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Abstract. Image fuzzy enhancement is a research hotspot in the field of image process-
ing, which aims to recover enhanced beginning clear images from degraded images. Based
on the research of traditional particle swarm optimization algorithm and fuzzy enhance-
ment algorithm, an image fuzzy enhancement method based on membrane computing
particle swarm algorithm is proposed. Firstly, in order to make full use of the sparse
characteristics of the clear image, the coefficient decomposition under wavelet domain
and tightly supported wavelet domain is performed on the image respectively. Then, a
joint optimisation model is constructed using L1 parametric constraints to achieve pretzel
noise cancellation. Next, the MMH-PSO algorithm is designed by improving the particle
swarm algorithm using membrane computing and Metropolis-Hastings sampling. Based
on the simulated annealing algorithm temperature drop process, Metropolis-Hastings sam-
pling is used to add randomness to the particle swarm algorithm so that it has the ability
to jump out of the local optimum. The use of membrane computing enhances the par-
allelism of the particle swarm algorithm and can reduce the time complexity in solving
complex problems. Finally, MMH-PSO is used to simultaneously search out the magni-
tude of the two fuzzy parameters in the traditional fuzzy enhancement algorithm in order
to improve the accuracy of the algorithm. The experimental results show that the pro-
posed algorithm has better SSIM values than the traditional fuzzy enhancement algorithm,
which effectively improves the image quality and makes the image edge information more
abundant.
Keywords: Image enhancement; particle swarm algorithm; membrane computing; sim-
ulated annealing algorithm; pretzel noise
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1. Introduction. In practice, in many cases, due to the ambient light, image sensor
quality and other factors, the captured image may suffer from a certain degree of blurry,
which affects the clarity and detail of the image, or in more serious cases, may even lead
to the loss of image information [1,2]. In such cases, fuzzy enhancement can be used to
improve the quality of the image and is also of high research interest.

In the field of aviation, the clarity and detail of the image presentation is crucial. For
example, for aerial imagery, if the outline of the target object can be well recovered [3,4],
this is important for developing safe flight routes and for performing algorithms such as
target tracking and identification. In medical production, accurate display and analysis of
information such as lesion areas, blood vessels, and organ edges requires adequate image
clarity and detail presentation. Therefore, image fuzzy enhancement techniques can be
applied to medical imaging [5,6], such as the enhancement and analysis of X-ray, CT
and MRI images, to improve the precision and accuracy of doctors’ diagnosis of medical
conditions.

Image fuzzy enhancement techniques can effectively improve the clarity and detail in-
formation of an image, enhancing the quality and viewing experience of the image. For
domain-specific image recognition tasks, such as medical imaging [7,8], military target
recognition [9], etc. Fuzzy enhancement techniques can improve recognition efficiency
and reduce labour costs and false positive rates while ensuring recognition accuracy. As
an important part of image processing technology, image fuzzy enhancement technology
can promote the development of artificial intelligence technology [10,11], such as image
recognition, target tracking and autonomous driving.

Image fuzzy enhancement is one of the fundamental and core technologies in the field
of image processing, and it has important applications and research value in many fields.
Although many fuzzy enhancement techniques have emerged, the challenges they face are
still relatively serious. With the continuous development of image processing technology,
image fuzzy enhancement technology will also be continuously improved in the follow-
ing aspects [12]: (1) improving clarity and detail presentation; (2) improving computing
efficiency and practicality; (3) enhancing edge retention capability; and (4) realising adap-
tive processing. In the practical application scenario of fuzzy enhancement technology,
the computational efficiency and practicality of the algorithm are very important factors.
Therefore, in this work, by improving the algorithm framework and optimising the al-
gorithm design, the computational speed and accuracy of the algorithm are improved to
make the technology more practical in practical applications.

1.1. Related Work. In the research process of image fuzzy enhancement techniques,
many fuzzy enhancement techniques based on different algorithm implementations have
emerged, and the common techniques include: (1) fuzzy enhancement techniques based on
air-domain filtering [13]; (2) fuzzy enhancement techniques based on frequency-domain
filtering [14]; (3) fuzzy enhancement techniques based on deep learning [15]; (4) fuzzy
enhancement techniques based on (4) image enhancement methods based on optimization
theory methods [16].

In contrast to other image enhancement methods, methods based on optimisation the-
ory can optimise the image enhancement process in an adaptive or automated manner and
retain the maximum amount of original image features and details. Specifically, optimi-
sation algorithms can improve image quality by adjusting the values of parameters in the
enhancement process according to their chosen objective function (e.g. image sharpness,
contrast or colour saturation). In addition, these methods can be optimised for different
image types and noise models, making them highly applicable and flexible.
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Optimisation-based methods are also highly efficient, accurate and easy to automate,
making them advantageous in large-scale image processing. As the specific application
goals and objectives of image enhancement differ for different operation objects, the meth-
ods used in the actual image enhancement process are also somewhat different, so in some
applications the best enhancement effect needs to be achieved by adding optimisation al-
gorithms to optimise the relevant functions.

Image enhancement methods based on optimisation theory mainly include the follow-
ing types of algorithms [17,18]: genetic algorithms, particle swarm optimization (PSO)
algorithms, ant colony algorithms, artificial immune algorithms, simulated annealing al-
gorithms, etc.

Genetic algorithms use the principles of inheritance and variation in the natural evo-
lutionary process to perform search and optimisation. For the image enhancement prob-
lem, the image can be treated as an individual, and new individual can be generated
through crossover and mutation operations, and the performance of the individuals can
be evaluated through the fitness function. Deng et al. [19] proposed an indirect image
enhancement method based on genetic algorithm, which indirectly transforms image en-
hancement into a problem of image model parameter optimization to achieve adaptive
image enhancement. Anaraki et al. [20] proposed an image enhancement method based
on genetic algorithm and neural network theory, which can automatically search for the
optimal grayscale domain value of an image to achieve adaptive image enhancement.

Particle swarm algorithms are based on the iterative movement of a large number
of small particles in a search space to find the global optimal solution. Compared with
genetic algorithm, particle swarm optimization algorithm is faster in calculation and more
stable and reliable in image enhancement results. Wan et al. [21] and others put forward
an image adaptive enhancement method based on particle swarm optimization algorithm,
which can automatically obtain the parameter value of the best gray scale transformation
in the beta function and realize the adaptive enhancement of the image. Zhou et al. [22]
and others proposed to use particle swarm optimization algorithm to find the adaptive
threshold value of the image under the maximum entropy standard, so that the image
can be stretched adaptively and the image can be enhanced adaptively.

Through the above analysis, the current research on image enhancement using particle
swarm optimisation algorithms, although effective in improving the contrast and detail
information of the image itself, does not take into account some of the shortcomings
that exist in traditional particle swarm optimisation algorithms. Moreover, the image
degradation caused by pretzel noise is not considered in the process of image enhancement.

1.2. Motivation and contribution. Membrane computing, also known as P-systems
[23], is a computational model abstracted from the structure and function of biological
cells, biological tissues, and biological organs with ideal distributed, parallel and non-
deterministic characteristics [24].

The combination of membrane computing theory and particle swarm can address some
of the shortcomings of traditional particle swarm optimization algorithms to a certain
extent. For example, Li et al. [25] proposed a cloud computing method based on particle
swarm algorithm and membrane computing theory. The particles within the main mem-
brane perform refined local optimisation search, while the particles within the reference
membrane perform global search. Existing algorithms combining membrane computing
with particle swarm use a single intra-membrane particle swarm algorithm, resulting in a
search mechanism that is still lacking in stochasticity, thus necessitating further research
into new combined algorithms with stronger integrated search capability.

The main innovations and contributions of this work include:
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(1) Pepper noise is an important factor in image degradation. If these degradation
factors are not dealt with properly, the image quality will deteriorate dramatically. Due
to the unique impulsive nature of pepper noise, conventional filter methods do not achieve
good denoising results. Therefore, this work decomposes the coefficients in the wavelet
domain and the tightly supported wavelet domain of the image separately. Then, a joint
optimisation model is constructed using the L1 parametric constraint to achieve pepper
noise cancellation.

(2) To address the problem that the particle swarm algorithm is prone to fall into local
extrema and converge slowly at a later stage, the MMH-PSO algorithm is designed by
using membrane computing and Metropolis-Hastings sampling to improve the particle
swarm algorithm, which consists of two specific aspects: first, based on the simulated
annealing algorithm [26] temperature drop process, Metropolis- Hastings sampling was
used to add randomness to the particle swarm algorithm, giving it the ability to jump out
of the local optimum. Secondly, the use of membrane computing enhances the parallelism
of the particle swarm algorithm and can reduce the time complexity when solving complex
problems.

(3) The proposed MMH-PSO algorithm is used to simultaneously search out the mag-
nitude of two fuzzy parameters in the conventional fuzzy enhancement algorithm in order
to improve the accuracy of the fuzzy enhancement algorithm.

2. Salt noise cancellation.

2.1. Image noise. Noise is an unpredictable, random signal that can be understood as
a factor that prevents the human sensory organs from understanding the information
received from the source. Images are often inevitably affected by noise in the acquisition
process, either due to the external environment or to improper personal handling.

As there are various sources of noise, there are different types of noise, such as Gaussian
noise, Rayleigh noise, impulse noise and so on. This paper focuses on the most common
Gaussian noise as well as pretzel noise for processing and analysis. Gaussian noise, also
known as normal noise, has a probability density function that follows a normal distribu-
tion. Gaussian noise in images is mainly due to sensor noise caused by poor lighting or
high temperatures during information acquisition. For the elimination of Gaussian noise,
filtering is often used for processing.

The unique impulsive nature of pepper noise [27], a type of impulsive noise, causes
great difficulties in image enhancement. Pepper noise is mainly caused by sensor defects,
channel transmission errors, suboptimal transmission media and hardware storage errors.
The methods traditionally used to deal with Gaussian noise are no longer effective in
dealing with pretzel noise. Image pixels corrupted by pretzel noise can be represented as.

y(i) =

 nmin, p/2
nmax, p/2
x(i), 1− p

(1)

where p denotes the noise level, ηmin and ηmax denote the minimum and maximum value
in the dynamic range of the image, respectively [27]. For example, for a grey-scale image
their values are 0 and 255 respectively.

2.2. Sparse representation of images. The sparse nature of images has become a hot
topic of research in the field of image restoration. Images have a sparse representation in
some transform domain. Therefore, this work decomposes the coefficients of the image
in the wavelet domain and in the tightly supported wavelet domain, respectively. Then,
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a joint optimisation model is constructed using the L1 parametric constraint to achieve
pretzel noise cancellation.

(1) Sparse representation of images in the wavelet domain.
As a successor to the Fourier transform, the wavelet transform is a good reflection of the

localisation characteristics in the time and frequency domain. By replacing the infinitely
long trigonometric basis of the Fourier transform with a finite length wavelet basis, the
wavelet transform is not only able to capture frequency but also to localise to time, while
this basis function is scalable and translatable. The wavelet transform of the signal x(t)
can be expressed as

WTx(a, b) =
1√
a

∫
x(t)ψ∗(

t− b

a
)dt (2)

where ∗ denotes the conjugate complex, a denotes the scale factor, b denotes the dis-
placement factor, and ψ(t) denotes the basic wavelet function or the mother wavelet
function. ∫ ∞

−∞
ψ(t)dt = 0 (3)

We can observe that the wavelet transform is based on a function of scale and displace-
ment, where the scale factor has a greater influence. The inverse transform of the wavelet
transform is defined as

x(t) =
C√
a

∫ ∞

−∞

∫ ∞

−∞
WTx(a, b)ψ̃(

t− b

a
)db

da

a2
(4)

where ψ̃ denotes the pairwise function of ψ and C denotes a permissible constant.
We use the matrix w to denote the wavelet decomposition and wT to denote the

wavelet reconstruction. Thus, the wavelet coefficients of the image can then be denoted
as αx = WX. The reconstruction of the image can be denoted as x = WTαx. A
representation of the image degradation model is shown as follow:

y = HWTαx (5)

(2) Sparse representation of images under tightly supported wavelet domains.
A wavelet transform system is a transform system consisting of orthogonal bases,

whereas a tightly supported wavelet transform system is a transform system consist-
ing of non-orthogonal bases. Compared to the wavelet transform, the tightly supported
wavelet transform sacrifices regularisation and linear independence for better smoothing
properties, tight support and symmetry.

Tightly supported wavelet transform systems usually consist of two parts, the scale
function and the tightly supported wavelet function.

ϕ(t) =
√
2
∑
k

h(k)ϕ(2t− k) (6)

ψl (t) =
√
2
∑
k

h (k)ϕ (2t− k) , l = 1, 2, · · · , r (7)

where h(t) is a custom function, ϕ(t) is a scale function and ψ(t) is a tightly supported
wavelet function.

For an arbitrary function f that is squarely integrable, the multiscale representation is
shown as follows:

f =
∞∑

k=−∞

ckϕk (t) +
r∑

l=1

∞∑
j=0

∞∑
k=−∞

dk,j,lψk,j,l (8)
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where ck is the low-pass tightly supported wavelet coefficients and dj,k,l is the high-pass
tightly supported wavelet coefficients.

In this work, the segmented linear tight support wavelet vector h is defined as shown
below:

h0 =
1

4
[1, 2, 1];h1 =

√
2

4
[1, 0,−1];h2 =

1

4
[−1, 2,−1] (9)

Similarly, we use the matrix w to denote the tightly supported wavelet decomposition
and wT to denote the tightly supported wavelet reconstruction. Thus, the image decom-
position and reconstruction in the tightly supported wavelet domain can be expressed as:
αx = WX and x = WTαx, respectively. The image degradation model can be rewritten
as

y = HWTαx + n (10)

where n denotes pretzel noise and H denotes the degeneracy function.
To further compare the differences between the two transform basis functions, we per-

formed wavelet decomposition and tight support wavelet decomposition on the Lena image
respectively. The decomposed coefficients are shown in Figure 1 below.

(a) Sorted tightly supported wavelet coeffi-
cients

(b) Sorted wavelet coefficients

Figure 1. Comparison of coefficient sparsity after wavelet decomposition

It is observed that the coefficients after tightly supported wavelet decomposition have
better sparse characteristics compared to those after wavelet decomposition. Therefore,
this work uses a method based on tightly supported wavelet decomposition to obtain
better fuzzyred image enhancement. It can be seen that αx has sparse properties, while
the pepper noise n itself also has sparse properties. In order to make full use of the sparse
property of the degenerate function, we transform the degenerate function model into a
degenerate matrix consisting of zeros and ones. Then, a joint optimisation equation is
specially constructed to achieve pepper noise cancellation while obtaining an estimate of
the clear image.

minimize
ax,H,n

∥αx∥1 + λ11∥H∥1 + λ2∥n∥1
subject to

∥∥y −H
(
WTαx

)
− n

∥∥2

2
≤ ε

(11)

where ε ¡ 0 is an infinitely small constant.

3. Image fuzzy enhancement based on membrane computing particle swarm
algorithm.
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3.1. Particle swarm algorithms. The earliest particle swarm algorithm is a bionic
mathematical model that simulates the activity of a flock of birds [28]. A vector (Xi, Vi, Pi)
is used to represent the state of existence of each bird in an n-dimensional space. Each
bird is viewed as a particle and the activity of the flock is abstracted into a particle swarm
optimization model.

The global optimal position that each bird of the entire flock will find over the course
of successive iterations. For the problem of solving the minimum of the objective function
f(Xi), the model for particle swarm optimisation is shown below:

Pi(t+ 1) =

{
Xi(t+ 1) f (Xi(t+ 1) < f (Pi(t))
Pi(t) f (Xi(t+ 1) ≥ f (Pi(t))

(12)

where Pi(t) denotes the historical optimal position of the i-th individual particle in
generation t and Xi denotes the position of the i-th individual particle.

The global optimal position of the particle corresponding to each bird in the flock is
shown as follow:

Pg(t) = min{P1(t), P2(t), . . . , PN(t)} (13)

The velocity update method and the position update method for the ith individual
particle, which are shown as follow:

vid(t+ 1) = vid(t) + c1r1[pid(t)−Xid(t)] + c2r2[pgd −Xid(t)] (14)

xid(t+ 1) = xid(t) + vid(t+ 1) (15)

where vid(t+1) denotes the velocity of the i-th individual particle in dimension d, Xid(t)
denotes the position of the i-th individual particle in dimension d, r denotes the random
number, c denotes the acceleration constant, pid denotes the position of the individual
optimal particle, and pgd denotes the position of the global optimal particle.

3.2. Membrane calculation principles. The three membrane structures for membrane
calculations are shown in Figure 2.

(a) Nested structure (b) Monolayer structure (c) Hybrid structure

Figure 2. Diagram of the three membrane structures

The objects of membrane calculation theory are denoted by letters.∏
= (V, T, C, µ, ω1, · · · , ωm, (R1, ρ1), · · · , (Rm, ρm), i0) (16)

where V is the representation character, T is the output character, C is the catalyst,
µ is a membrane structure with m membranes, ω is the multiset of elements inside space
i, R is the evolutionary mode, ρ is the order of execution of the evolution, and i0 is the
external space of the system.

The P system consists of four membranes: the surface membrane 1, the basic membrane
3, the basic membrane 4 and membrane 2. Each membrane encloses a different space and
the elements corresponding to the way they evolve exist within the corresponding space.
By having a computer-like computing style, the P-system is extremely parallel, distributed
and non-deterministic.
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3.3. Design of the proposed MMH-PSO algorithm. By simulating the temperature
descent process of the annealing algorithm, this paper uses the number of iterations of
the particle swarm algorithm to design the acceptance probability of Metropolis-Hastings.
The probability is used to determine whether to accept the individual optimal position and
the global optimal position generated by a new iteration, thus adding randomness to the
particle swarm algorithm. The use of Metropolis-Hastings sampling to add randomness
to the particle swarm algorithm enhances the ability of the particle swarm algorithm to
obtain a globally optimal solution.

The main idea of this work is to combine the Metropolis-Hastings sampling in the simu-
lated annealing algorithm with the PSO algorithm. The acceptance rules for Metropolis-
Hastings sampling in the simulated annealing algorithm are based on temperature to
design the acceptance probabilities. However, this paper does not have the concept of
temperature and therefore the Metropolis-Hastings acceptance probability needs to be re-
designed. Considering that the acceptance probability will become smaller as the number
of iterations increases, the number of iterations n is used as one of the indicators for the
new probability. The new Metropolis-Hastings sampling probability is also designed based
on the iteration formula for temperature in the simulated annealing algorithm, which is
shown as follows:

∆C ′ = C(S ′)− C(S) (17)

p =

{
1 ∆c′ ≤ 0
e(−∆c′n/k) ∆c′ > 0

(18)

where S denotes the optimal state generated in the previous step, S ′ denotes the optimal
state generated in the current iteration step, C denotes the fitness function, whose smaller
value indicates better results, ∆C ′ denotes the difference between the current fitness value
and the previous step, n denotes the number of iterations, and k denotes a constant to
be determined experimentally.

Set k to 100 based on the setting of the constants in the simulated degradation algo-
rithm. When ∆c′ is less than 0, the probability p is 1 and at this time, the individual
optimal position and the global optimal position generated by a new round of iteration
can be received.

By adding the Metropolis-Hastings sampling of the simulated annealing algorithm to
the PSO algorithm, the problem that PSO tends to fall into local optimum solutions is
effectively solved. However, the addition of Metropolis-Hastings sampling leads to an
increase in the time complexity of the PSO algorithm, while the larger data volume of
the pixel points of the image is time demanding. Therefore the idea of adding a single-
cell P-system to the above improvements. the greatest advantage of the P-system is the
parallelism, which can increase the computational efficiency.

Therefore, the inclusion of membrane computing can help the PSO algorithm to achieve
parallel computing and can effectively reduce the time complexity of the PSO algorithm.
This work introduces the Metropolis-Hastings sampling PSO algorithm into the evolu-
tionary mechanism of membrane computing to evolve membrane objects, thus realising
the MMH-PSO algorithm. The communication rules in membrane computing are also
used to facilitate co-evolution between membranes.

The membrane structure is designed according to a tissue-like membrane system, where
different membranes can communicate with each other in the same direction or in the
opposite direction. The environment is the output cell, and the initial state is empty.
In the process of evolution, the optimal object enters the environment, which in turn
transmits the optimal object to the individual base membranes, helping them to complete
their evolution. The membrane structure is shown in Figure 3.
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...

0

1 2 m-1

w1 w2 wm-1

wm

m

Figure 3. MMH-PSO algorithm for membrane structure

Typically, a tissue-like membrane system of degree m ≥ 1 is represented as shown
below: ∏

= (w1, . . . , wm, R1, . . . , Rm−1, Rm, R
n, i0) (19)

where wm denotes the initial object in the basic membrane labelled m, Rm denotes the
rule in membrane m and i0 denotes the final result of the optimal particle output from
membrane m into the environment after the conditions have been met.

The tissue-like membrane system contains a total of two types of objects: one is the
particle object; the other is the fitness value object PBEST and GBEST. PBEST is the
fitness value of the particle at the beginning and is the same as the number of particle
objects; GBEST is the largest PBEST in the basic membrane and there is one and only
one. The fitness rule is the transformation of particle objects into fitness objects. When
the fitness object has executed the fitness rule, it transfers the GBEST object and its
corresponding particle object to the membrane m. The GBEST object is the optimal
fitness value and the particle object is the most eligible input.

3.4. MMH-PSO-based image fuzzy enhancement algorithm. This work combines
the MMH-PSO algorithm with the traditional fuzzy enhancement algorithm and is able to
automatically find the optimal values of the fuzzy parameters Fp, Fe by setting an effective
target fitness function and objective function constraints to determine the enhanced image
with the maximum fuzzy sharpness function H(P ).
The MMH-PSO based image fuzzy enhancement algorithm adaptively searches for two

fuzzy parameter values, effectively improving the visual effect of the original image, and
its execution steps are shown below:

Step 1: Let the number of particles in the population be N and the search space be D-
dimensional. Randomly initialize each particle in the population with its own parameters.

Step 2: Determine if the end condition is met. If it does, go to Step 9, if not, continue
to Step 3.

Step 3: Update the position vector and velocity vector equations for each particle.
The velocity and position are updated at each iteration of the algorithm until the end
condition is met or the optimal solution is obtained.

Step 4: Determine the size of the two fuzzy parameters Fp and Fe, and use the fuzzy
feature function Pu,v to extract the image fuzzy features and generate the fuzzy feature
plane P .

Pu,v = F (u, v) = [1 +
(xmax − xu,v)

Fp

]Fe (20)
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where xmax is the maximum grey value of the image and xu,v is a grey value of the
pixel at point (u, v). The fuzzy feature function Pµ,ν is mainly used to represent the
subordinate level of the maximum grey value of the pixel at point (u, v).
Step 5: Calculate the fitness value of each particle in MMH-PSO and determine the

candidate locations (solutions). In order to quantitatively determine the quality of the
enhanced image, the fuzzy sharpness function H(P ) is used in the MMH-PSO algorithm
to evaluate the quality of the image enhancement. H(P ) is used as the fitness function,
i.e., the objective function. The optimal fuzzy parameters Fp, Fe are determined by
finding their maximum values.

H(P ) = lg[(Sd(i) + 0.1 · Fjd(i)/Fcs(i)) ·Gl(i) · E(i)] (21)

where Sd(i) is the standard deviation of the fuzzy enhanced image, Fjd(i) is the fuzzy
feature definition of the fuzzy feature plane, Fcs(i) is the fuzzy compactly supported
feature plane of the fuzzy enhanced image, GI(i) is the entropy of the fuzzy enhanced
image, and E(i) is the Entropy value of the fuzzy enhanced image.
Step 6: Count the number of particles on either side of the global optimal solution at

this moment.
Step 7: Determine if the particle needs to select a new unsearched space to continue

the search, if so go directly to Step 2.
Step 8: Feature reduction is performed on the new fuzzy feature plane P ′ using the

inverse transform of Equation (20) to obtain the enhanced image F (u, v).
Step 9: Output the enhanced image and the program ends.

4. Experimental results and analysis.

4.1. Verification of the MMH-PSO algorithm. To verify the performance of the
proposed MMH-PSO algorithm for finding the best performance, four standard test func-
tions were selected for the finding experiments and compared with the standard PSO,
MPSO [30] and EPSO [31].

(1) Sphere function.

f1(x) =
n∑

i=1

x2i , − 100 ≤ xi ≤ 100, min f1(x) = f1(0, 0, · · · , 0) = 0 (22)

(2) Rosenbrock function.

f2(x) =
n−1∑
i=1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)2

]
, − 200 ≤ xi ≤ 200, min f2(x) = f2(1, 1, · · · , 1) = 0

(23)
(3) Griewank function.

f3(x) =
1

4000

n∑
i=1

x2i −
n∏

i=1

cos
xi√
i
+ 1, − 600 ≤ xi ≤ 600, min f3(x) = f3(0, 0, · · · , 0) = 0

(24)
(4) Schaffer function.

f4(x, y) = 0.5− sin2
√
x2 + y2 − 0.5

(1 + 0.001 (x2 + y2))2
, − 10 ≤ x, y ≤ 10, minf4(x, y) = f4(0, 0) = 1

(25)
The geometric curve characteristics of the four functions are shown in Figure 4.
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(a) Sphere function (b) Rosenbrock function

(c) Griewank function (d) Schaffer function

Figure 4. Geometric curve properties of 4 functions

Table 1. Optimisation results of the four algorithms.

Algorithms
Assessment
indicators

Sphere Rosenbrock Griewank Schaffer

PSO
Average 4.0Ö10-15 1.3Ö10-6 1.3Ö10-7 2.8Ö10-16
Standard
deviation

2.5Ö10-15 1.5Ö10-6 3.2Ö10-7 2.5Ö10-16

Time/s 0.81 0.15 0.70 0.19

MPSO
Average 8.7Ö10-8 0.1Ö10-1 3.1Ö10-8 0.8Ö10-2
Standard
deviation

1.7Ö10-7 0.9Ö10-2 3.6Ö10-8 0.5Ö10-2

Time/s 10.26 11.20 11.01 0.78

EPSO
Average 2.9Ö10-35 1.9Ö10-5 2.8Ö10-28 1.1Ö10-3
Standard
deviation

9.3Ö10-35 4.8Ö10-5 3.5Ö10-28 2.2Ö10-3

Time/s 12.88 11.52 11.06 0.96

MMH-PSO
Average 0 0 3.1Ö10-30 0
Standard
deviation

0 0 5.5Ö10-30 0

Time/s 2.16 2.21 2.41 0.46

The number of particles within each fundamental membrane in the MMH-PSO algo-
rithm is 8 and the overall number of particles is 48. The acceleration constants are all
1.49, the sizes of the populations are all 100 and the number of iterations is 200.
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The average optimisation results of the four algorithms run 10 times are shown in Table
1. The MMH-PSO algorithm has the highest overall optimisation accuracy as seen by the
results of the test function. From the standard deviation, the MMH-PSO algorithm has
less volatility. In terms of running time, the MMH-PSO algorithm is slightly inferior to the
standard PSO algorithm, but significantly better than the MPSO algorithm and EPSO
algorithm. The MMH-PSO algorithm outperforms the other three algorithms in terms of
the algorithm’s search accuracy, search speed and robustness, and thus the MMH-PSO
algorithm is adapted to solve a wider range of optimisation problems.

4.2. Experimental results for the pretzel noise scene. Finally, the degraded image
due to pepper noise is simulated. When the noise contamination reaches 70%, a com-
parison of the results of conventional grayscale transformation, fuzzy enhancement, PSO
fuzzy enhancement [32] and MMH-PSO fuzzy enhancement is shown in Figure 5.

It can be seen that the MMH-PSO fuzzy enhancement algorithm does not have any
significant noise residue in the enhancement of the Lena image. The MMH-PSO fuzzy
enhancement algorithm reveals the foreground details to a large extent. However, in the
other figures only the face and hat outline can be faintly seen. A comparison of the SSIM
of each algorithm under different levels of noise pollution is shown in Figure 6.

It can be seen that the MMH-PSO fuzzy enhancement algorithm has the best ob-
jective performance metrics, fully validating its superior performance, in line with the
above findings. While the SSIM metrics of the other algorithms drop rapidly when the
noise level increases, the SSIM values of the MMH-PSO fuzzy enhancement algorithm are
consistently very, very high and close to 1.

5. Conclusion. Due to the unique impulsive nature of the pepper noise, conventional
filter methods do not achieve good denoising results. Therefore, this work decomposes
the coefficients in the wavelet domain and the tightly supported wavelet domain for the
image separately. Then, a joint optimisation model is constructed using the L1 para-
metric constraint to achieve pepper noise cancellation. To address the problem that the
particle swarm algorithm is prone to fall into local extrema and converge slowly in the
later stage, the MMH-PSO algorithm is designed by improving the particle swarm al-
gorithm using membrane computing and Metropolis-Hastings sampling, which contains
two specific aspects: firstly, based on the simulated annealing algorithm temperature drop
process, Metropolis-Hastings sampling is used as Firstly, based on the simulated annealing
algorithm temperature drop process, Metropolis-Hastings sampling is used to provide the
particle swarm algorithm with the ability to jump out of the local optimum. Secondly,
the use of membrane computing enhances the parallelism of the swarm algorithm and
can reduce the time complexity in solving complex problems. The proposed MMH-PSO
algorithm is used to simultaneously search out the magnitude of the two fuzzy parameters
in the traditional fuzzy enhancement algorithm in order to improve the accuracy of the
fuzzy enhancement algorithm. Simulation experimental results verify the effectiveness of
the proposed method. The current research object of this paper on image enhancement
processing is two-dimensional images, and the next step is to try to apply the proposed
MMH-PSO kind of algorithm to the field of three-dimensional image or video processing.
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(a) Original image (b) 70% pretzel noise image

(c) Conventional grayscale transformation (d) Fuzzy enhancement

(e) PSO fuzzy enhancement (f) MMH-PSO fuzzy enhancement

Figure 5. Enhancement of Lena images under the influence of pretzel noise
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Figure 6. Comparison of the SSIM of each algorithm for different levels of noise
pollution
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