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Abstract.
In the realm of electrical safety, live working on high-voltage direct current (DC)

transmission lines poses formidable challenges and risks. This paper introduces the “LW-
Risk Prediction” (LW stands for live working), an innovative intelligent perception model
based on deep learning designed to improve the prediction of risks in the context of DC
transmission line live working. There are two main challenges in DC transmission line
live working risk prediction. One is that the DC transmission line live working risk
has many relative factors such as weather, transmission line fault, and attack events
etc. And the state of these factors is changing over time. The other one is that the
risk of transmission line live working may be fatal and the prediction should be timely.
This paper explores the model’s innovative design elements, including domain-specific
expertise, temporal modelling using recurrent neural networks (RNNs) with attention
mechanisms, and an embedding approach to leverage both categorical and numerical data.
According to the experiment results, the proposed model can utilize many relative factors
and give a high accuracy and timely prediction for DC transmission line live working
risk.
Keywords: Risk Prediction, Live Working, Deep Learning, Transmission Line

1. Introduction. Live working for direct current (DC) transmission lines means effi-
cient and continual maintenance without disconnecting the electricity supply from the
consumers [1]. Compared with the maintenance requiring disconnection of parts of the
electricity network, live working can save millions of pounds and therefore become wide-
spread in electricity transmission line maintenance. However, when working with a live
line, linesmen are exposed to high electromagnetic fields and take a high risk which can
be fatal. To ensure the reliability and safety of live working on high voltage DC trans-
mission lines, many researchers focus on the protection of the live working linesmen [2–4].
Moreover, live line working standards were also present such as IEC 61472 [5], IEEE
516-1995 [6].

Even though, the risk of live working on DC transmission lines is still at a high level and
can not be well-predicted. One of the reasons is that there are various factors influencing
the safety of live working, such as the air gap insulation, the weather, the faults of the
transmission lines etc [7]. And those factors may change over time. The safety of the live
working linesmen can be adversely affected by these under certain conditions. And live
line working standards in some degrees give the safety criteria by assuming the factors are
statical. For example, in a given condition (weather, voltage, distance) at some moment,
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a lineman conducting live work is supposed to be safe. However, when the condition
changes, the risk of this live working should be warned as soon as possible. Thus, it is
essential to predict the risk of the live working for direct current (DC) transmission lines
timely.

Although risk prediction is vital in live working for direct current (DC) transmission
lines, few methods take diverse factors into account when studying this problem. Many
of them only focus on a single key parameter like the approach distance. For example, [8]
provides the prediction of breakdown voltage which affects the calculation of the distance
of the equipotential live-line work air gap. [9] concerns the potential transfer of current
and arc energy. Integrating the relative factors as much as possible becomes the main
challenge of the risk prediction on live working for direct current (DC) transmission lines.
Traditionally, methods based on big data frequent item mining [10,11] can deal with the
monitoring data with high complexity and make an early warning. However, since many
of the relative factors are changing over time, it is still difficult for a traditional method
to predict the risk timely. Due to the advantage of capturing complex and non-linear
relationships between predictors and outcomes by learning from large-scale and hetero-
geneous data sources, deep learning has become popular and applied in many scenarios
these years. In this paper, we provide an innovative way based on deep learning and
try to address the aforementioned challenges on the risk prediction on live working for
direct current (DC) transmission lines. Specifically, our contributions are summarized as
follows:

• We propose an innovative deep learning model to predict the risk of live working on
high-voltage direct current (DC) transmission lines. Compared with the traditional
data mining method, the proposed model is able to take diverse relative factors into
account and thus make a more reasonable prediction.

• Since most of the relative factors about live working on high-voltage DC transmission
lines will change over time, it is difficult for traditional methods like big data frequent
item mining to give timely early risk warnings. Contrastly, the proposed model can
capture the inner relationship of those relative factors after training and make a
timely prediction.

• In our experiments, we not only conduct the test on the proposed model but also
on several classical deep learning models over the same dataset. From the given
experimental results, the proposed model shows a better performance than these
well-known deep learning models.

The remaining sections are arranged as follows. Section 2 introduces the related research
on live working risk prediction. Section 3 explains the data preprocessing, the training
and validation process for the model. Section 4 describes the architecture of the proposed
model in detail. Section 5 presents the results of the model’s performance, including
accuracy and relevant metrics. Finally, Section 6 makes a summary of the work.

2. Related work. Risk prediction for linesmen who work on live direct current (DC)
transmission lines is a challenging and important problem, as it involves both technical
and human factors. Risk assessment methods aim to identify and quantify the potential
hazards and consequences of working on live DC lines. There are some methods in com-
mon use, including fault tree analysis [12], event tree analysis [13], Bayesian networks [14],
and fuzzy logic [15]. These methods can help to evaluate the probability and severity of
different scenarios, such as electric shock, arc flash, fire, or equipment failure. However,
these methods also have some limitations, such as data availability, uncertainty, and com-
plexity. In 2018, Qiu et al. proposed an approach for discharge voltage prediction of
complex gaps based on support vector machine (SVM) [16]. In 2021, [17] constructed
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digital twin bodies of live workers in different live working scenarios for risk assessment.
In 2022, Sun et al. [11] provided a risk early warning method based on big data frequent
itemset mining which can deal with power monitoring data with high complexity. How-
ever, integrating data with high diversity and giving a timely prediction at the same time
is still a challenge and vital for live working on DC transmission lines.

3. Methodology. The methodology section details the steps taken in the development,
training, and evaluation of the ”LW-Risk Prediction” model for predicting risks in the
context of DC transmission line live working.

3.1. Data Synthesis. The dataset we used in this paper can be accessed in [18]. The
“LW-Risk Prediction” model development chooses a strategy of synthesized data which
mimics the distribution of real-world data. This comprehensive approach aims to create
a robust and effective model while addressing the challenges of data availability and
diversity. Synthetic data plays a pivotal role in the initial stages of model development.
It provides a controlled environment for training and experimentation. The synthetic
dataset is created with meticulous attention to mimic real-world characteristics while
ensuring controllability. The data Synthesis algorithm is outlined below:

Algorithm 1 Data Synthesis

1: start date = Datetime(2020, 1, 1, 0, 0)
2: delta = Timedelta(minutes=5)
3: num = 315360
4: voltages = RandomChoice([400, 500, 660, 800, 1100], size=num)
5: temperature mean, temperature std = MimicFromRealWorld()
6: humidity mean, humidity std = MimicFromRealWorld()
7: weather conditions = MimicFromRealWorld()
8: distance mean, distance std = 7.5, 1.5
9: temperatures = RandomChoice(temperature mean, temperature std, num)
10: humidities = RandomChoice(humidity mean, humidity std, num)
11: distances = RandomChoice(distance mean, distance std, num)
12: winds = RandomChoice([0, 1, 2, . . . , 17], size=num samples)
13: types of work= RandomChoice([’Equal potential’, ’Isolation’, ’Zero potential’],

size=num)
14: abnormality = RandomChoice([0, 1, 2], size=num, p=[0.8, 0.1, 0.1])
15: for i in Range(num - 1) do
16: irow = GetFeatures(i)
17: iscore = RiskScoreVariation(irow)
18: threshold = 25
19: risk[i] = (iscore > threshold)
20: end for

As is shown in algorithm 1, the synthesis process involves:

• Temporal Dynamics: Capturing time-dependent patterns and dynamics, such as
time of day and date, to simulate the temporal aspect of the data. We choose a range
from 2020-1-1 to 2022-12-31 and mimic the distribution feature from the real-world
weather condition data.

• Feature Generation: Generating features that resemble those found in real-world
data, including live-line work air distance, weather conditions, voltage levels, and
work-related attributes.
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Table 1. Sample Data for “LW-Risk Prediction” Model

Date 2020/1/1 2021/1/1 2020/2/1 2020/3/1 2020/4/1
Time 00:00 00:05 00:10 00:15 00:20

Voltage 400 kV 500 kV 660 kV 800 kV 1100 kV
Weather Rainy Cloudy Foggy Thunder Sunny
Humidity 52 88 49 67 69

Wind(Level) 0 1 2 3 4
Distance (m) 7 8 3 5 6
Abnormality 0 1 2 1 2

Temperature (°C) 21 23 30 28 26
Work Type Zero potential Equal potential Isolation Isolation Isolation

Risk 0 1 1 1 1

• Anomaly Scenarios: Introducing anomalous events and scenarios to test the
model’s ability to detect and respond to unusual circumstances.

• Data Variation: Creating variations in data distributions and risk relationships to
ensure the model’s adaptability to diverse conditions.

3.2. Data Preprocessing. Data preprocessing is a critical step to ensure the model’s
input data is suitable for training. The sample data is given in Table 1. The data
preprocessing algorithm is outlined below:

Algorithm 2 Data Preprocessing Algorithm

1: reader = open(’dataset’)
2: newcolumns = []
3: DateTime = [reader.column[0],reader.column[1]]
4: newcolumns.append(DateTime)
5: for i in range(2, reader.columNumber) do
6: if reader.column[i] is categorical variables then
7: reader.column[i] = one-hot(reader.column[i])
8: else
9: reader.column[i] = Standardize(reader.column[i])

10: end if
11: newcolumns.append(reader.column[i])
12: end for
13: return newcolumns

As is shown in algorithm 2, the data preprocessing steps were performed as follows:

• Temporal Features: The ”Date” and ”Time” columns were utilized to extract
relevant temporal features, such as the time of day and the day of the week, enhancing
the model’s understanding of time-dependent patterns.

• Categorical Variables: Categorical variables, including “Voltage”, “Weather”,
“Wind Level”, “WorkType” and “Abnormality” were transformed using one-hot
encoding, converting them into a numerical format.

• Numerical Variables: Numerical variables, specifically “Humidity”, “Tempera-
ture”, and “Distance” were standardized to have a mean and a standard deviation
which mimic the real-world data. Standardization helps the model converge faster
during training and ensures consistent scaling.
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3.3. Training and Validation Process. The training and validation process for the
”LW-Risk Prediction” model is a critical phase in its development. It involves several key
steps to ensure the model’s robustness and reliability:

• Data Split: The dataset is divided into two subsets: the training set, and the test
set. The typical split ratio used is 80% for training, 20% for testing. This partitioning
ensures that the model is trained on a substantial portion of the data while having
separate datasets for model evaluation.

• Model Training: The training phase involves optimizing the model’s weights and
biases to minimize a suitable loss function. The choice of loss function depends on
the specific objectives of the model. The proposed model uses binary cross entropy as
its loss function. Binary cross entropy is a loss function used in binary classification
problems, where the goal is to predict the probability of an outcome that can be
either 0 or 1. It measures how close the predicted probabilities are to the true labels,
and penalizes incorrect predictions with a higher loss value. The formula for binary
cross entropy is

L(y, ŷ) = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

During training, backpropagation is used to update the model’s parameters itera-
tively. The training process is guided by a well-defined stopping criterion to prevent
overfitting. It may halt when the model achieves satisfactory performance after a
predetermined number of training epochs.

• Hyperparameter Tuning: Hyperparameters play a crucial role in model perfor-
mance. Parameters like the learning rate, batch size, and network architecture are
fine-tuned to optimize the model’s predictive accuracy. Hyperparameter tuning is
typically conducted using techniques like grid search or random search to explore
different combinations of hyperparameters. There are six key hyperparameters to
be tuned in the proposed model. They are the number of epochs, the number of
batch sizes, the learning rate, the data training ratio, the type of RNN (LSTM or
GRU) and the number of units in the chosen RNN. To find a group of suitable
hyperparameters for the proposed model, we give a range for each hyperparameter
like a grid search. Then we tune one of the hyperparameters each time by fixing
the value of the other hyperparameters and observing the performance of the model
when changing the value of the tuning hyperparameter.

4. Model Architecture.

4.1. Overview. The “LW-Risk Prediction” model is a sophisticated deep learning archi-
tecture that excels in predicting risks associated with live working on high-voltage DC
transmission lines. It integrates both categorical and numerical data to provide a com-
prehensive risk assessment. The overview architecture is given in Figure 1. Below, we
describe the principles and equations for each layer of the model.

4.2. Embedding Layers. An embedding layer is a type of hidden layer in a neural
network that maps input information from a high-dimensional to a lower-dimensional
space, allowing the network to learn more about the relationship between inputs and to
process the data more efficiently. Categorical features in the given dataset such as “Wind
Level”, “Voltage”, “Weather”, “WorkType” and “Abnormality” are initially processed
through embedding layers to convert them into continuous representations. To use an
embedding layer, we need to first integer encode the input data, so that each word or
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Figure 1 The Proposed Model

category is represented by a unique integer. For example, we can assign the word “Sunny”
to the integer 1, and the word “Rainy” to the integer 2. Then, we can create an embedding
layer with a specified input dimension (the size of the vocabulary), output dimension
(the size of the embedding vector), and input length (the length of the input sequence).
The embedding layer will initialize a matrix of weights with random values, where each
row corresponds to an embedding vector for a word or category. During training, the
embedding layer will update the weights to learn the optimal representation for each
word or category. The embedding layer for a categorical feature ”X” is defined as follows:

EmbeddingX = Embedding(X, input dimX , output dimX) (1)

Where: EmbeddingX represents the embedding layer for feature “X”. Embedding(X,
input dimX , output dimX) denotes the embedding function for feature “X” with input
dimension input dimX and output dimension output dimX .

4.3. Concatenate Layer. A concatenate layer is a type of layer in a neural network
that combines a list of inputs into a single output. It takes as input a list of tensors,
all of the same shape except for the concatenation axis, and returns a single tensor that
is the concatenation of all inputs along that axis. A concatenate layer can be useful
for combining different types of features or information from different sources. In the
proposed model, we use a concatenate layer to combine the categorical features after the
embedding layers with the numerical features.

4.4. Gated recurrent units(GRU) Layer. A Gated recurrent units (GRU) [19] model
is a type of recurrent neural networks (RNNs) [20] that uses gating mechanisms to selec-
tively update the hidden state at each time step, allowing it to effectively model sequential
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data. A GRU model has two gates: a reset gate and an update gate. The reset gate de-
termines how much of the previous hidden state should be forgotten, while the update
gate determines how much of the new input should be used to update the hidden state.
The output of the GRU model is calculated based on the updated hidden state. The core
units for a GRU model are as follows:

Reset gate:rt = σ(Wr · [ht−1, xt]) (2)

Update gate:zt = σ(Wz · [ht−1, xt]) (3)

Candidate hidden state:h̃t = tanh(Wh · [rt ⊙ ht−1, xt]) (4)

Hidden state:ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (5)

where σ is the sigmoid function, ⊙ is the element-wise product, Wr, Wz, and Wh are
learnable weight matrices, xt is the input at time step t, ht−1 is the previous hidden state,
and ht is the current hidden state.

4.5. Attention Layer. The attention layer is a way of enhancing the performance of a
recurrent neural network (RNN) by allowing it to focus on the most relevant parts of the
input sequence. The attention layer takes the output of a GRU layer and computes a
weighted sum of the hidden states of the GRU. The weights are learned by a dense layer
with a tanh activation function, which assigns a score to each hidden state. The scores
are then normalized by a softmax function, which produces a probability distribution over
the hidden states. The attention layer then outputs a vector that is the dot product of
the probability distribution and the hidden states, which represent the most important
features of the input sequence. The output of the attention layer can then be fed to another
dense layer with a sigmoid activation function, which produces the final prediction of the
model. The following formulas show the mathematical operations of the attention layer:

GRU output: h1,h2, ...,hT ∈ Rd (6)

Attention scores: s = tanh(WaH+ ba) (7)

Attention weights: a = softmax(s) (8)

Attention output: c = a⊤H (9)

where H = [h1,h2, ...,hT ]
⊤ ∈ RT×d is the matrix of GRU hidden states, Wa ∈ R1×d and

ba ∈ R are the parameters of the dense layer, s ∈ RT is the vector of attention scores,
a ∈ RT is the vector of attention weights, and c ∈ Rd is the vector of attention output.

4.6. Fully Connected Layer. The fully connected layer processes the flattened data,
applying a linear transformation followed by a ReLU activation function:

Z = ReLU(WfX + bf ) (10)

Where: Z represents the output of the fully connected layer. Wf is the weight matrix.
X is the input data. bf is the bias term.
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4.7. Output Layer. The output layer is responsible for producing the final risk predic-
tion. It uses a sigmoid activation function to produce a probability score between 0 and
1:

Risk Prediction = σ(WoZ + bo) (11)

Where: Risk Prediction represents the final risk prediction. Wo is the weight matrix
for the output layer. Z is the input from the fully connected layer. bo is the bias term.

The sigmoid activation function σ is used to squash the output into the range [0, 1],
providing the probability of risk associated with live working on DC transmission lines. A
threshold can be set to categorize the risk as low, medium, or high based on the predicted
probability.

5. Results and Discussion. There are two metrics in our experiment to evaluate the
performance of the proposed model. One is the prediction accuracy. The other one is
Area Under the ROC Curve (AUC) [21].

AUC is a metric that summarizes the performance of a binary classifier across all pos-
sible thresholds. It measures how well the classifier can distinguish between the positive
and negative classes, regardless of the actual class distribution or the chosen threshold.
The AUC is equal to the probability that the classifier will assign a higher score to a
randomly selected positive example than to a randomly selected negative example. The
AUC ranges from 0 to 1, where 0 means the classifier is completely wrong and 1 means
the classifier is completely right. A random classifier would have an AUC of 0.5, which
means it cannot discriminate between the classes at all. One way to calculate the AUC
is to use the trapezoidal rule to approximate the area under the ROC curve, which is
a plot of the true positive rate (TPR) versus the false positive rate (FPR) at different
thresholds. The TPR and FPR are defined as follows:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

where TP, FP, FN, and TN are the number of true positives, false positives, false
negatives, and true negatives, respectively. To apply the trapezoidal rule, we first sort
the classifier scores in descending order and compute the corresponding TPR and FPR
values for each score as a potential threshold. Then, we divide the ROC curve into a
series of trapezoids, each with a base equal to the difference between two adjacent FPR
values and a height equal to the average of the corresponding TPR values. The area of
each trapezoid is given by:

Ai =
(FPRi+1 − FPRi)× (TPRi+1 + TPRi)

2
where i is the index of the score. The AUC is then the sum of the areas of all the

trapezoids:

AUC =
n−1∑
i=1

Ai

where n is the number of scores.
Generally, we tune the above hyperparameters by changing the value of one parameter

and fixing the values of the other parameters to see the different results both on prediction
accuracy and AUC. As is shown in Figure 2 to 6, we give the experiment results in different
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hyperparameters, namely the training ratio, the learning rate, the number of units in
GRU, the number of batch size and the number of epoch.

5.1. Experiment Tuning. As has been mentioned, there are six key hyperparameters
to be tuned in the proposed model. Firstly, we choose GRU instead of LSTM as a
component of the proposed model according to the experiment results. The remaining
hyperparameters are tuned as follows:

The number of epochs is the number of times that the entire training data is passed
through the model. A higher number of epochs means more exposure and learning for the
model, but also more risk of overfitting and longer training time. As is shown in Figure
2, the performance becomes better as the number of epochs increases.

Figure 2 Different Number of Epoch

The batch size is the number of samples that are processed together in each iteration
of the training. A higher batch size means more parallelism and faster convergence, but
also more memory usage and less stochasticity. As is shown in Figure 3, a recommended
batch size is about 96.

The learning rate controls how much the model’s weights are adjusted with respect to
the loss gradient. If the training rate is too high, the model might overshoot the optimal
point. If the training rate is too low, the model might get stuck in a local minimum or
take too long to converge. As is shown in Figure 4, a recommended learning rate is about
0.005.
The parameter Units in a GRU model specifies the number of hidden units in each

GRU cell. The higher the number of units, the more expressive and complex the GRU
model can be, but also the more parameters and computational cost it will have. As is
shown in Figure 5, a recommended range is in (16, 20).
The training ratio is the proportion of the data that is used for training the model,

while the rest is used for testing. As is shown in Figure 6, an 80/20 split is suggested,
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Figure 3 Different Batch Size

Figure 4 Different Learning Rate
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Figure 5 Different Number of Units in GRU

meaning 80% of the data is for training and 20% is for validation or testing. This helps to
evaluate the model’s performance on unseen data and avoid overfitting or underfitting.

5.2. Comparison. In this part, we compare the performance of the proposed model
with four well-known deep learning models, namely LSTM [22], GRU, SVM [23], and
CNN [24]. GRU model has been introduced in section 4.4. LSTM is another type of
RNN Like GRU that can process data sequentially and learn long-term dependencies. It
is designed to overcome the vanishing gradient problem that occurs in traditional RNNs,
which makes them unable to learn long-term dependencies. LSTM also has a special
structure that consists of a cell, an input gate, an output gate, and a forget gate. The cell
stores information over long periods, and the gates control how much information to keep,
discard, or output from the cell. An SVM model can perform classification, regression,
and outlier detection tasks. It works by finding the optimal hyperplane that separates
the data points into different classes or predicts their values. The hyperplane is chosen
to maximize the margin, which is the distance between the hyperplane and the closest
data points of each class. The data points that lie on the margin are called support
vectors, and they are the only ones that affect the hyperplane. SVM models can handle
high-dimensional and nonlinear data by using different kernel functions, which transform
the data into a higher-dimensional space where the hyperplane can be found. A CNN
model can process data with a grid-like structure, such as images, audio, or text. A CNN
model consists of multiple layers, each of which performs a specific operation on the input
data. The main types of layers in a CNN model are the convolutional layer, pooling layer
and fully connected layer. A CNN model can have multiple convolutional and pooling
layers, stacked on top of each other, forming a deep network that can learn complex and
hierarchical features from the data.
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Figure 6 Different Training Ratio

Table 2 COMPARISON WITH OTHER MODELS

Models Accuracy(%) AUC(%) Number of Params
Ours 99.48 98.94 1592
LSTM 99.23 98.13 2341
GRU 99.31 98.22 1821
SVM 97.21 94.81 -
CNN 98.18 95.96 1801

We choose a comparative model size level for these models. Specifically, the number of
parameters for each model is quite similar. Besides, we use the same training ratio for each
model, namely the same proportion of data for training and testing. The performance of
each model is evaluated by two metrics, namely prediction accuracy and Area Under the
ROC Curve (AUC). As is shown in Table 2, the proposed model outperforms the other
four models both in prediction accuracy and AUC.

6. Conclusion. In this paper, we have introduced the “LW-Risk Prediction” model, an
innovative deep-learning solution aimed at improving the prediction of risks in the chal-
lenging domain of high-voltage direct current (DC) transmission line live working. As
demonstrated, live working risk prediction on DC transmission lines presents two signif-
icant challenges: the dynamic nature of risk factors which are continually changing over
time; and necessitating timely risk predictions. Our exploration of the “LW-Risk Predic-
tion” model’s design elements has revealed its pioneering approach to these challenges.
By incorporating domain-specific expertise, the model adeptly handles the intricate nu-
ances of DC transmission line environments. The utilization of recurrent neural networks
(RNNs) with attention mechanisms allows the model to capture the temporal dynamics
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of risk factors, thus addressing the first challenge. Furthermore, the model effectively
integrates both categorical and numerical data to offer a comprehensive risk assessment.
Additionally, the inclusion of an anomaly factor provides additional safety, identifying un-
usual patterns that may indicate heightened risk. The experimental results attest to the
model’s effectiveness in addressing these challenges. LW-Risk Prediction demonstrates its
capacity to harness diverse, time-varying risk factors, delivering accurate and timely pre-
dictions for DC transmission line live working risk. As we continue to refine and expand
this innovative model, it stands as a testament to the power of creative problem-solving
and advanced technology in safeguarding the well-being of professionals in the field of
electrical safety.
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