 2. The curve of the proposed time-varying transfer function.

represented as randomly selecting two subpopulations every M generations to exchange
half of the individuals. The second communication strategy is represented as every 2M
generations, the two worst values of each subpopulation are replaced by the best values
of the other two subpopulations.The two communication strategies are shown in Figure
3. It can be seen that the worst individuals in the three subpopulations are gradually
eliminated by the two strategies, which increases the diversity of the population and

604 R.-B. Wang, F.-D. Geng and L. Xu

improves the capability of the algorithm to escape from localized traps. The pseudo-code
of PBTA is shown in Algorithm 2.

!
!

groupl -

group2

|
!

SUONBIAN JA JOYY
SuoOneIANI N IV
!

group3 —

e - Individual

F1cURE 3. The proposed two parallel strategies.

Algorithm 2 Pseudo-code of the PBTA
input: N: size of population; dim: dimensions of the problem; f(z): evaluation function;
gre: growth cycle; Max_iter: maximum iterations
M: iteration frequency for group communication
output: Xpes and f(Xpest)-
Initialize the position of the solution X; with 0 or 1;
While (iter < Max_iter) do
Using transfer function to update X,cu;
Calculate the fitness value for all individuals;
Update Xbest and f(Xbest);
if mod(M ax _iter, gre) < gre/2 do
compute F'1 and F2 by Equation 1 and Equation 2;
update r; by Equation 3;
update X, by Equation 4;
else
update X, by Equation 5;
end if
Boundary value processing;
if mod(iter,M)=0 do
Execute the first communication strategy;
elif mod(iter,2M)=0 do
Execute the second communication strategy;
end if
end while

4. Statistical Results of the Experiments. The capability of PBTA on the CEC2013
benchmark function is verified in this section. These benchmark functions include uni-
modal functions(f1-f5), multimodal functions (f6-f20), and composition functions (f21-
28). Firstly, we verify the effect of different transfer functions on the binary version

Parallel Binary Tumbleweed Algorithm and Its Application for Intrusion Detection Systems 605

of the tumbleweed algorithm(BTA), and secondly, we compare the PBTA with other
popular algorithms such as binary particle swarm optimization (BPSO)[28], binary bat
algorithm (BBA)[29], binary grey wolf optimizer (BGWO)[30], binary fish migration al-
gorithm (BFMO)[31], and the binary version of the hybrid grey wolf optimization and
particle swarm optimization (BGWOPSO)[32]. Some algorithm parameters are shown in
Table 2. All algorithms run independently 30 times.

TABLE 2. Parameter setting of the algorithms.

Algorithm | Parameters

PBTA N=60, Max_iter=500, t=2

BBA N=60, Max_iter=500, A=0.25, r=0.1

BPSO N=60, Max_ter=500, cl=c2=1.5, V=1, Wmax=0.9,
Wmin=0.4

BGWO N=60, Max_iter=500
BFMO N=60, Max_iter=500
BGWOPSO N=60, Mazx_iter=500, W=[0.5,1], v=[0,0.3], c1=¢2=0.5

4.1. Comparison of different transfer functions. Table 3 and Table 4 shows the sta-
tistical results of the BTA family of algorithms, where PBTA uses the proposed transfer
function with parallel mechanism, BTA uses the proposed transfer function without paral-
lel mechanism, and BTA_S1, BTA_S2, BTA_S3, and BTA _S4 employ the transfer functions
S1, S2, S3, and S4, respectively, without parallel mechanism. The Average rank is the
result of the Friedman test and the Overall rank means the final ranking. From Ta-
ble 3, we can conclude that compared to BTA_S1, BTA_S2, BTA_S3 and BTA_S4, BTA
performs more superior on all functions. Table 4 shows the best stabilization of BTA
performance. These demonstrate the capability of the proposed transfer function to im-
prove the efficiency of the algorithm. Furthermore, it can be seen that PTA is stable and
the performance of PTA is superior to BTA across all functions. This proves that the
proposed parallel mechanism improves the performance of the algorithm without losing
the stability of the algorithm.

4.2. Comparison results between PBTA and other popular algorithms. Results
from some classic meta-heuristics algorithms are compared with results of PBTA to see
how PBTA performs. These algorithms include BPSO, BBA, BGWO, BFMO, and BG-
WOPSO. Table 5 and Table 6 demonstrate the statistical results of 30 runs (mean and
standard deviation).

The results indicates that the PBTA performs better than the BPSO, BFMO, and
BGWO on unimodal functions, while exhibiting the same level of performance as the BBA
and BGWOPSO. It proves the good convergence capability of the PBTA. And PBTA
performs worse than BGWOPSO only on F9, F15, and F16 in multimodal functions,
but outperforms all other algorithms on all functions, which demonstrates the superior
performance of PBTA in escaping from local optima. The composition functions can be
employed to test the comprehensive capability of an algorithm, and PBTA outperforms
BBA, BPSO, and BGWO on all composition functions. In addition, the Friedman average
ranking results show that PBTA has a competitive performance and outperforms the
other five algorithms overall. The foregoing discussion demonstrates that PBTA achieves
fast convergence and excellent local optima escaping capability while also demonstrating
competitive performance in resolving binary optimization problems.

606

R.-B. Wang, F.-D. Geng and L. Xu

TABLE 3. The mean of 30 experiments for the BTA family of algorithms.

Function PBTA BTA BTA_S1 BTA_S2 BTA_S3 BTA_S4
F1 6.775E+04 | 6.775E+04 | 6.787E+04 | 6.792E+04 | 6.797E+04 | 6.800E+04
F2 7.334E+4+09 | 7.334E+09 | 7.362E+09 | 7.377E4+09 | 7.386E+09 | 7.395E+09
F3 8.883E+22 | 8.883E+22 | 9.355E+22 | 9.435E+22 | 9.573E+22 | 9.610E+22
F4 6.838E+04 | 6.844E+04 | 6.859E+4+04 | 6.857TE+04 | 6.861E+04 | 6.859E+04
F5 1.024E+05 | 1.024E+05 | 1.024E+05 | 1.024E+05 | 1.024E+05 | 1.024E+05
Fo6 2.474E+04 | 2.474E4+04 | 2.483E+04 | 2.485E+04 | 2.487TE+04 | 2.488E+04
F7 2.632E+08 | 2.655E+08 | 2.649E+08 | 2.638E+08 | 2.666E+08 | 2.658 E+08
F8 -6.790E+02 | -6.790E+02 | -6.789E+02 | -6.790E+02 | -6.789E+02 | -6.790E+02
F9 -5.427E+02 | -5.429E+02 | -5.426E+02 | -5.425E+02 | -5.424E+02 | -5.423E+02
F10 1.471E+04 | 1.471E+04 | 1.472E+04 | 1.474E+04 | 1.475E+04 | 1.476E+04
F11 8.353E+02 | 8.353E+02 | 8.405E+02 | 8.429E+02 | 8.466E+02 | 8.468E-+02
F12 8.790E+02 | 8.790E+02 | 8.854E+02 | 8.896E+02 | 8.931E+02 | 8.945E+02
F13 9.803E+02 | 9.803E+02 | 9.814E+402 | 9.832E+02 | 9.863E+02 | 9.865E+02
F14 1.162E+04 | 1.162E+04 | 1.168E+04 | 1.174E+04 | 1.179E+04 | 1.180E+04
F15 1.160E+04 | 1.159E+04 | 1.167TE+04 | 1.172E+04 | 1.180E+04 | 1.182E+04
F16 2.029E+02 | 2.030E+02 | 2.034E+02 | 2.035E+02 | 2.035E+02 | 2.036E-+02
F17 1.396E+03 | 1.396E+03 | 1.399E+03 | 1.402E+03 | 1.406E+03 | 1.409E+403
F18 1.369E+03 | 1.362E+03 | 1.368E+03 | 1.376E+03 | 1.375E+03 | 1.376E+403
F19 1.964E+06 | 1.964E+06 | 1.965E+06 | 1.965E+06 | 1.965E+06 | 1.965E+06
F20 6.150E+02 | 6.150E+02 | 6.150E+402 | 6.150E+02 | 6.150E+02 | 6.150E+02
F21 3.439E+03 | 3.439E+03 | 3.439E+03 | 3.440E+03 | 3.442E+03 | 3.442E+03
F22 1.241E+404 | 1.241E+04 | 1.244E+04 | 1.248E+04 | 1.252E+04 | 1.253E+04
F23 1.254E+04 | 1.254E+04 | 1.260E+04 | 1.265E+04 | 1.268E+04 | 1.269E404
F24 2.051E+03 | 2.051E+03 | 2.056E+03 | 2.059E+03 | 2.063E+03 | 2.063E+03
F25 1.635E+03 | 1.635E+03 | 1.638E+03 | 1.639E+03 | 1.639E+03 | 1.639E+03
F26 5.144E+03 | 5.144E403 | 5.226E+03 | 5.241E+4+03 | 5.266E+03 | 5.265E+03
F27 4.699E+03 | 4.698E+03 | 4.705E+03 | 4.708E+03 | 4.712E+03 | 4.713E+03
F28 1.058E+04 | 1.063E+04 | 1.074E+04 | 1.074E+04 | 1.076E+04 | 1.077E+04

Average rank 1.6071 1.7500 3.0893 3.8393 5.0536 5.6607
Owverall rank 1 2 3 4 5 6

5. Application for IDS Feature Selection. The effectiveness of intrusion detection
systems is negatively impacted by a number of characteristics, so we actively work to
identify features with a positive impact on performance [33]. In this section, PBTA is
applied to solve the intrusion detection system feature selection problem, where PBTA is
used to search for the best subset of features and K-nearest neighbor (KNN) is employed
as a classifier.

5.1. Dataset description and data pre-processing. The NSL-KDD dataset is a sub-
set of KDD99 that addresses some of the shortcomings of the original dataset [34]. It
consists of nine different kinds of cyberattacks that are categorized into training and
testing sets, K D Dy.qin and K DDy, they contain 125973 instances and 22544 instances
with 41 features respectively. All attacks are categorized as normal or abnormal. Since
different features may be measured differently, the data must be normalized to eliminate

Parallel Binary Tumbleweed Algorithm and Its Application for Intrusion Detection Systems

TABLE 4. The standard deviation of 30 experiments for the BTA family of algorithms.

Function | PBTA BTA BTA_S1 BTA_S2 BTA_S3 BTA_S4
F1 5.920E-11 | 5.920E-11 | 5.086E+01 | 5.101E4-01 | 5.539E+01 | 5.006E+4-01
F2 2.910E-06 | 2.910E-06 | 1.295E+07 | 1.434E4-07 | 1.463E+07 | 9.390E4-06
F3 5.119E407 | 5.119E+07 | 1.366E+421 | 1.364E+21 | 1.439E421 | 1.592E+21
F4 7.374E401 | 6.695E+01 | 7.436E401 | 8.404E+01 | 1.058E4-02 | 1.157E+02
F5 0.000E4-00 | 0.000E+00 | 1.247E-02 | 3.186E-02 | 3.981E-02 | 4.904E-02
F6 1.850E-11 | 1.850E-11 | 3.026E4-01 | 3.226E+01 | 3.480E4-01 | 3.171E4-01
F7 5.285E+4-06 | 6.389E+06 | 5.254E4-06 | 5.347E+06 | 6.421E4-06 | 5.554E+06
F8 5.643E-02 | 5.339E-02 | 4.284E-02 | 7.384E-02 | 6.117E-02 | 4.317E-02
F9 2.141E-01 | 1.574E-01 | 1.440E-01 | 1.712E-01 | 1.378E-01 | 1.030E-01
F10 7.400E-12 | 7.400E-12 | 7.075E+00 | 1.049E4-01 | 1.329E+01 | 1.242E4-01
F11 0.000E4-00 | 0.000E+00 | 1.885E4-00 | 2.613E+00 | 2.783E4-00 | 2.249E+00
F12 0.000E4-00 | 0.000E+00 | 2.534E4-00 | 3.485E+00 | 3.556E4-00 | 4.081E+00
F13 1.033E+00 | 8.834E-01 | 9.379E-01 | 1.682E4-00 | 2.209E+00 | 2.816E4-00
F14 5.550E-12 | 5.550E-12 | 2.602E+01 | 3.864E4-01 | 4.221E+01 | 4.252E4-01
F15 2.696E401 | 5.550E-12 | 4.424E4-01 | 4.260E+01 | 4.030E4-01 | 3.739E+01
F16 4.828E-01 | 3.599E-01 | 3.679E-01 | 4.482E-01 | 4.618E-01 | 4.214E-01
F17 0.000E4-00 | 0.000E+00 | 1.441E4-00 | 2.604E+00 | 3.309E4-00 | 3.244E+00
F18 1.424E+01 | 1.241E4-01 | 1.380E+01 | 1.091E4-01 | 1.103E+01 | 8.726E4-00
F19 9.472E-10 | 9.472E-10 | 1.200E+02 | 1.418E4-02 | 3.724E+02 | 3.703E4-02
F20 0.000E+-00 | 0.000E+00 | 0.000E+-00 | 0.000E+00 | 0.000E+-00 | 0.000E+00
F21 1.388E-12 | 1.388E-12 | 2.005E-01 | 5.013E-01 | 9.071E-01 | 9.705E-01
F22 1.850E-12 | 1.850E-12 | 1.879E4-01 | 2.150E+01 | 2.485E4-01 | 3.740E+-01
F23 2.580E400 | 7.400E-12 | 3.916E4-01 | 3.168E+01 | 3.290E4-01 | 3.559E+01
F24 9.250E-13 | 9.250E-13 | 1.711E+00 | 2.700E4-00 | 2.422E+00 | 2.284E4-00
F25 8.532E-01 | 7.030E-01 | 5.253E-01 | 8.027E-01 | 1.115E+00 | 8.938E-01
F26 9.250E-13 | 9.250E-13 | 2.679E+01 | 2.432E4-01 | 2.442E+01 | 2.809E4-01
F27 1.787E+00 | 1.363E+4-00 | 3.608E+00 | 3.517E4-00 | 3.399E+00 | 3.187E4-00
F28 8.483E401 | 5.873E+01 | 7.178E4-01 | 6.195E+01 | 3.550E4-01 | 6.785E+01

607

effects. The min—max normalization method is employed to normalize the data, as shown
in Equation 7.

Y max(d;) + min(d;)

(7)

where min(d;) and maz(d;) are the minimum and maximum values of the ith feature d;,
and czi]- is the normalized value.

Subsequently, we process the three symbolic features(protocol type, service, and flag)
using the one-hot-encoding method. Eventually, the three symbolic features are repre-
sented by binary values, and from the initial three symbolic dimensions we obtain 84
binary-valued characteristics.

5.2. Fitness function. The results of the experiment are evaluated by a combination of
the cross-validation error and the number of features selected. The fitness function used
in our work is given in Equation 8.

608

R.-B. Wang, F.-D. Geng and L. Xu

TABLE 5. The mean of 30 experiments comparing PBTA with other clas-
sical algorithms.

Function PBTA BBA BPSO BGWO BFMO BGWOPSO
F1 6.775E+04 | 6.775E4+04 | 6.798E+404 | 6.789E+04 | 6.815E+04 | 6.775E+404
F2 7.334E4+09 | 7.334E+09 | 7.386E+09 | 7.365E+4+09 | 7.417E+09 | 7.334E+09
F3 8.883E+22 | 8.883E+22 | 9.557TE+22 | 9.346E+22 | 9.954E+22 | 8.883E+22
F4 6.838E+04 | 6.824E+04 | 6.863E+04 | 6.888E+04 | 6.887E+04 | 6.841E+04
F5 1.024E405 | 1.024E+05 | 1.024E+05 | 1.024E+405 | 1.024E+05 | 1.024E+05
F6 2.47T4E+04 | 2.474E4+04 | 2.487E+04 | 2.483E+04 | 2.496E+04 | 2.474E+04
F7 2.632E+08 | 2.657TE+08 | 2.649E+08 | 2.815E4+08 | 2.717TE4+08 | 2.681E+08
F8 -6.790E+02 | -6.789E+02 | -6.789E+02 | -6.788E+02 | -6.789E+02 | -6.788E+02
F9 -5.427E+02 | -5.428E+02 | -5.423E+02 | -5.423E+02 | -5.420E+402 | -5.429E+02
F10 1.471E+04 | 1.471E+04 | 1.476E+04 | 1.474E+04 | 1.480E+04 | 1.471E+04
F11 8.353E+02 | 8.353E+02 | 8.464E+02 | 8.433E+02 | 8.545E+02 | 8.353E+02
F12 8.790E+02 | 8.790E+02 | 8.929E+02 | 8.885E+02 | 9.043E+02 | 8.790E+02
F13 9.803E+02 | 9.992E+02 | 9.859E+02 | 9.950E+02 | 9.983E+02 | 9.954E+02
F14 1.162E+04 | 1.162E+04 | 1.180E+04 | 1.174E+04 | 1.200E+04 | 1.162E+04
F15 1.160E+04 | 1.160E+04 | 1.179E+04 | 1.170E+04 | 1.193E+04 | 1.160E+04
F16 2.029E+02 | 2.030E+02 | 2.035E+02 | 2.038E+02 | 2.040E+02 | 2.027E+02
F17 1.396E+03 | 1.396E+03 | 1.409E+4+03 | 1.402E+03 | 1.424E+03 | 1.396E+403
F18 1.369E+03 | 1.370E+03 | 1.378E+4+03 | 1.395E+03 | 1.375E+03 | 1.372E+03
F19 1.964E+06 | 1.964E+06 | 1.965E+06 | 1.967TE+06 | 1.966E+06 | 1.964E+06
F20 6.150E+02 | 6.150E+02 | 6.150E+02 | 6.150E+02 | 6.150E+02 | 6.150E+02
F21 3.439E+03 | 3.439E+03 | 3.443E+03 | 3.440E+03 | 3.447TE+4+03 | 3.439E+03
F22 1.241E404 | 1.241E+04 | 1.252E+04 | 1.249E+04 | 1.264E+04 | 1.241E+04
F23 1.254E+04 | 1.254E+04 | 1.268E+04 | 1.264E+04 | 1.274E+04 | 1.254E+04
F24 2.051E+03 | 2.051E+03 | 2.062E+03 | 2.059E+03 | 2.070E+03 | 2.051E+03
F25 1.635E+03 | 1.634E+03 | 1.638E+03 | 1.639E+03 | 1.640E+03 | 1.636E+03
F26 5.144E+03 | 5.144E403 | 5.244E+03 | 5.233E+03 | 5.276E+4+03 | 5.144E+03
F27 4.699E+03 | 4.698E+03 | 4.713E403 | 4.706E+03 | 4.719E4+03 | 4.698E+403
F28 1.058E+04 | 1.056E+04 | 1.075E+04 | 1.076E+04 | 1.086E+04 | 1.054E-+04

Average rank 2.0893 2.2143 4.3750 4.5179 5.5536 2.2500
Owverall rank 1 2 4 5 6 3

|sel

fitness = c* error + (1 — ¢) * Tall (8)
a

where ¢ is a weighting factor that takes the value of 0.99 [35], error is the classification
error of cross-validation, 1 — error means the accuracy of classification, se denotes the
selected features, and al represents all the features.

5.3. Discussion of the numerical results. We compared PBTA with other feature
selection algorithms: the BPSO and the BGWO. The limit on the number of iterations
was uniformly set to 50 and the size of the population to 30.

Table 7 shows the results of the comparison between PBTA and BPSO, BGWO, and
shown in Figure 4 are the fitness convergence curves of the three algorithms. From Table
7, it can be seen that among the three algorithms, PBTA not only obtains the best

Parallel Binary Tumbleweed Algorithm and Its Application for Intrusion Detection Systems

609

TABLE 6. The standard deviation of 30 experiments comparing PBTA with
other classical algorithms.

Function | PBTA BBA BPSO BGWO BFMO | BGWOPSO
F1 5.920E-11 | 5.920E-11 | 4.932E+01 | 9.026E+01 | 4.848E+01 | 5.920E-11
F2 2.910E-06 | 2.910E-06 | 1.539E+07 | 2.162E4-07 | 1.319E+07 | 2.910E-06
F3 5.119E4-07 | 5.119E+07 | 1.357E+421 | 2.607E+21 | 2.114E421 | 5.119E+07
F4 7.374E+01 | 5.499E4-01 | 9.253E401 | 1.692E+02 | 1.297E4-02 | 1.085E+02
F5 0.000E4-00 | 0.000E+00 | 4.441E-02 | 2.503E+00 | 6.952E-01 | 0.000E+00
F6 1.850E-11 | 1.850E-11 | 4.118E4-01 | 5.116E+01 | 2.963E+01 | 1.850E-11
F7 5.285E4-06 | 8.140E+06 | 4.725E4-06 | 1.274E+07 | 7.186E406 | 1.338E+07
F8 0.643E-02 | 5.424E-02 | 4.649E-02 | 5.164E-02 | 5.389E-02 | 6.877E-02
F9 2.141E-01 | 1.909E-01 | 1.519E-01 | 2.327E-01 | 1.728E-01 | 2.226E-01
F10 7.400E-12 | 7.400E-12 | 1.048E+401 | 1.441E4-01 | 1.701E+01 | 7.400E-12
F11 0.000E4-00 | 0.000E+00 | 3.113E4-00 | 5.229E+00 | 3.499E4-00 | 0.000E+00
F12 0.000E+-00 | 0.000E+00 | 3.292E4-00 | 7.714E+00 | 4.211E4-00 | 0.000E+-00
F13 1.033E+00 | 2.717E4-01 | 4.009E+00 | 1.655E4-01 | 6.500E+00 | 2.550E4-01
F14 9.550E-12 | 5.550E-12 | 3.969E+01 | 7.994E4-01 | 6.622E+01 | 5.550E-12
F15 2.696E4-01 | 2.682E+01 | 3.955E4-01 | 7.888E+01 | 7.873E+4+01 | 2.626E+01
F16 4.828E-01 | 8.426E-01 | 3.723E-01 | 8.554E-01 | 3.811E-01 | 7.249E-01
F17 0.000E4-00 | 0.000E+00 | 2.417E4-00 | 4.190E+00 | 4.629E4-00 | 0.000E+00
F18 1.424E+01 | 1.312E+4-01 | 8.028E+00 | 1.386E+-01 | 8.108E+00 | 1.538E+-01
F19 9.472E-10 | 9.472E-10 | 3.167E+02 | 2.7156E403 | 7.103E+02 | 9.472E-10
F20 0.000E4-00 | 0.000E+00 | 0.000E4-00 | 0.000E+00 | 0.000E4-00 | 0.000E+00
F21 1.388E-12 | 1.388E-12 | 9.477E-01 | 1.122E+00 | 1.756E4-00 | 1.388E-12
F22 1.850E-12 | 1.850E-12 | 2.978E4-01 | 3.421E+01 | 3.814E+4-01 | 1.850E-12
F23 2.580E4-00 | 7.400E-12 | 3.581E4-01 | 6.890E+01 | 2.209E4-01 | 7.400E-12
F24 9.250E-13 | 9.250E-13 | 2.519E+00 | 4.957E4-00 | 2.389E+00 | 9.250E-13
F25 8.532E-01 | 5.222E-01 | 9.203E-01 | 1.514E4-00 | 1.010E+00 | 5.861E-01
F26 9.250E-13 | 9.250E-13 | 1.927E+01 | 6.366E4-01 | 2.619E+01 | 9.250E-13
F27 1.787E+00 | 1.270E+-00 | 3.011E+00 | 5.668E+-00 | 4.720E+00 | 1.003E4-00
F28 8.483E+01 | 6.830E+01 | 5.211E401 | 1.227E+02 | 6.927TE4+01 | 8.595E+01

fitness value, but also has the smallest number of selected features. Nevertheless, the
classification error of the PBTA is obviously not the most favorable, which is due to
the fact that we take fitness as the main optimization objective, while fitness takes into
account both the classification error and the number of features selected.

TABLE 7. Comparison between PBTA and other algorithms under NSL-
KDD dataset.

Algorithm | Fitness | Feature number | Accuracy
PBTA 0.0093 53 0.9949
BPSO 0.0101 58 0.9946

BGWO | 0.0101 76 0.9961

6. Conclusions. A parallel binary tumbleweed algorithm(PBTA) is proposed in this pa-
per and we introduce a novel transfer function to improve the capability of the algorithm

610 R.-B. Wang, F.-D. Geng and L. Xu

0.012

T

0.0115

0.011

-_-.'\ ...
3,

0.0105

T

fitness

”
——

0.01 \

0.0095

T

p———
-

0.009 1 1 1 1
0

iteration

FIGURE 4. The convergence curve of the fitness value.

to avoid the local traps. Meanwhile, our proposed parallel communication strategies help
the algorithm to enhance the population diversities and improve the efficiency of the algo-
rithm. PBTA is evaluated against other well-known algorithms on CEC2013 benchmark,
and the obtained data show the favorable performance of PBTA. Ultimately, PBTA was
applied to address the feature selection problem for intrusion detection systems. The

experimental results show that PBTA realizes the minimization of the selected features
while considering the accuracy.

REFERENCES

[1] S. H. R. Pasandideh, S. T. A. Niaki, and A. Gharaei, “Optimization of a multiproduct economic
production quantity problem with stochastic constraints using sequential quadratic programming,”
Knowledge-Based Systems, vol. 84, pp. 98-107, 2015.

[2] K. Hussain, M. N. Mohd Salleh, S. Cheng, and Y. Shi, “Metaheuristic research: a comprehensive
survey,” Artificial Intelligence Review, vol. 52, pp. 2191-2233, 2019.

[3] A. Tzanetos and G. Dounias, “Nature inspired optimization algorithms or simply variations of meta-
heuristics?” Artificial Intelligence Review, vol. 54, pp. 1841-1862, 2021.

[4] K.-S. Tang, K.-F. Man, S. Kwong, and Q. He, “Genetic algorithms and their applications,” IEEE
Signal Processing Magazine, vol. 13, no. 6, pp. 22-37, 1996.

[5] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” Computer, vol. 27, no. 6, pp. 1726,
1994.

[6] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-of-the-art,” IEEE Trans-
actions on Evolutionary Computation, vol. 15, no. 1, pp. 4-31, 2010.

[7] K. R. Opara and J. Arabas, “Differential evolution: A survey of theoretical analyses,” Swarm and
Evolutionary Computation, vol. 44, pp. 546-558, 2019.

[8] Z. Hu, W. Gong, W. Pedrycz, and Y. Li, “Deep reinforcement learning assisted co-evolutionary

differential evolution for constrained optimization,” Swarm and Evolutionary Computation, vol. 83,
p. 101387, 2023.

[9] M. Nazeri, A. Mollahosseini, and I. Izadi, “A centrality based genetic algorithm for the graph burning
problem,” Applied Soft Computing, vol. 144, p. 110493, 2023.

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]
[20]
[21]

[22]

Parallel Binary Tumbleweed Algorithm and Its Application for Intrusion Detection Systems 611

L. Kang, R.-S. Chen, N. Xiong, Y.-C. Chen, Y.-X. Hu, and C.-M. Chen, “Selecting hyper-parameters
of gaussian process regression based on non-inertial particle swarm optimization in internet of
things,” IEEFE Access, vol. 7, pp. 59504-59 513, 2019.

C.-M. Chen, S. Lv, J. Ning, and J. M.-T. Wu, “A genetic algorithm for the waitable time-varying
multi-depot green vehicle routing problem,” Symmetry, vol. 15, no. 1, p. 124, 2023.

A. L. H. P. Shaik, M. K. Manoharan, A. K. Pani, R. R. Avala, and C.-M. Chen, “Gaussian mutation—
spider monkey optimization (gm-smo) model for remote sensing scene classification,” Remote Sens-
ing, vol. 14, no. 24, p. 6279, 2022.

M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IFEE Computational Intelli-
gence Magazine, vol. 1, no. 4, pp. 28-39, 2006.

X. Zhou, W. Gui, A. A. Heidari, Z. Cai, G. Liang, and H. Chen, “Random following ant colony
optimization: Continuous and binary variants for global optimization and feature selection,” Applied
Soft Computing, vol. 144, p. 110513, 2023.

K.-L. Du, M. Swamy, K.-L. Du, and M. Swamy, “Particle swarm optimization,” Search and Opti-
mization by Metaheuristics: Techniques and Algorithms Inspired by Nature, pp. 153-173, 2016.

Z. Zhang, C. Huang, K. Dong, and H. Huang, “Birds foraging search: a novel population-based
algorithm for global optimization,” Memetic Computing, vol. 11, pp. 221-250, 2019.

E. Varol Altay and B. Alatas, “Bird swarm algorithms with chaotic mapping,” Artificial Intelligence
Review, vol. 53, pp. 13731414, 2020.

A. B. Serapiao, G. S. Corréa, F. B. Gongalves, and V. O. Carvalho, “Combining k-means and k-
harmonic with fish school search algorithm for data clustering task on graphics processing units,”
Applied Soft Computing, vol. 41, pp. 290-304, 2016.

Y. Xing, X. Wang, and Q. Shen, “Test case prioritization based on artificial fish school algorithm,”
Computer Communications, vol. 180, pp. 295-302, 2021.

T.-Y. Wu, H. Li, and S.-C. Chu, “Cppe: An improved phasmatodea population evolution algorithm
with chaotic maps,” Mathematics, vol. 11, no. 9, p. 1977, 2023.

G. Dhiman and V. Kumar, “Seagull optimization algorithm: Theory and its applications for large-
scale industrial engineering problems,” Knowledge-Based Systems, vol. 165, pp. 169-196, 2019.

M. Khishe and M. R. Mosavi, “Chimp optimization algorithm,” Ezpert Systems with Applications,
vol. 149, p. 113338, 2020.

J.-S. Pan, L.-G. Zhang, R.-B. Wang, V. Snéasel, and S.-C. Chu, “Gannet optimization algorithm:
A new metaheuristic algorithm for solving engineering optimization problems,” Mathematics and
Computers in Simulation, vol. 202, pp. 343-373, 2022.

Q.-Y. Yang, S.-C. Chu, A. Liang, and J.-S. Pan, “Tumbleweed algorithm and its application for
solving location problem of logistics distribution center,” in Genetic and Evolutionary Computing:
Proceedings of the Fourteenth International Conference on Genetic and Fvolutionary Computing,
October 21-23, 2021, Jilin, China 14. Springer, 2022, pp. 641-652.

X. Yuan, J.-S. Pan, S.-C. Chu, and V. Snésel, “Binary tumbleweed algorithm for application of
feature selection,” in International Conference on Intelligent Information Hiding and Multimedia
Signal Processing. Springer, 2022, pp. 13—-20.

T.-Y. Wu, A. Shao, and J.-S. Pan, “Ctoa: Toward a chaotic-based tumbleweed optimization algo-
rithm,” Mathematics, vol. 11, no. 10, p. 2339, 2023.

S. Mirjalili and A. Lewis, “S-shaped versus v-shaped transfer functions for binary particle swarm
optimization,” Swarm and Evolutionary Computation, vol. 9, pp. 1-14, 2013.

J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” in 1997
IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and
Simulation, vol. 5. TEEE, 1997, pp. 4104-4108.

S. Mirjalili, S. M. Mirjalili, and X.-S. Yang, “Binary bat algorithm,” Neural Computing and Appli-
cations, vol. 25, pp. 663-681, 2014.

E. Emary, H. M. Zawbaa, and A. E. Hassanien, “Binary grey wolf optimization approaches for
feature selection,” Neurocomputing, vol. 172, pp. 371-381, 2016.

J.-S. Pan, P. Hu, and S.-C. Chu, “Binary fish migration optimization for solving unit commitment,”
Energy, vol. 226, p. 120329, 2021.

S. Sundaramurthy and P. Jayavel, “A hybrid grey wolf optimization and particle swarm optimization
with c4. 5 approach for prediction of rheumatoid arthritis,” Applied Soft Computing, vol. 94, p.
106500, 2020.

612 R.-B. Wang, F.-D. Geng and L. Xu

[33] M. Qaraad, S. Amjad, N. K. Hussein, S. Mirjalili, and M. A. Elhosseini, “An innovative time-
varying particle swarm-based salp algorithm for intrusion detection system and large-scale global
optimization problems,” Artificial Intelligence Review, vol. 56, no. 8, pp. 8325-8392, 2023.

[34] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the kdd cup 99 data
set,” in 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications.
IEEE, 2009, pp. 1-6.

[35] P. Hu, J.-S. Pan, and S.-C. Chu, “Improved binary grey wolf optimizer and its application for feature
selection,” Knowledge-Based Systems, vol. 195, p. 105746, 2020.

