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Abstract. Global path planning is a fundamental task for mobile robots operating in
dynamic environments. It involves finding an optimal path from a start to a goal location
while avoiding obstacles and considering various constraints. Over the years, numerous
global path planning algorithms have been developed to address this challenge. This paper
provides a comprehensive review of modern global path planning algorithms for mobile
robots. We categorize these algorithms based on their underlying principles, advantages,
disadvantages, applications, and the year of their introduction. By analyzing and com-
paring these algorithms, we aim to provide researchers and practitioners with an overview
of the state-of-the-art in global path planning and highlight the strengths and limitations
of each approach.
Keywords: Mobile robot; Autonomous navigation; Optimization approach; Path Plan-
ning Algorithm; Discussion Review.

1. Introduction. Global path planning is a critical task for mobile robots operating in
dynamic environments [1]. It involves finding an optimal path from a start location to a
goal location while avoiding obstacles and considering various constraints such as time,
energy, and safety [2-3]. The ability to plan and navigate efficiently is crucial for mobile
robots to perform tasks in various domains, including but not limited to autonomous
vehicles, warehouse automation, search and rescue missions, and agricultural robotics [4].

Over the years, researchers have developed a wide range of global path planning algo-
rithms to address the challenges posed by complex environments [5]. These algorithms
employ different strategies and techniques to generate feasible and optimal paths for mo-
bile robots [6]. As the field continues to evolve, it becomes important to review and
evaluate these algorithms to understand their strengths, limitations, and applicability in
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different scenarios [7]. Figure 1 shows an overview of the robot path planning with related
fields and applications.

Figure 1. An overview of the robot path planning with related fields and applications

The primary objective of this research review paper is to provide a comprehensive
overview of modern global path planning algorithms for mobile robots. By categorizing
and analyzing these algorithms based on their underlying principles, advantages, disad-
vantages, applications, and the year of their introduction, we aim to provide researchers
and practitioners with a comprehensive understanding of the state-of-the-art in global
path planning. This review will serve as a valuable resource for researchers and practi-
tioners to select appropriate algorithms for their specific applications and identify areas
for further research and improvement.

The paper is organized as follows: In Section 2, we present a taxonomy of global path
planning algorithms, categorizing them based on their underlying principles. Section 3
provides a detailed review of each algorithm, discussing their description, advantages,
disadvantages, applications, and the year of their introduction. In Section 4, we conduct
a comparative analysis of the reviewed algorithms, highlighting their characteristics and
evaluating their strengths and limitations. Section 5 discusses the challenges in global
path planning and suggests potential areas for future research and improvement. Finally,
Section 6 concludes the paper by summarizing the reviewed algorithms and providing key
takeaways for researchers and practitioners.

2. Taxonomy of Global Path Planning Algorithms. In this section, we present a
taxonomy of global path planning algorithms for mobile robots [4]. These algorithms can
be categorized based on their underlying principles and approaches [8]. The taxonomy
provides a structured framework for understanding the different types of algorithms and
their characteristics [9].

Grid-based algorithms include Dijkstra’s algorithm [10], A*, and Theta*. Dijkstra’s
algorithm explores the grid-based environment by considering the cost of each grid cell
and finding the shortest path from the start to the goal location [11]. A* is an extension
of Dijkstra’s algorithm that incorporates heuristic information [12], such as Euclidean
distance, to guide the search towards the goal more efficiently. Theta* further improves
upon A* by reducing unnecessary turns in the path, resulting in smoother trajectories.
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Figure 2. Taxonomy of Global path planning algorithms

Table 1. A concise representation of the taxonomy and may not include
all the algorithms within each category

Algorithm Category Algorithm Name

Grid-based Algorithms [13]
Dijkstra’s Algorithm [10] [14]
A* Algorithm [12]
Theta* Algorithm [15]

Potential Field Algorithms [16]
Artificial Potential Field (APF)[16]
Harmonic Potential Field [17]

Sampling-based Algorithms [18]
Rapidly-exploring Random Trees (RRT) [19]
Probabilistic Roadmap (PRM) [20]

Optimization-based Algorithms [21]
Trajectory Optimization [22]
Mixed Integer Linear Programming (MILP)[23]

Hybrid Algorithms [24]
Bidirectional Search [25]
Jump Point Search [26]

Global path planning for mobile robots involves finding a collision-free path from a
start location to a goal location in an environment [27]. There are various algorithms
used to achieve this, which can be broadly classified into different categories [28].

One category is potential field algorithms, which include Artificial Potential Field
(APF) and Harmonic Potential Field [17]. APF algorithms use attractive and repul-
sive forces to guide the robot towards the goal while avoiding obstacles. The robot moves
along the steepest descent of the potential field. Harmonic Potential Field models the en-
vironment as a harmonic potential field, where the robot moves towards the goal location
by minimizing the potential energy.

Another category is sampling-based algorithms, which include Rapidly-exploring Ran-
dom Trees (RRT) [19] and Probabilistic Roadmap (PRM) [20]. RRT algorithms build a
tree structure by randomly sampling the configuration space and expanding towards un-
explored regions. The path is formed by connecting the start and goal configurations in
the tree. PRM algorithms construct a roadmap of the environment by sampling random
configurations and connecting them with collision-free paths. The path is then extracted
from the roadmap using graph search algorithms.
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Optimization-based algorithms are another category, which includes Trajectory Opti-
mization and Mixed Integer Linear Programming (MILP). Trajectory Optimization algo-
rithms optimize the robot’s trajectory by considering dynamic constraints, such as velocity
and acceleration limits, to find a smooth and feasible path. MILP algorithms formulate
the path planning problem as an optimization problem with binary decision variables,
ensuring collision-free paths while considering additional constraints.

Lastly, hybrid algorithms include Bidirectional Search and Jump Point Search. Bidirec-
tional Search simultaneously explores the environment from the start and goal locations,
meeting in the middle to find the optimal path. Jump Point Search reduces the number
of expanded nodes by identifying ”jump points” in the grid-based environment, resulting
in faster path planning. It’s important to note that this taxonomy is not exhaustive, and
there may be other algorithms that do not fit into these categories. However, this taxon-
omy provides a broad overview of the different approaches used in global path planning
for mobile robots.

3. Review of Global Path Planning Algorithms. In this section, we will provide a
detailed review of each global path planning algorithm, discussing their description, ad-
vantages, disadvantages, applications, and the year of their introduction. Table 2 shows
a comparison the algorithms: advantages, disadvantages, applications, and year of intro-
duction.

Dijkstra’s Algorithm is a well-known algorithm that explores a grid-based environment
by considering the cost of each grid cell and finding the shortest path from the start to the
goal location [10]. It guarantees finding the optimal path if all edge costs are non-negative.
Dijkstra’s algorithm is simple to implement and has a low memory requirement. However,
it can be computationally expensive for large-scale environments due to its exhaustive
search. It does not consider any heuristic information. Dijkstra’s algorithm is widely used
in various applications, such as robotics, network routing, and transportation planning.
It was introduced in 1959. A* Algorithm is an extension of Dijkstra’s algorithm that
incorporates heuristic information, such as Euclidean distance, to guide the search towards
the goal more efficiently [6]. It combines both the advantages of Dijkstra’s algorithm
and heuristic guidance, resulting in faster convergence towards the goal. A* algorithm
guarantees finding the optimal path. However, it can still be computationally expensive
for large-scale environments with complex heuristics. The quality of the heuristic affects
the performance. A* algorithm is widely used in robotics, video games, and motion
planning. It was introduced in 1968.
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Table 2. Comparison the algorithms: advantages, disadvantages, applica-
tions, and year of introduction

Algorithm Description Advantages Disadvantages Applications Year
A*[6], [29] A* algorithms

use a heuristic
function to
guide the search
towards the goal
.

Optimal path,
guarantees find-
ing the shortest
path, efficient
in grid-based
environments

Can be compu-
tationally expen-
sive, may not
handle dynamic
environments
well

Robotics, video
games, route
planning

1968

Dijkstra’s
Algorithm
[10], [14]

Dijkstra’s algo-
rithm explores
the graph by
considering the
cost of each
edge.

Optimal path,
guarantees find-
ing the shortest
path, efficient in
weighted graphs

Can be com-
putationally
expensive for
large graphs,
does not handle
dynamic environ-
ments well

Network rout-
ing, transporta-
tion planning

1956

Breadth-
First Search
(BFS) [30]

BFS explores
the graph by
expanding the
nodes in a
breadth-first
manner.

Guarantees find-
ing the shortest
path in un-
weighted graphs,
efficient in small
graphs

Can be com-
putationally
expensive for
large graphs,
does not handle
weighted graphs
well

Network rout-
ing, social
network analy-
sis

1945

Depth-First
Search
(DFS) [31]

DFS explores
the graph by
traversing as
far as possi-
ble along each
branch.

Efficient in large
graphs, memory-
efficient, can find
paths quickly in
certain scenarios

Does not guar-
antee finding the
shortest path,
can get stuck in
infinite loops in
cyclic graphs

Maze solving,
graph traversal,
puzzle solving

1830s

Potential
Field (PF)
[32]

PF algorithms
model the en-
vironment as a
potential field
to guide the
robot.

Computationally
efficient, handles
dynamic environ-
ments well, easy
to implement

Can get stuck
in local minima,
may result in os-
cillations around
obstacles, does
not guarantee
optimality

Mobile robot
navigation,
autonomous
vehicles

1985

Harmonic
Potential
Field [33]

This algorithm
models the en-
vironment as a
harmonic poten-
tial field.

Provides smooth
and continuous
paths, handles
complex envi-
ronments with
multiple obsta-
cles

May not guar-
antee optimality,
sensitive to initial
conditions and
obstacle configu-
rations

Mobile robot
navigation,
robotic manipu-
lation

1993

Rapidly-
exploring
Random
Trees (RRT)
[19]

RRT algo-
rithms build a
tree structure
by randomly
sampling the
configuration
space.

Efficient in high-
dimensional and
complex environ-
ments, handles
non-holonomic
constraints

May not guar-
antee optimality,
resulting path
can be subopti-
mal and jagged

Robotics, mo-
tion planning,
autonomous
systems

1996

Probabilistic
Roadmap
(PRM) [20]

PRM algo-
rithms con-
struct a
roadmap of
the environment
by sampling
random configu-
rations.

Handles complex
environments
with high-
dimensional
configuration
spaces, provides
a precomputed
roadmap

Requires signif-
icant prepro-
cessing time,
roadmap may not
be optimal for all
scenarios

Robotics, mo-
tion planning,
multi-robot
systems

1996
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Trajectory
Optimiza-
tion [34]

These al-
gorithms
optimize
the robot’s
trajectory
considering
dynamic con-
straints.

Generates
smooth and
dynami-
cally feasible
paths, han-
dles complex
constraints
and non-linear
dynamics

Computationally
expensive, may
not guarantee
global opti-
mality

Robotics, au-
tonomous ve-
hicles, aerial
navigation

Mixed
Integer
Linear
Program-
ming
(MILP)
[23]

MILP al-
gorithms
formulate the
path planning
problem as an
optimization
problem.

Provides a
rigorous and
optimal solu-
tion, handles
complex con-
straints and
multiple objec-
tives

Computationally
expensive for
large-scale
problems,
may require
simplifications
or approxima-
tions

Robotics,
logistics,
transporta-
tion planning

1988

Bidirectional
Search [25]

This al-
gorithm
explores the
environment
from the
start and goal
locations si-
multaneously.

Reduces
search space
and compu-
tational time,
guarantees
finding the
optimal path

Requires
bidirectional
connectivity,
may not be
suitable for all
environments
or search prob-
lems

Robotics,
graph theory,
network rout-
ing

1983

Jump
Point
Search [26]

Jump Point
Search iden-
tifies ”jump
points” in
grid-based
environments
for faster
path plan-
ning.

Reduces com-
putational
time, provides
shorter paths
in grid-based
environments

Requires effi-
cient heuristic
and well-
defined grid
structure, may
not be suitable
for non-grid
environments

Grid-based
path plan-
ning, video
games, robot-
ics

2011

In the field of path planning for mobile robots, several algorithms have been developed
to efficiently find collision-free paths from a start location to a goal location. These algo-
rithms can be categorized into different types based on their approach and characteristics.

Dijkstra’s algorithm explores a grid-based environment by considering the cost of each
grid cell and finding the shortest path from the start to the goal location [35]. It guar-
antees finding the optimal path if all edge costs are non-negative. Dijkstra’s algorithm is
widely used in various applications, such as robotics, network routing, and transportation
planning [14].

A* algorithm, introduced in 1968, is an extension of Dijkstra’s algorithm that incor-
porates heuristic information, such as Euclidean distance, to guide the search towards
the goal more efficiently. It combines both the advantages of Dijkstra’s algorithm and
heuristic guidance, resulting in faster convergence towards the goal [6]. A* algorithm
guarantees finding the optimal path [29]. It is widely used in robotics, video games, and
motion planning.
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Theta* algorithm, introduced in 2005, improves upon A* by reducing unnecessary turns
in the path, resulting in smoother trajectories. It uses line-of-sight checks to remove
unnecessary nodes from the search. Theta* reduces the number of expanded nodes and
the length of the resulting path compared to A*. It is particularly useful in environments
with narrow passages. However, it requires additional computational overhead for line-of-
sight checks and may not always find the optimal path. Theta* algorithm is commonly
used in mobile robot navigation and motion planning.

Artificial Potential Field (APF) algorithms, introduced in 1985, use attractive and re-
pulsive forces to guide the robot towards the goal while avoiding obstacles. The robot
moves along the steepest descent of the potential field. APF algorithms are computa-
tionally efficient and easy to implement. They can handle dynamic environments and
adapt to changes. However, they may suffer from local minima and can result in oscilla-
tions around obstacles. APF algorithms are commonly used in mobile robot navigation,
autonomous vehicles, and swarm robotics.

Harmonic Potential Field algorithms, introduced in 1993, model the environment as a
harmonic potential field, where the robot moves towards the goal location by minimiz-
ing the potential energy. They provide smooth and continuous paths and can handle
complex environments with multiple obstacles. However, they may not guarantee finding
the optimal path and can be sensitive to the initial conditions and obstacle configura-
tions. Harmonic potential field algorithms are used in mobile robot navigation, robotic
manipulation, and virtual reality.

Rapidly-exploring Random Trees (RRT) algorithms, introduced in 1996, build a tree
structure by randomly sampling the configuration space and expanding towards unex-
plored regions. The path is formed by connecting the start and goal configurations in the
tree. RRT algorithms are efficient in high-dimensional and complex environments. They
can handle non-holonomic constraints and dynamic obstacles. However, they may not
guarantee finding the optimal path, and the resulting path can be suboptimal and jagged.
RRT algorithms are widely used in robotics, motion planning, and autonomous systems.

Probabilistic Roadmap (PRM) algorithms, also introduced in 1996, construct a roadmap
of the environment by sampling random configurations and connecting them with collision-
free paths. The path is then extracted from the roadmap using graph search algorithms.
PRM algorithms can handle complex environments with high-dimensional configuration
spaces. They provide a precomputed roadmap for efficient path planning. However, they
require a significant preprocessing time to construct the roadmap, and the roadmap may
not be optimal for all scenarios. PRM algorithms are commonly used in robotics, motion
planning, and multi-robot systems.

Other algorithms in the field of path planning include Trajectory Optimization and
Mixed Integer Linear Programming (MILP) [23]. Trajectory Optimization algorithms
optimize the robot’s trajectory by considering dynamic constraints, such as velocity and
acceleration limits, to find a smooth and feasible path. They can generate smooth and dy-
namically feasible paths and handle complex constraints and non-linear dynamics. How-
ever, they can be computationally expensive, especially.
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Table 3. Analysis and discussion with algorithm characteristics

Algorithm
Algorithm
Characteristics

Evaluation of
Strengths and
Limitations

Discussion on
Applicability in
Different Scenarios

Dijkstra’s Algorithm
[35], [14]

- Finds the shortest
path based on the
distance metric

Strengths: Guarantees finding
the shortest path, works
well in static environments

Applicability: Suitable
for scenarios where finding
the shortest path is crucial,
such as navigation in
road networks or static
environments

A* Algorithm
- Combines Dijkstra’s
Algorithm with a heuristic
to prioritize paths

Strengths: Efficient and
optimal in finding the
shortest path, heuristic
improves performance

Applicability: Widely
used in pathfinding applications,
suitable for scenarios where
both optimality and efficiency
are desired [39]

Rapidly-exploring
Random Trees (RRT)

- Builds a tree structure by
randomly sampling the
configuration space and
connecting nodes with feasible paths

Strengths: Efficient in
high-dimensional spaces,
handles complex and
dynamic environments

Applicability: Well-suited
for scenarios with complex
and dynamic environments,
such as robotics
and motion planning

Probabilistic
Roadmap (PRM) [20]

- Constructs a graph by sampling
random configurations and
connecting nodes based on
feasibility and collision-free paths

Strengths: Handles
high-dimensional
spaces, good for complex
and cluttered environments

Applicability: Suitable for
scenarios with complex
and cluttered environments,
commonly used in robotics
and motion planning

Potential Fields [40]

- Robots move based on
attractive and repulsive forces
exerted by the environment
and obstacles

Strengths: Simple and
computationally efficient,
handles dynamic environments

Applicability: Suitable
for scenarios with dynamic
environments, commonly
used in mobile robotics
and navigation tasks [39]

Genetic Algorithms
[41], [42]

- Utilizes evolutionary
principles to find
optimal paths

Strengths: Can handle
complex environments,
can find near-optimal
solutions

Applicability: Suitable
for scenarios where the
environment is uncertain
or changing [43], commonly
used in multi-objective
optimization problems

Swarm Intelligence [44]

- Inspired by collective
behavior of social insects,
uses decentralized algorithms
for path planning

Strengths: Robust and
adaptable, handles
large-scale environments

Applicability: Suitable
for scenarios with multiple
agents or robots, commonly
used in swarm robotics
and cooperative tasks

4. Comparative Analysis and Discussion. This section presents a comparison of al-
gorithm characteristics, states an evaluation of strengths and limitations, and discusses
applicability in different scenarios. Each algorithm has its own strengths and weaknesses,
and their suitability depends on the application’s specific requirements and the environ-
ment’s characteristics [36]. Researchers and practitioners often choose algorithms based
on factors such as optimality guarantees, computational efficiency, handling of constraints,
and the nature of the problem at hand [37]. It is also worth noting that algorithmic tech-
niques continue to evolve, and new variations and improvements are constantly being
developed [38]. Table 3 lists an analysis and discussion with algorithm characteristics:
Strengths, limitations, and discussion on applicability in different scenarios.

The discussion section of the paper presents a thorough analysis of different global
path planning algorithms, evaluating their performance based on factors such as com-
putational efficiency, memory usage, optimality guarantees, and adaptability to dynamic
environments. This analysis sheds light on the strengths and weaknesses of each algo-
rithm, enabling readers to determine their suitability for specific scenarios.

One important aspect explored in the discussion is the trade-offs associated with differ-
ent algorithms. While some prioritize computational speed over optimality, others focus
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Figure 3. Applications of Dijkstra’s algorithm finding the shortest possi-
ble route

on finding the most optimal path regardless of computational time. The paper examines
the implications of these trade-offs and their impact on the suitability of algorithms for
various applications.

Furthermore, the discussion delves into the applicability of different algorithms in real-
world scenarios. For instance, certain algorithms may excel in indoor environments with
structured grids, while others may be better suited for outdoor settings with complex
terrains. By discussing the strengths and limitations of each algorithm in different con-
texts, the paper provides valuable guidance for selecting the most appropriate algorithm
for specific applications.

Additionally, the challenges that still need to be addressed, such as handling uncer-
tain or dynamic environments, multi-robot coordination, and real-time replanning, are
discussed, paving the way for further advancements in the field.

Practical considerations in implementing global path planning algorithms in real-world
systems are also addressed in the discussion. This includes factors like computational
resources, sensor limitations, and the need for online planning. By examining how these
practical considerations influence algorithm selection, the paper offers valuable insights
and strategies for overcoming challenges associated with real-world implementation.

In summary, the discussion section provides a comprehensive analysis and synthesis
of the research findings, highlighting key insights, implications, and future directions for
global path planning algorithms. It serves as a valuable resource for readers, deepening
their understanding of the field and assisting them in making informed decisions when
choosing and implementing these algorithms in practical applications.
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5. Challenges and Future Directions. Challenges and future directions in path plan-
ning algorithms include. Path planning algorithms need to be able to handle uncertainty
in the environment, such as dynamic obstacles, sensor noise, and incomplete information.
Future research may focus on developing algorithms that can adapt to changing environ-
ments and make decisions based on uncertain data. Additionally, many path planning
algorithms are computationally expensive and may not be suitable for real-time applica-
tions [45]. Future research may focus on developing efficient algorithms that can generate
paths quickly, especially in high-dimensional and complex environments.

Furthermore, path planning algorithms need to be extended to handle scenarios with
multiple agents, such as multiple robots or vehicles navigating in the same environment.
Future research may focus on developing algorithms that can coordinate the motion of
multiple agents to avoid collisions and optimize overall system performance. As robots
become more integrated into human environments, path planning algorithms need to take
into account human preferences and safety considerations [46]. Future research may focus
on developing algorithms that can generate paths that are both efficient and socially
acceptable to humans.

Moreover, machine learning techniques, such as reinforcement learning and deep learn-
ing, have shown promise in improving path planning algorithms [47]. Future research
may focus on developing learning-based approaches that can adapt to different environ-
ments and learn from experience to improve performance [48]. Combining different path
planning algorithms and techniques can often lead to improved performance [49]. Future
research may focus on developing hybrid approaches that combine the strengths of dif-
ferent algorithms, such as combining a global planner with a local planner, or combining
geometric algorithms with learning-based approaches.

Additionally, path planning algorithms need to take into account human preferences,
constraints, and comfort levels. Future research may focus on developing algorithms
that can generate paths that are not only collision-free but also consider human factors
such as comfort, energy efficiency, and natural motion patterns. Finally, many path
planning algorithms struggle with scalability when applied to large-scale environments or
complex scenarios. Future research may focus on developing scalable algorithms that can
handle large-scale problems efficiently without sacrificing optimality or performance. It is
important to note that these research directions are not exhaustive, and the field of path
planning continues to evolve with new challenges and advancements.

Table 3 presents a comprehensive overview of the challenges and potential areas for
future research in the field of path planning. As robotics and artificial intelligence continue
to advance, there are several key areas that require further investigation and development.

One significant challenge is the development of risk-aware path planning algorithms that
can consider the probability of collision or failure [50]. Incorporating risk assessment into
path planning can improve the safety and reliability of autonomous systems in dynamic
environments.

Another important area for future research is human-robot interaction in path planning.
This involves designing algorithms that can incorporate human preferences and constraints
in collaborative scenarios [51]. Additionally, exploring methods for intuitive and natural
interaction between humans and robots during path planning tasks can enhance the overall
user experience and facilitate effective collaboration [52-54].

In order to enhance trust and acceptance of autonomous systems, there is a need for
path planning algorithms that are explainable and transparent. This involves developing
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Table 4. Some challenges in path planning algorithms and potential areas
for future research

Challenges in Path
Planning

Potential Areas for Future Research and Im-
provement

High-Dimensional Spaces
- Developing efficient algorithms for path planning in
high-dimensional spaces
- Investigating dimensionality reduction techniques to
simplify the search space
- Exploring sampling-based algorithms that can handle
high-dimensional configurations

Dynamic Environments
- Designing algorithms that can adapt to dynamic envi-
ronments and handle moving obstacles
- Integrating real-time perception and sensing capabili-
ties to detect and respond to changes in the environment
- Investigating methods for online replanning to handle
dynamic obstacles and changes in the environment

Scalability
- Developing scalable algorithms that can handle large-
scale environments with a large number of obstacles and
complex structures
- Exploring parallel and distributed computing tech-
niques to improve the efficiency of path planning algo-
rithms
- Investigating hierarchical or multi-resolution ap-
proaches to handle large-scale environments

Optimality vs. Efficiency
- Balancing the trade-off between finding the optimal
path and achieving real-time or near-real-time perfor-
mance
- Developing hybrid algorithms that can provide both
optimality and efficiency by combining different path
planning techniques
- Investigating anytime algorithms that can provide pro-
gressively improving solutions, allowing for early termi-
nation if a satisfactory solution is found

Uncertainty
and Robustness

- Addressing uncertainty in the environment, such as
sensor noise, imperfect maps, and incomplete informa-
tion
- Investigating robust path planning algorithms that can
handle uncertainties and adapt to changing conditions
- Exploring methods for risk-aware path planning that
consider the probability of collision or failure

Human-Robot Interaction
- Designing path planning algorithms that can incorpo-
rate human preferences and constraints in collaborative
scenarios
- Investigating methods for intuitive and natural interac-
tion between humans and robots in path planning tasks
- Exploring techniques for explainable and transparent
path planning to enhance trust and acceptance of au-
tonomous systems
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techniques that can provide clear explanations for the decisions made by the path planning
algorithm, enabling users to understand and trust the system’s behavior.

It is worth noting that the challenges and potential areas for future research men-
tioned above are not exhaustive. The field of path planning is continuously evolving,
and advancements in robotics, AI, and related fields will continue to shape the direction
of research in this area. In summary, future research in path planning algorithms will
likely focus on addressing challenges such as uncertainty, real-time planning, multi-agent
coordination, human-robot interaction, learning-based approaches, hybrid approaches,
human-centric planning, and scalability. By addressing these challenges, path planning
algorithms can become more robust, efficient, and applicable to a wide range of real-world
scenarios.

6. Conclusion. This study achieved its objective of comprehensively reviewing global
path-planning algorithms. The paper has provided valuable insights into their perfor-
mance, applicability, and trade-offs by categorizing and evaluating these algorithms based
on various factors. Discussing practical considerations and future research directions fur-
ther enhances the paper’s contribution to the field. The thorough analysis and synthesis
of the research findings in the discussion section offer readers a clear understanding of
the strengths, weaknesses, and potential of different global path-planning algorithms.
This knowledge can guide researchers and practitioners in selecting the most suitable
algorithm for their specific requirements, considering factors such as computational effi-
ciency, memory usage, optimality guarantees, and adaptability to dynamic environments.
The discussion also highlights emerging techniques, such as machine learning and hy-
brid approaches, and their potential to enhance the capabilities of existing algorithms.
By addressing challenges and suggesting future research directions, the paper encourages
further advancements in global path-planning algorithms, contributing to the continuous
improvement of mobile robotics systems. Further, this review paper serves as a valu-
able resource for researchers and practitioners in the field of path planning for mobile
robots. Its comprehensive analysis, insights, and future directions provide a foundation
for informed decision-making and further research in this important area.
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