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ABSTRACT. Differential Evolution (DE) is a potent stochastic evolutionary optimization
algorithm garnering increasing research attention. Over the years, it has been found
applicable in solving diverse real-world problems. DE employs mutation, crossover, and
selection operators to guide populations toward optimal or nearly optimal solutions. How-
ever, the standard DE mutation strategies have found limitations in balancing explo-
ration and exploitation effectively, thus prompting research into possible improvements.
This study introduces a novel mutation strateqy named Chebyshev Infused Chaos Muta-
tion Strategy (CICMS). where a chaotic sequence partially guides the process of donor
vector generation. Rigorous evaluations were conducted, comparing our modified DE
against the standard DE and seven other metaheuristic algorithms, including Genetic
Algorithm, Particle Swarm Optimization and Gravitational Search Algorithm. FExperi-
ments were performed using the challenging CEC 2014 benchmark functions, consisting
of 30 objective functions. Results indicate substantial improvements in convergence speed
and solution quality, highlighting the potential of our novel mutation strategy to enhance
DE’s practicality in addressing complex optimization problems. This research contributes
valuable insights to the dynamic field of optimization algorithms with implications for a
wide range of applications.

Keywords: Differential Evolution, Evolutionary optimization algorithm, Mutation,
Chaos theory

1. Introduction. Differential Evolution (DE) is a powerful stochastic optimization al-
gorithm that has garnered widespread recognition for its effectiveness in solving complex
optimization problems. It is a method grounded in population-based optimization, in-
spired by the principles of natural selection. DE operates by maintaining a population of
candidate solutions and iteratively evolving these solutions to discover optimal or near-
optimal solutions for a diverse array of applications.

The mutation operator within the DE algorithm plays a pivotal role in shaping its
effectiveness. Research in the field of optimization has underscored the vital significance
of mutation operators, revealing their profound impact on the algorithm’s convergence,
exploration, and exploitation capabilities. These studies have illuminated the critical role
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of the mutation strategy in influencing the algorithm’s performance and adaptability to
various problem domains.

One of the foundational mutation strategies in DE is based on the work of Storn and
Price [1], published in 1997. This strategy, known as the standard DE mutation strategy
(DE/rand/1), forms the backbone of the algorithm’s mutation process. It involves the
selection of three distinct candidate solutions from the population and the creation of
a mutant vector through a linear combination of these individuals. The mutant vector,
combined with the existing population, serves as a guiding force for Differential Evolu-
tion (DE) in exploring the solution space while upholding its robustness and simplicity.
Additional early strategies, such as DE /best/1 [2] introduced in the same paper, DE /rand-
to-best/1, DE/rand/2, and DE/current-to-rand/1, were discovered. Despite their merits,
these strategies often encountered challenges in striking the right balance between explo-
ration and exploitation, prompting research into potential enhancements. Scientists have
explored strategies involving adaptation and self-adaptation techniques in mutation [3],
hybridization with other algorithms or heuristics [4], and the utilization of parallel and
distributed strategies [5], among others, to address inherent weaknesses in native muta-
tion strategies. Our research is thus grounded in and motivated by ongoing efforts to
enhance the mutation process of Differential Evolution, leading us to explore the avenue
of hybridization with chaotic strategies.

DE relies on a selection mechanism to determine which candidate solutions from the
current population will act as parents for the next generation. Typically, a straightforward
stochastic selection strategy is employed, where individuals are chosen based on their
fitness, ensuring that better solutions have a higher chance of being selected.

In the upcoming section, we’ll delve into the earliest mutational strategies, exploring
their inherent weaknesses. These limitations have spurred extensive research into inno-
vative, chaotic mutation strategies. Section 3 elaborates on the operational framework
and fundamental principles of our proposed mutation strategy. In Section 4, we present
the experiments conducted, as well as their outcomes, in which our DE algorithm incor-
porating Chebyshev Chaos is benchmarked against seven other metaheuristic algorithms.
Finally, Section 5 provides a comprehensive conclusion.

2. Related Work.

2.1. Native Mutation Strategies. The mutation process within DE plays a pivotal
role in fostering diversity among candidate solutions, contributing significantly to the al-
gorithm’s ability to explore the solution space. The mutation strategy involves perturbing
a candidate solution by taking the difference between two randomly selected individuals
from the current population and applying it to a third individual. This mutation opera-
tion introduces diversity and exploration into the algorithm. In the realm of optimization
algorithms, DE exhibits various mutation strategies to balance exploration and exploita-
tion. The basic DE/rand/1 strategy randomly selects three individuals X, X,2, X,3 from
the population and computes the difference between X,, and X, 3.

v; =X+ F x (XTZ - XTS) (1)

This strategy, discussed by Storn and Price in 1997, promotes exploration by preventing
the algorithm from getting trapped in local minima. Yet, the introduction of a scaling
factor F' adds a layer of complexity; a higher F' value broadens the reach of exploration
while a lower value fine-tunes the search, thereby promoting exploitation. However, the
method has its downsides, such as the risk of stagnation, computational complexity, and
the necessity for careful parameter tuning.
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On the other hand, the DE/best/1 strategy aims to expedite convergence by incorpo-
rating the best individual X} from the population.

vy = Xbest + ' x (Xrl - X’I‘2) (2>

This biases the search towards exploitation, as noted in the same seminal work by Storn
and Price [2].

Further variations exist, such as DE/current-to-best/1, which combines the current
individual X; with the best and a random individual.

v; =X; + F X (Xbest — Xz) + F x (Xrl - Xr2) (3)

This strategy strives for a balance between exploration and exploitation, blending the
strengths of the current best solution and random individuals. However, the mehtho is
more prone to challenges in effectively leveraging the combined strengths of these diverse
solutions. Additionally, the reliance on two distinct factors F' may complicate parameter
tuning.

Lastly, DE/current-to-rand/1 adds a twist by focusing more on exploration, incorpo-
rating more randomness into the mutation.

Vi =X+ Fx (X1 — X))+ F x (X2 — X)) (4)

This strategy’s heavy emphasis on randomness may lead to erratic behavior, potentially
hindering convergence and slowing down the algorithm’s progress towards finding optimal
solutions.

2.2. Chaotic Mutation Strategies. The integration of chaotic strategies into DE al-
gorithms has become a crucial area in evolutionary algorithm research, enhancing their
performance, particularly in avoiding local optima and ensuring robust global search ca-
pabilities. Chaos theory, a branch of mathematics, explores the behavior of dynamical
systems that are highly sensitive to initial conditions, characterized by deterministic yet
unpredictable sequences known as chaotic sequences. These sequences are instrumental in
dynamically adjusting algorithm parameters or guiding the entire search process, thereby
improving the adaptability and robustness of the algorithm in complex search spaces.

Significant advancements in the integration of chaotic strategies into DE algorithms
have been made by several researchers, each contributing unique insights and methods to
enhance the algorithm’s performance in various optimization challenges. These diverse
approaches serve to dynamically adapt parameters, enhance local search mechanisms,
maintain population diversity, and balance exploration and exploitation. Consequently,
the overall performance and efficiency of DE algorithms are elevated, making them more
capable of tackling various complex optimization problems. Guo et al.’s work on Self-
Adaptive Chaos Differential Evolution (SACDE) presents a chaos mutation factor and
dynamically changing weighting and crossover factors, demonstrating significant improve-
ments in convergence speed and accuracy [6]. Similarly, Mandal et al.’s research on opti-
mal energy management of microgrids using a hybrid optimization technique combining
DE and chaos theory addresses the challenges of maximizing societal benefits while re-
ducing environmental impacts [7]. Liang et al.’s study explores the Chaos Differential
Evolution Optimization Algorithm’s application in Support Vector Regression Machine,
showcasing its effectiveness in continuous problem-solving [8], while Kromer et al.’s re-
search delves into the intersection of randomness and chaos in Genetic Algorithms and
Differential Evolution, highlighting the potential of chaotic sequences in various designs of
Evolutionary Algorithms [9]. In the domain of structural reliability-based optimal design,
Khodam et al. developed an improved DE and Chaos Control method, demonstrating its
potential in environmental and resource management [10].
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Furthermore, Gao et al.’s work on Chaotic Local Search-Based Differential Evolution
Algorithms offers insights into the application of chaos theory in optimization [11]. Peng
et al. focused on parameter estimation for chaotic systems using DE, underscoring the
algorithm’s simplicity and rapid convergence [12]. Liu et al.’s model for Vessel Trajec-
tory Prediction based on AIS sensor data employs Adaptive Chaos Differential Evolution
Support Vector Regression (ACDE-SVR), showing higher prediction accuracy and stabil-
ity [13].

Fang et al. introduced a Multi-Objective Differential Evolution-Chaos Shuffled Frog
Leaping Algorithm for water resources system optimization, outperforming traditional
methods under various conditions [14]. Gao et al.’s novel inversion mechanism with func-
tional extrema model via DE effectively identifies time-delayed fractional order chaos
systems, demonstrating high precision and robustness [15]. Yuan et al.’s research on hy-
drothermal scheduling using chaotic hybrid DE addresses the challenges of self-adaptive
parameter settings in DE and effectively handles constraints in the optimization pro-
cess [16]. Coelho et al. applied chaotic sequences to DE for image contrast enhancement,
enhancing the algorithm’s performance [17]. Wang et al.’s hybrid DE algorithm based on
chaos and generalized opposition-based learning (GOBL) showcases enhanced searching
efficiency and quality [18]. Gao et al. carried out research on incommensurate and hyper
fractional-order chaotic systems, offering a novel mechanism for parameter and fractional
order inversion estimation [19]. Building upon similar innovative approaches in the field
of computational intelligence, Chu et al. introduced the Symbiotic Organism Search
(SOS) algorithm with a multi-group quantum-behavior communication scheme, primar-
ily focused on applications in wireless sensor networks [20]. Moreover, Chu et al.’s work
extends to the practical application of this algorithm in wireless sensor networks, partic-
ularly through the optimization of the DV-hop algorithm for node localization, achieving
higher localization accuracy than some existing algorithms. The blend of theoretical inno-
vation and practical application in Chu et al.’s research exemplifies the dynamic evolution
of computational intelligence techniques and their significant impact on solving complex,
real-world problems, echoing the foundational work of Gao et al. in advancing the field
of chaotic systems and their applications in computational methodologies.

Pan et al.’s study on Binary Fish Migration Optimization (BFMO) for power systems
highlights the importance of overcoming high-dimensional challenges in evolutionary al-
gorithms [21]. Furthermore, Kong et al.’s work on energy-aware routing in WSNs using
genetic algorithms [22] and Dao et al.’s Parallel Bat Algorithm for job shop schedul-
ing problems [23] also contribute to this evolving field. The Parallel Binary Cat Swarm
Optimization (PBCSO) by Pan et al. [24] further illustrates the diverse applications of
advanced evolutionary algorithms. The Phasmatodea Population Evolution Algorithm
by Song et al. [25] demonstrates the continual innovation in this field. The Five Phases
Algorithm by Wang et al. [26] shows the broad scope of evolutionary algorithms in solving
complex problems. Wu et al.’s work on a lightweight authentication protocol for IToHT
emphasizes the growing need for security in smart medical services [27]. The research by
Yue et al. on the Equilibrium Optimizer for emotion classification from English speech
signals highlights the integration of evolutionary algorithms in language processing and
emotion recognition [28]. Meng et al.’s development of the QUATRE algorithm, with
an adaptation of the evolution matrix and selection operation, reflects advancements
in numerical optimization techniques [29]. The study by Gan et al. on anomaly rule
detection in sequence data showcases the application of these algorithms in data engi-
neering and knowledge extraction [30]. Biswas et al.’s research on chaos control assisted
single-loop multi-objective reliability-based design optimization using differential evolu-
tion represents a significant advancement in optimization. Their work, detailed in [31],
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introduces an innovative approach that addresses the computational challenges of tradi-
tional reliability-based design optimization methods. By integrating chaos control theory,
the algorithm’s efficiency in converging to reliable solutions in complex multi-objective
scenarios is enhanced.

Fan et al.’s study on infrared electric image segmentation using Fuzzy Renyi Entropy
and a Chaos Differential Evolution Algorithm, as presented in [32], demonstrates the
effectiveness of evolutionary algorithms in image processing. Their method optimizes
the segmentation threshold of inherently fuzzy infrared images through a chaos-driven
approach, crucial for precise thermal infrared imagery segmentation.

Davendra et al.’s paper on scheduling the Lot-Streaming Flowshop scheduling problem
with setup time using chaos-induced Enhanced Differential Evolution, cited in [33], show-
cases the versatility of evolutionary algorithms in operations research. They incorporate
chaotic dynamics into the algorithm, enhancing its performance in complex scheduling
problems and demonstrating the potential of integrating chaos theory into stochastic op-
timization methods.

Luo et al.’s work on an effective chaos-driven differential evolution for multi-objective
unbalanced transportation problems considering fuel consumption, referenced in [34], ad-
dresses key aspects of sustainable logistics. Their study develops a mathematical model
for fuel consumption and demonstrates superior performance in optimizing transportation
systems, balancing economic and environmental considerations.

Ahadzadeh et al.’s enhancement of the Differential Evolution algorithm, discussed
in [35], introduces a new mutation strategy and chaos local search to address limita-
tions of the classical DE algorithm. Their two-step differential evolution (2sDE) approach
significantly improves convergence speed and accuracy, proving effective in complex opti-
mization problems.

Lastly, Senkerik et al.’s exploration of chaos-driven Differential Evolution on shifted
benchmark function sets, detailed in [36], extends evolutionary algorithms’ application
to higher-dimensional problem spaces. Their research uses discrete dissipative chaotic
systems as pseudo-random number generators, underlining the potential of natural chaotic
dynamics in enhancing evolutionary algorithms’ performance.

Each of these works contributes to the evolving narrative of evolutionary algorithms,
extending their applicability and efficiency in addressing modern-day computational chal-
lenges.

3. The proposed algorithm. Given the standard DE mutation function,

Vie = Xpa+F - (Xoe — Xi30) (5)
Where: - G represents the current generation.
- ¢ denotes the index of the individual being mutated.
- Xo1.6, Xr2q, and X,3 ¢ are three distinct vectors selected from the current population
at generation G.
- Among these, X, ¢ acts as the base vector during mutation.

- V¢ is the generated donor vector.

Our proposed method introduces a specialized form of mutation in DE, termed as
‘Partially Chaotic Mutation.” This innovative approach employs the Chebyshev Chaotic
Function to augment the mutation process. Specifically, we generate a chaotic sequence
that originates from the fittest individual in the initial generation. This sequence is
sustained throughout the entire evolutionary process and serves as the source for the base
vector in each iteration. The base vector thus becomes one of the three vectors essential
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for constructing the mutant vector, thereby facilitating a more adaptive and directed
mutation operation.

3.1. Chebyshev Chaotic Function. One commonly used chaotic function is the Cheby-
shev chaotic function. It is defined mathematically as:

Tpiq = cos(n - cos ()
Where z,, is the current state, and x,, 1 is the next state in the sequence. The parameter
n is a discrete time step.

3.2. Principle of Chaos Generation. The Chebyshev chaotic function is crucial in
our DE algorithm for generating chaotic sequences, which are pivotal for the mutation
strategy. This function transforms an initial state xy into a new state x;, where the
transformation is highly sensitive to the initial value. Even minor variations in xy lead to
significant differences in x,, making this property essential for the unpredictable evolution
of the sequence.

The sequence progresses with each iteration n, displaying a deterministic yet seem-
ingly random nature. This behavior is due to the inherent sensitivity of the Chebyshev
function and the incorporation of time n as a multiplier in its equation, enhancing the
function’s unpredictability. Such characteristics are particularly beneficial in optimization
algorithms like DE, where a balance between exploration and exploitation is necessary.

In our implementation, the Chebyshev chaotic map is defined as:

a;4+1 = cos(i X arccos(a;)) (6)

This equation generates the chaotic sequence crucial to our mutation strategy.

The sequence generation in our DE algorithm starts with randomly generated initial
values for each particle in the population. These random values are crucial in creating a
diverse and effective search process. The sequence then evolves according to:

x1 = Random Initial Value, (7)
Tpy1 = cos(n x arccos(z,)). (8)

Here, x1 represents the initial value, and z,,,; denotes the value at the n 4 1-th iteration.
The chaotic sequence is visualized as:

[1’2 r3 ... xGmaX}

Each value x; in this sequence acts as a base vector at its respective iteration.
The mutation strategy in our DE algorithm, influenced by the chaotic sequence, is
outlined as:

— — —

‘/i,G = Xchaotic,G + E. (Xrandl,G - XrandQ,G) (9)
Here, Xchaotic,G is the base vector selected from the chaotic sequence, and XrandLG and

—

Xiand2, are the two randomly selected vectors from the current generation. This modified
equation deviates from the standard DE approach by incorporating the chaotic sequence,
which adds an additional layer of complexity and effectiveness to the mutation process.

4. Experimental results. In our comprehensive experimentation, we employed a pop-
ulation comprising 40 individuals and allowed it to evolve over 1,000 generations. This
study entailed a comparative analysis with seven other renowned metaheuristic algo-
rithms, namely: Particle Swarm Optimization (PSO) [37], Cat Swarm Optimization
(CSO) [38], Genetic Algorithm (GA) [39], Gravitational Search Algorithm (GSA) [40],
Bat Algorithm (BA) [41], Black Hole Algorithm (BH) [42], and the conventional Differ-
ential Evolution algorithm [1].



Differential Evolution Strategy with Chebyshev Chaos Based Mutation 619

To ensure the robustness of our results, each algorithm was rigorously tested 51 times
using the benchmark functions from the CEC 2014 suite [43], which comprises a total of 30
distinct objective functions. The experiment was run on a machine with an AMD Ryzen 5
6600H processor, operating at 3.30 GHz, accompanied by 16.0 GB of installed RAM (15.2
GB usable), and utilizing a 64-bit operating system, x64-based processor configuration.

Experimental results showed that the Chebyshev Infused Chaos Mutation Strategy (CI-
CMS) competes fairly with these state-of-the-art algorithms, emerging among the top 3 in
all experiments on unimodal, multimodal, and hybrid objective functions. The graphs be-
low illustrate the convergence speed of the different algorithms. In graphs Figure 1 through
Figure 4, our improved algorithm, CICMS, is referred to as DE_chebyshev_chaotic.
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4.1. Explanation for the graphs. In testing unimodal function optimization(Figure 1),
the CICMS algorithm demonstrated a superior ability to improve continuously without
plateauing, suggesting it is robust in both exploring and exploiting the search space.
Unlike the Bat Algorithm, which quickly finds a solution but then stalls—hinting at
premature convergence—the DE Chebyshev algorithm showed no signs of such stagnation,
an advantage in complex optimization. It outperformed PSO, SCA, and GSA algorithms
in avoiding local optima and maintained progress, unlike DE and GA algorithms that did
not sustain their initial advantage. The DE Chebyshev algorithm’s consistent search for
optimal solutions suggests a deeper strategy, beneficial for more complex problems and
making it an attractive option for diverse optimization challenges.

For the optimization of the multimodal function F10(Figure 2), CICMS’s graph indi-
cates an ongoing, uninterrupted improvement, outstripping its counterparts. It avoids the
early performance plateau that the Bat Algorithm (BA) encounters, which may suggest
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FIGURE 2. Multimodal Functions: Performance Comparison.

a quick settlement on suboptimal solutions. This enduring enhancement in performance
indicates a comprehensive search strategy and robustness in solving complex optimization
challenges, a notable advantage over PSO, SCA, and GSA algorithms that show a consis-
tent, yet less dynamic, optimization path. The standard DE and GA algorithms, while
starting strong, fail to maintain their initial momentum, contrasting with CICMS’s persis-
tent progress. Its steady advancement, devoid of stagnation, emphasizes its effectiveness
in navigating the multifaceted landscapes of multimodal functions and underscores its
potential in addressing more intricate optimization scenarios, affirming its suitability for
a broad spectrum of optimization problems.

In optimizing hybrid function F21(Figure 3), CICMS outperforms others with its consis-
tent improvement and no evident plateauing, suggesting robust optimization. It surpasses
the Bat Algorithm, which stalls, indicating possible premature convergence. The algo-
rithm also excels over PSO, SCA, and GSA by avoiding local optima and maintains a
steady enhancement in solution quality, unlike the DE and GA algorithms which show
diminishing returns. This sustained progress without stagnation demonstrates CICMS’s
proficiency in navigating the complexities of hybrid functions, proving its effectiveness for
various optimization scenarios.

In the evaluation of composition function F27(Figure 4), our proposed algorithm main-
tains a notable downward trend in fitness value, indicative of effective optimization. It
avoids the plateau observed in the Bat Algorithm (BA), implying a refined capability to
escape premature convergence. In contrast to PSO, SCA, and GSA, CICMS’s persistent
decrease in the log of fitness function value suggests superior management of the complex-
ities inherent in composition functions. It shows an advantage over the standard DE and
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GA, which fail to sustain their initial rate of improvement. This graph depicts CICMS’s
adaptability and robustness, key in tackling the intricacies of composition functions, and
affirms its utility across a diverse range of optimization problems.

4.2. Comparing the mean, best value, and standard deviation. For the unimodal
functions (Functions 1 through 3 in tables 1 and 2), let’s consider the Ellipsoidal Function
where CICMS has a mean of 2.94F + 7, which is significantly better compared to the other
algorithms like PSO (3.2E' 4 7) and GA (2.15F + 7). The standard deviation for CICMS
is 1.22FE + 7, indicating a variability that is less than BH (4.2E +7) and SCA (1.13E+38),
suggesting more consistent performance. Moreover, CICMS’s best value is 1.02F + 7,
which is better than that of GA, GSA, and closely competes with PSO.

For multimodal functions (Function 4 to 16 in tables 1 and 2), if we take Ackley’s
Function as an example, all algorithms including CICMS have achieved the lowest possible
mean and best values with negligible standard deviation, indicating a tie in performance.

Considering hybrid functions (Functions 17 to 22 in tables 1 and 2), Function 17 shows
CICMS with a mean of 2.64 E'+6, which is better than BH (5.73E+6) and GSA (4.66 E+6),
but not as good as PSO (1.79E + 6). The standard deviation for CICMS is lower than
that of BH and GSA, suggesting more reliability. The best value achieved by CICMS is
also commendable at 4.48F + 5, surpassing BH and SCA.

For the composition functions (Functions 23 to 30 in tables 1 and tables 2), let’s look
at Function 27. Here, CICMS shows a mean of 3.2F + 3, which is competitive with other
algorithms like BH (3.27E + 3) and GSA (4.5F + 3), indicating its efficacy. The standard
deviation is low (1.04F +2), and the best value (3.05E + 3) is better than that of BH and
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closely matches that of DE and GA, reinforcing its robust performance in composition
functions.

TABLE 1. Performance Metrics For PSO, DE, GA and GSA

PSO DE GA GSA
Func. Num Mean Best Std Mean Best Std Mean Best Std Mean Best Std
1 3.2E+47 5.03E+6 | 1.61E+7 | 9.95E+7 4.8E+4+7 2.49E+7 | 2.15E47 | 5.12E4+6 | 1.41E+47 | 9.95E+7 | 4.93E47 | 2.73E+7
2 1.16E+7 | 1.32E+6 | 1.94E+47 1.1E+3 2.07E+2 2.4E+3 3.26E+7 | 7.93E+46 | 1.55E+7 | 4.62E+8 | 8.96E+3 | 4.47TE+8
3 1.14E+4 1.5E+4+3 9.62E+3 | 2.36E+3 | 3.56E+2 | 1.94E+4+3 | 1.54E+4 8.5E+2 1.47E+4 | 8.27TE+4 6.8E+4 7.63E+3
4 6.62E+2 | 5.01E+2 | 7.02E41 | 5.44E+2 | 5.23E+2 | 1.36E+1 5.6E+2 4.89E+2 | 4.22E+1 | 8.63E+2 | 6.51E4+2 | 1.74E+42
5 5.21E4+2 | 5.21E+2 9.15E-2 5.21E+42 | 5.21E+2 6.04E-2 5.2E+2 5.2E+2 8.13E-2 5.2E+2 5.2E+2 6.71E-4
6 6.18E+2 | 6.12E+2 | 3.61E40 | 6.29E+42 | 6.27E+2 | 1.31E40 | 6.17TE+2 | 6.09E+4+2 | 4.03E+0 | 6.26E+4+2 | 6.2E+42 | 2.93E40
7 7.01E4+2 | 7.01E42 | 6.69E-2 7.E+2 7.E+2 1.45E-2 | 7.01E4+2 | 7.01E4+2 | 9.56E-2 | 7.11E+42 | 7.02E+2 | 8.44E+0
8 8.55E+2 | 8.24E+42 | 1.65E+1 | 8.52E+2 | 8.39E+2 | 5.2E+0 | 8.23E+2 | 8.15E+2 | 5.3E4+0 | 9.43E+2 | 9.19E+2 | 1.32E+1
9 1.05E+43 | 9.64E+2 | 5.02E+41 | 1.07TE+3 | 1.04E43 | 1.41E+1 | 9.95E+42 | 9.46E+2 | 2.28E+41 | 1.07E+3 | 1.03E43 | 1.88E+1
10 2.9E+3 | 2.04E43 | 6.24E+2 | 2.01E43 | 1.63E+3 | 1.71E42 | 1.85E+43 | 1.3E+3 | 2.72E+42 | 4.77E+3 | 3.63E43 | 5.14E+2
11 6.65E4+3 | 3.21E+3 | 1.16E4+3 | 7.05E+43 | 6.21E+3 | 3.09E+42 | 4.74E+3 | 3.42E+4+3 | 6.1E+4+2 | 5.55E43 | 4.29E+3 | 5.88E42
12 1.2E+3 1.2E+3 5.16E-1 1.2E+3 1.2E+43 2.03E-1 1.2E+3 1.2E+3 2.05E-1 1.2E+3 1.2E+3 5.29E-3
13 1.3E+3 1.3E+3 1.13E-1 1.3E+3 1.3E+3 5.81E-2 1.3E+3 1.3E+3 9.82E-2 1.3E+3 1.3E+3 4.42E-1
14 1.4E+3 1.4E+43 1.55E-1 1.4E+43 1.4E+3 8.25E-2 1.4E+3 1.4E+3 6.59E-2 1.4E+43 1.4E+43 4.84E+0
15 1.52E+3 | 1.51E+3 | 3.95E40 | 1.52E+3 | 1.51E+43 | 1.35E+0 | 1.52E+3 | 1.51E+3 | 6.71E40 | 1.56E+3 | 1.52E+3 | 2.63E+1
16 1.61E+3 | 1.61E+3 3.91E-1 1.61E+3 | 1.61E+3 1.91E-1 1.61E+4+3 | 1.61E+3 5.12E-1 1.61E+3 | 1.61E+43 2.54E-1
17 1.79E+46 | 4.41E+5 | 8.73E+45 | 4.46E+6 | 1.64E+6 1.5E+6 3.54E+6 | 5.35E+45 | 2.31E4+6 | 4.66E+4+6 | 1.61E4+6 | 2.61E+46
18 2.81E+5 | 1.9E43 | 1.45E+6 | 2.45E+45 | 3.88E+4 | 1.67E+45 | 4.2E+43 | 1.85E+43 | 3.11E+3 | 2.44E43 | 2.01E+3 | 5.22E+42
19 1.92E+3 | 1.91E+3 | 1.85E+1 | 1.91E4+3 | 1.91E4+3 | 1.92E40 | 1.93E+43 | 1.91E+3 | 3.01E+1 | 2.04E+43 | 1.95E+43 | 4.45E+1
20 1.52E+4 | 3.81E+3 | 9.55E+3 | 1.09E+4 | 2.71E4+3 | 4.19E+43 | 4.31E+4 | 3.98E+3 | 2.03E+4 | 1.49E+5 | 6.96E+4 | 6.83E+4
21 5.41E+45 | 2.18E+4 | 4.37TE+5 | 8.03E+45 | 2.67TE+5 | 3.32E45 | 8.4E+5 | 1.25E+45 | 6.71E+5 | 1.21E46 | 1.76E+5 | 1.65E46
22 2.56E+4+3 | 2.22E+3 | 2.08E+2 | 2.6E+43 | 2.38E+3 | 1.14E42 | 2.77E+3 | 2.36E+43 | 2.17E+2 | 3.28E43 | 2.79E+3 | 2.77TE+42
23 2.62E43 | 2.62E+3 1.E+0 2.62E4+3 | 2.62E+3 | 1.37E-3 | 2.62E+43 | 2.62E+4+3 | 4.34E-1 | 2.58E+3 | 2.5E43 7.6E+1
24 2.64E+3 | 2.63E+3 | 5.1TE4+0 | 2.63E+3 | 2.63E+3 | 1.42E40 | 2.63E+3 | 2.63E+3 | 5.4E+4+0 | 2.61E4+3 | 2.6E+43 | 8.82E40
25 2.71E4+3 | 2.71E43 | 3.43E40 | 2.72E+3 | 2.71E4+3 | 3.33E40 | 2.72E4+3 | 2.71E4+3 | 5.01E4+0 | 2.7E+43 2.7TE4+3 | 3.68E+0
26 2.74E+3 2.7TE+3 6.81E+1 2.7TE+3 2.7TE+3 5.64E-2 2.73E+3 2.7TE+3 4.51E+1 | 2.79E+4+3 | 2.72E+3 | 1.88E+1
27 3.39E+3 | 3.11E+3 | 1.81E+42 | 3.45E+43 | 3.19E+3 | 1.29E+42 | 3.35E+3 3.1E+3 1.55E+42 4.5E+3 3.03E+3 | 4.41E+42
28 4.52E+3 | 3.95E+3 | 5.27TE+2 | 3.72E+4+3 | 3.67TE+3 | 2.67TE+1 | 3.97E+3 3.6E+3 3.34E+2 | 5.75E+3 | 4.24E+43 | 7.41E+42
29 4.66E+6 | 3.88E+3 | 1.31E+7 | 8.32E+4+3 | 4.32E+43 | 8.63E+3 | 4.54E+43 | 3.82E+3 | 5.12E+42 1.4E+4 3.1E+3 7.41E+4
30 1.3E+4 | 7.02E+3 | 5.78E+3 | 1.22E+4 | 7.5E+3 | 2.24E+3 | 9.93E+43 | 5.51E+3 | 2.45E+4+3 | 1.87E+5 | 3.2E+3 | 8.73E+44
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TABLE 2. Performance Metrics For BH, SCA, BA and CICMS
BH SCA BA CICMS
Func. Num Mean Best Std Mean Best Std Mean Best Std Mean Best Std
1 T776+8 | 9.54E+7 | 4.2E+7 | 3.89E18 | 2.03E+8 | L.I3E+8 | 2.75E+9 | 1.35E490 | 8.98E+8 | 2.04E+7 | 1.02E+7 | 1.22B+7
2 6.7E4+9 | 4.23E49 | 1.28E+9 | 2.56E+10 | 1.57E+10 | 4.28E49 | 1.13E+11 | 7.01E+10 | 1.94E+10 | 1.22E43 | 2.E+2 | 1.63E+3
3 3.33E44 | 1.68E+4 | 8.4E+3 | 5.46E+4 | 3.39E+4 | 1.07E+4 | 2.54E+5 | 1.46E+5 | 6.29E+4 | 1.7B+3 | 3.86E+2 | 9.74E+2
4 1.34E+3 | 9.75E+2 | 2.38E+2 | 2.05B+3 | 1.32E+3 | 5.04E+2 | 2.76E+4 | 1.16B+4 | 8.81E+3 | 5.01E+2 | 4.13E+2 | 3.21E+1
5 5.21E+42 | 52B+42 | 1.32E-1 | 5.21E42 | 5.21E42 | 5.20E-2 | 521E+2 | 5.21E+2 | 8.44E-2 | 521E+42 | 5.21E+2 | 6.68E-2
6 6.35E+2 | 6.25E42 | 3.6E40 | 6.37E+2 | 6.3E42 | 2.25B40 | 6.48E+2 | 6.42E+2 | 2.07E40 | 6.14E+2 | 6.04E+2 | 5.2E+0
7 7.83B42 | TAB+2 | 2.07E+1 | 9.03E+2 | 8.39E42 | 3.46E+1 | 1.58E+3 | 1.21E+3 | 1.95B42 | 7.BE+2 | 7.E+2 | 9.81E-3
8 9.56E+2 | 8.95E42 | 3.19E+1 | LOTE+3 | 1.02E+3 | 211E+1 | 1.25E+3 | LI13E+3 | 4.64E+1 | 8.14E+2 | 8.05E+2 | 5.43E+0
9 L1E+3 | LOIE+3 | 403E+1 | 1.21E43 | 1.16E+3 | 2.22E+1 | 143E+3 | 1.32E43 | 5.45E+1 | 1L.OSE+3 | LOIE+3 | 1.28E+1
10 5.27E+3 | 4.01E+3 | 7.15E+2 | 7.57E+3 | 6.43E+3 | 4.64E+2 | 9.88E+3 | 841E+3 | 5.77E+2 | 1.35E+3 | 1.02E+3 | 2.1E+2
11 6.5E+3 | 5.25E+3 | 6.66E+2 | 8.56E+3 | T.77E+3 | 3.48E+2 | 1.04E+4 | 9.46E+3 | 4.67E+2 | 6.7E+3 | 6.11E+3 | 2.7E+2
12 1.2E43 | 1.2B+3 | 4.61E-1 | 1.2E4+3 | 1.2E+3 | 3.24B-1 | 1.21E4+3 | 1.2E4+3 | 1.05E+0 | 1.2E+3 | 1.2E+3 | 2.17BE-1
13 1.3E+3 | 1.3E+3 | 2.84E-1 | 1.3E43 | 1.3E+3 | 3.64E-1 | 1.31E+3 | 1.31E+3 | 1.19E+0 | L3E+43 | 13E+3 | 8.47E-2
14 143643 | 142E43 | 5.21E40 | 1.46E+3 | 1.44E+3 | L31E+1 | 1.73E4+3 | 1.61E+3 | 572E+1 | L4E+3 | 14E+3 | 1.92E-1
15 1.64E+3 | 1.56E+3 | 5.86E+1 | 1.43E44 | 3.01E+3 | L.14E+4 | T.69E+6 | 1.33E46 | 5.9E+6 | L5IE+3 | L51E+3 | 1.24E40
16 1.61E+3 | 1.61E4+3 | 4.75B-1 | 1.61E+3 | 1.61E+3 | 2.97E-1 | 1.61E+3 | 1.61E+3 | 2.39E-1 | 1.61E+3 | 1L.61E+3 | 2.59E-1
17 5.73B46 | 1.5B+6 | 3.03E+6 | 1.25E+7 | 3.14E+6 | G.1E+6 | 2.75E+8 | 6.42E+7 | 1.63E+8 | 2.64E+6 | 4.48E+5 | 1.63E+6
18 251B+46 | 2.14E+3 | 5.31E+6 | 3.4E+8 | 8.91E+7 | 1.63E+8 | 7.61E+9 | 2.14E49 | 2.82E+9 | 1.18E+4 | 2.04E+3 | 1.67E+4
19 2.02B+43 | 1.94E+3 | 3.69E+1 | 2.02E43 | 1.97E+3 | 2.39E+1 | 2.84E+3 | 2.25B4+3 | 3.55E+42 | 19IE+43 | 1.9E+3 | 1.97TE+0
20 2.87B+4 | 1.16E+4 | 9.2E+3 | 3.37E+4 | 1.31E+4 | 1.46B+4 | 8.56E+6 | 1.45E+5 | 1.07E+7 | 8.06E+3 | 3.57E+3 | 3.81E+3
21 1.0SE+6 | 9.4E+4 | 5.58E+5 | 3.19B46 | 3.72E+5 | 2.13E+6 | 1.24E+8 | 1.38E+7 | 8.42E+7 | 4.52E+5 | L11E+5 | 2.68E+5
22 3.14E43 | 2.71E43 | 2.21E+2 | 3.19E+3 | 2.73E43 | 1.68E42 | 4.1E+4 | 4.12E+3 | 6.77E+4 | 2.51E+3 | 2.26E+3 | 1.43E+2
23 2.66E+3 | 2.64E+3 | 8.03E40 | 2.7E+3 | 2.66E+3 | 2.08E+1 | 4.E+3 | 3.33E+3 | 4.83E+2 | 2.62E+3 | 2.62E+43 | 2.17E-1
24 2.64E+43 | 2.63E+3 | T.08E+0 | 2.61E+3 | 2.6E+3 | 7.25B40 | 2.84E+3 | 2.77E+3 | 44E+1 | 2.63E+3 | 2.62E+3 | 6.41E+0
25 273643 | 2.72E43 | 8.54E+0 | 2.74E+3 | 2.7E+3 | 1.03E+41 | 2.86E+3 | 2.76E+3 | 5.84E+1 | 271E+3 | 2.7T1E+3 | 2.84E+0
2 27643 | 27B+3 | 3.41E-1 | 2.7E+43 | 27E+3 | A74B-1 | 2.79E+3 | 271E+3 | 1.07E42 | 2.7E+3 | 2.7E43 | 7.34E-2
27 3.27E+3 | 3.15E43 | 1.23E+2 | 3.76E+3 | 3.22E43 | 3.19E42 | 4.63E+3 | 4.01E+3 | 2.66E+2 | 3.2E+3 | 3.05E+3 | 1.04E+2
28 7.19E+3 | 5.74E+3 | 5.93E+2 | 5.49E+3 | 4.64E+3 | 451E+2 | 9.20E+3 | 6.77E+3 | 1.42E+3 | 3.67E+3 | 3.56E+3 | 5.29E+1
29 1.93E+7 | 4.32E+4 | 1.64E+7 | 3.05B47 | 9.76E+6 | 1.19E+7 | 1.15E+8 | 3.44E+5 | 1.34E+8 | L.77E+5 | 4.1E+3 | 1.18E+6
30 1.64E+5 | 5.78E+4 | 7.23E+4 | 5.05B45 | 1.62E+5 | L.79E+5 | 8.62E+6 | 2.76E+6 | 5.11E+6 | 8.9E+3 | 4.06E+3 | 6.04E+3

4.3. Time Analysis of DE_Chebyshev Chaotic. The CICMS algorithm demonstrates
a comprehensive search approach, (Table 3), reflecting in its computational time across
various functions. It generally consumes more time compared to PSO and GA, suggest-
ing a trade-off for its thorough search capabilities. In certain complex scenarios, CICMS
excels, indicating its efficiency in navigating intricate problem spaces. This efficiency be-
comes evident as it outperforms algorithms like BH in specific functions. The algorithm’s
performance showcases its potential in effectively balancing depth of search with com-
putational resources, making it a valuable tool for certain optimization problems where
precision is paramount.
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TABLE 3. Mean time taken by each algorithm

Func. Num PSO DE GA GSA BH CICMS SCA BA
1 2.17E+41 | 5.62E41 | 7.81E+1 | 7.94E+1 | 2.95E41 | 9.91E41 | 3.54E+1 | 3.16E+1
2 3.8E+0 2.71E+4+1 | 3.92E+1 | 4.13E+1 | 5.57TE4+0 | 5.79E+4+1 | 1.26E+1 | 9.44E+0
3 3.81E40 | 2.55E4+1 | 3.79E+1 | 4.11E+1 | 4.37E40 | 5.52E41 | 1.24E+1 | 9.29E+0
4 3.89E40 | 2.52E+1 | 3.82E+1 | 4.11E+1 5.5E4+0 | 5.66E+4+1 | 1.24E+1 | 9.45E+0
5 6.24E+0 | 2.72E41 | 4.08E41 | 4.33E+1 9.5E+0 | 5.49E+1 1.5E+1 1.19E4+1
6 2.41E42 | 2.75E42 | 2.93E+2 | 2.91E+2 | 6.43E+4+3 | 2.19E43 | 2.56E+2 1.1E+4
7 7.62E40 | 3.31E41 | 4.92E+1 | 5.13E+1 | 1.06E41 | 6.98E41 | 1.78E+1 | 1.42E+1
8 8.06E+40 | 4.32E41 | 6.53E+1 | 6.86E+1 | 1.21E41 | 9.48E+41 | 2.21E+1 | 1.76E+1
9 1.04E+1 4.8E+1 7.14E41 | 7.44E+1 | 1.52E+1 | 9.85E+41 | 2.54E41 | 2.05E+1
10 1.21E+1 5.1E+4+1 7.33E4+1 | 7.62E4+1 | 1.82E+1 | 1.04E+2 | 2.75E+1 2.2E+1
11 1.4E+1 5.26E41 | 7.48E41 | 7.66E+1 | 2.0TE+1 | 1.03E42 | 2.95E41 | 2.35E+1
12 9.11E+1 | 1.31E42 | 1.57E42 | 1.56E+2 | 1.35E+2 | 1.83E+4+2 | 1.07E42 | 1.02E42
13 6.81E+0 | 4.43E+1 6.8E+1 7.17E4+1 1.E4+1 9.37E+1 | 2.16E41 | 1.67E+1
14 6.2E+0 4.4E+1 6.81E+1 | 7.08E+1 9.3E+0 | 9.46E+4+1 | 2.14E41 | 1.66E+1
15 1.06E+1 | 4.95E+1 | 7.17E41 | 7.41E4+1 | 1.35E+1 | 1.01E42 | 2.54E41 | 2.05E+1
16 1.07E41 | 4.78E+1 | 7.26E+1 | 7.55E4+1 | 1.67E41 | 9.82E+1 | 2.55E+1 | 2.08E+1
17 1.71E41 | 5.59E41 | 7.94E+1 | 8.08E41 | 2.17E41 | 1.08E+2 | 3.29E41 | 2.77E+41
18 8.E+0 4.64E+1 7.E4+1 7.22E4+1 | 1.08E41 | 9.75E4+1 | 2.33E+1 | 1.81E+1
19 7.98E+1 | 1.21E42 | 1.47E42 | 1.46E+2 | 1.11E42 | 1.76E42 | 9.68E+1 | 9.22E41
20 8.98E+0 | 4.72E41 | 7.12E41 | 7.37E+1 | 1.07TE+1 | 9.91E41 | 2.45E41 | 1.93E+1
21 1.29E+1 5.2E+1 7.62E+4+1 | 7.76E+1 | 1.65E+1 | 1.05E+42 | 2.85E+41 | 2.33E+1
22 1.85E4+1 | 5.48E+1 | 7.69E+1 | 7.75E4+1 | 2.62E41 | 1.02E+2 3.3E+1 2.81E+1
23 3.79E+4+1 | 6.73E4+1 | 8.46E+1 | 8.58E+1 5.2E+1 1.09E+2 | 5.01E+1 | 4.62E+1
24 2.09E41 | 6.02E4+1 8.4E+1 8.45E+4+1 | 2.97E41 | 1.15E42 | 3.62E+1 | 3.14E+1
25 3.97E+4+1 | 7.79E+4+1 | 1.01E+2 | 1.01E+2 | 5.65E+4+1 | 1.28E42 | 5.62E+1 | 5.08E+1
26 3.95E42 | 4.44E42 | 4.77TE+2 | 4.67TE+2 | 5.43E42 | 5.01E42 | 4.17TE+2 | 4.11E+2
27 3.84E+42 | 4.26E+42 | 4.45E+2 | 4.32E+2 | 5.15E42 | 4.85E+42 | 3.95E+2 | 3.89E+2
28 5.19E41 | 9.48E41 | 1.19E+2 | 1.16E+2 | 7.49E41 | 1.51E42 | 6.93E+1 | 6.36E+1
29 9.34E+1 | 1.33E+42 | 1.57E+42 | 1.53E+2 | 1.24E+2 | 1.85E+2 | 1.08E+2 | 1.03E42
30 2.72E41 | 5.93E41 | 7.88E+1 | 7.81E+1 | 3.53E+41 | 1.02E42 | 4.02E+1 | 3.57TE+1
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TABLE 4. Wilcoxon rank-sum test ranking of the 7 algorithms as compared
to our proposed algorithm

Func. Num PSO DE GA GSA BH SCA BA
1 5.119E-1 5.288E-18 2.937E-4 4.703E-18 | 3.304E-18 | 3.304E-18 | 3.304E-18
2 3.304E-18 9.84E-1 3.304E-18 | 3.304E-18 | 3.304E-18 | 3.304E-18 | 3.304E-18
3 3.049E-14 3.154E-1 8.077E-14 | 3.304E-18 | 3.304E-18 | 3.304E-18 | 3.304E-18
4 3.375E-17 | 3.782E-11 | 6.486E-11 | 3.304E-18 | 3.304E-18 | 3.304E-18 | 3.304E-18
5 1.634E-14 2.962E-2 4.181E-18 | 3.304E-18 | 2.106E-13 | 3.504E-18 | 3.304E-18
6 8.784E-5 3.304E-18 3.995E-4 4.49E-17 3.504E-18 | 3.304E-18 | 3.304E-18
7 3.077E-18 2.682E-4 3.077E-18 | 3.077E-18 | 3.077E-18 | 3.077E-18 | 3.077E-18
8 4.429E-18 | 3.299E-18 | 2.547E-12 | 3.299E-18 | 3.299E-18 | 3.299E-18 | 3.299E-18
9 1.427E-1 1.239E-12 | 7.073E-17 | 7.415E-11 | 8.817E-13 | 3.304E-18 | 3.304E-18
10 3.304E-18 | 1.343E-17 | 3.748E-14 | 3.304E-18 | 3.304E-18 | 3.304E-18 | 3.304E-18
11 4.375E-1 5.098E-8 3.304E-18 | 3.723E-15 4.759E-2 3.304E-18 | 3.304E-18
12 8.859E-11 8.461E-1 4.434E-18 | 3.304E-18 9.05E-3 3.304E-18 | 3.304E-18
13 3.374E-3 1.36E-5 6.668E-2 5.734E-2 3.304E-18 | 3.304E-18 | 3.304E-18
14 5.363E-7 2.059E-1 7.095E-6 1.221E-6 3.304E-18 | 3.304E-18 | 3.304E-18
15 1.05E-16 5.676E-13 9.686E-4 3.304E-18 | 3.304E-18 | 3.304E-18 | 3.304E-18
16 2.323E-4 1.956E-10 7.224E-5 3.304E-18 2.77T7E-8 1.391E-16 | 3.304E-18
17 2.628E-2 2.382E-7 4.466E-2 9.111E-6 7.36E-9 1.315E-16 | 3.304E-18
18 8.514E-1 1.005E-17 3.191E-6 2.749E-14 3.768E-8 3.304E-18 | 3.304E-18
19 2.711E-6 4.954E-12 2.61E-14 3.304E-18 | 3.304E-18 | 3.304E-18 | 3.304E-18
20 1.841E-5 9.286E-5 1.175E-16 | 3.304E-18 | 2.013E-17 | 1.343E-17 | 3.304E-18
21 7.178E-1 3.399E-7 7.432E-4 6.099E-5 3.292E-9 8.381E-17 | 3.304E-18
22 2.415E-1 2.385E-4 5.135E-9 4.987E-18 | 7.963E-18 | 4.987E-18 | 3.304E-18
23 3.504E-18 | 2.214E-13 | 3.946E-14 6.11E-1 3.304E-18 | 3.304E-18 | 3.304E-18
24 4.065E-8 3.095E-3 3.627E-1 1.794E-17 1.256E-4 6.315E-17 | 3.304E-18
25 1.719E-2 1.111E-16 2.482E-5 8.65E-16 8.441E-18 | 1.019E-15 | 3.304E-18
26 7.095E-6 6.603E-7 1.829E-1 3.304E-18 6.06E-6 3.304E-18 | 3.304E-18
27 1.765E-6 9.895E-14 3.332E-5 6.315E-17 1.955E-5 1.551E-14 | 3.304E-18
28 3.304E-18 4.553E-8 7.215E-12 | 3.304E-18 | 3.304E-18 | 3.304E-18 | 3.304E-18
29 6.768E-2 6.668E-2 9.714E-9 1.15E-11 8.441E-18 | 3.304E-18 | 4.181E-18
30 2.673E-8 1.708E-9 1.222E-4 6.315E-17 | 3.304E-18 | 3.304E-18 | 3.304E-18

5. Conclusions. This study introduces an innovative mutation strategy for DE that in-
corporates chaos theory, aiming to overcome the limitations of standard DE in balancing
exploration and exploitation. Through extensive testing with the CEC 2014 benchmark
functions, our enhanced DE has demonstrated significant improvements over the origi-
nal algorithm and several other metaheuristic algorithms in terms of convergence speed
and solution quality. These results suggest that our novel approach can make DE more
effective for solving complex optimization problems in various real-world applications.
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