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Abstract. By fusing multi-source remote sensing images, higher spatial resolution and
richer detail information can be obtained to better serve the fields of environmental moni-
toring, crop estimation, and urban planning. In order to effectively improve the quality of
low-resolution multispectral remote sensing images, this work proposes a remote sensing
image fusion method based on improved super-resolution convolutional neural network.
Firstly, the characteristics of super-resolution technique and convolutional neural network
are investigated, and a novel three-layer convolutional neural network, SRCNN, is intro-
duced. Then, the multispectral image is divided into four different channels for processing,
and all the four different channel images are fed into the SRCNN for the enhancement of
high-frequency detail information. The predicted multispectral and panchromatic images
are sparsely represented before fusion. Secondly, the weights of SRCNN are generally
initialised using two methods, namely Gaussian distribution as well as encoder assign-
ment. However, these two algorithms have uncertainties that affect the reconstruction
accuracy of the images. Therefore, the PSO algorithm is used to optimise the SRCNN
weights, thus improving the resolution reconstruction accuracy. Finally, multiple sets of
images from different areas of Landsat satellite data are used for simulation by both sub-
jective and objective evaluation metrics. The experimental results show that the proposed
methods all better maintain the rich information of remote sensing images and achieve
better fusion results. The indicators such as source entropy, correlation coefficient, av-
erage absolute error and mean square error of the fused images are improved after the
introduction of PSO algorithm.
Keywords: remote sensing images; image fusion; convolutional neural net; low resolu-
tion images; PSO

1. Introduction. Remote sensing satellites are artificial satellites that allow remote sens-
ing in outer space and continuous observation of the corresponding areas of the earth’s
surface on demand. Currently, remote sensing technology is widely used in various fields.
Remote sensing data acquired by various sensors can be converted into visible images by
simulating human visual system techniques [1,2].

The update and development of remote sensing technology bring us more and more
remote sensing information data. Compared with single-source remote sensing images,
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multi-source remote sensing image data can provide more data information [3,4], and
there are complementary relationships and information redundancy between data. Re-
mote sensing image data can provide more data information, and there are complementary
relationships and information redundancy between data. Redundant information is the
same description of the same area or carrying the same information. The system often
exists for the same region of the repetition of data information, these data, although dif-
ferent forms of expression, but can be mapped to the data space through some kind of
transformation [5,6]. The judicious use of redundant information can improve recognition
rates and accuracy, and reduce the impact of noise and incomplete information. Comple-
mentary information can also be data information given by multiple sensors for the same
specific area, and the information data provided by different sensors that are independent
of each other have a complementary nature between the amount of data [7,8]. Currently,
the development of image fusion techniques for remote sensing images has the following
two main research focuses: selecting a particular region for the application of image fusion
and image fusion for the image as a whole for the purpose of optimisation.

Remote sensing image fusion refers to the fusion of multiple remote sensing images from
different sensors or different wavelength bands into a single image with richer and more
comprehensive integrated information [9,10]. Enhancement of image details and spatial
resolution: by fusing multi-source remote sensing images, higher spatial resolution and
richer detail information can be obtained, which improves the quality and usability of the
images. Fusing multi-scale and multi-band remote sensing images can provide more com-
prehensive feature information, making feature classification and target detection more
accurate and reliable. Remote sensing image fusion can reduce the variability between re-
mote sensing data acquired by different sensors and at different times, improve the spatial
and temporal consistency of the data, and facilitate the analysis and comparison of the
data. Remote sensing image fusion is a research hotspot that constantly drives the devel-
opment of remote sensing technology [11]. The development of new fusion algorithms and
methods can expand the application areas of remote sensing image processing and provide
more possibilities for research in the fields of environment, agriculture and meteorology
[12].

If a single sensor is used, the remote sensing image obtained may have defects such
as blurred data or invisibility, but if different types of sensors are used for image fusion
processing, the problem of unclear or invisibility in a single sensor can be significantly
improved [13]. If the same type of sensors are used for fusion, the obtained image will
get more obvious feature enhancement. Therefore, image fusion can significantly improve
the readability of the image, and at the same time, it can enable a single image sensor to
obtain richer and more diversified data information.

Any sensor has its advantages and disadvantages. Multi-spectral sensors may have
cloud cover that prevents them from obtaining a complete image of the ground, leading
to inaccurate interpretation of shadows in the ground image. Therefore, the fusion of
image information from multiple types of sensors to a specific region can complement the
lack of information from a single sensor to improve the completeness of the information.

The research significance of remote sensing image fusion is mainly in terms of improv-
ing image quality and comprehensiveness of information, improving feature classification
and target detection, supporting remote sensing monitoring and resource management,
enhancing spatial and temporal consistency of data, and promoting the development of
remote sensing technology.

1.1. Related Work. Currently, the remote sensing image data used for fusion mainly
come from different types of sensors. In the application of remote sensing image fusion,
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low resolution multispectral images and high spatial resolution panchromatic images are
used, which currently have the following drawbacks [14]: high-resolution images have more
image details but poor spectral information, while multispectral images have sufficient
spectral information but lower resolution. If we want to get both good spectral quality
and high resolution, we need to improve the image fusion algorithm.

Image fusion technology is an emerging means of integrated information data processing
in recent years, originally developed in the field of computer vision. Image fusion as an
automatic information data integration processing means, can make full use of information
from different data sources to complement each other and take advantage of the rapid
processing speed of the computer. Through the fusion algorithm processing power and
computer processing performance to improve the image quality to get more rich and
multi-faceted data information, improve the reliability and stability of information. At
present, image fusion methods are mainly divided into three categories:

(1) Spatial transform based image fusion methods. These methods are based on math-
ematical transforms or representations of transform domains, such as wavelet transforms,
multiresolution analysis, etc. By transforming multiple images and fusing their low-
frequency and high-frequency information appropriately, a clearer and more comprehen-
sive image can be obtained. Common methods include wavelet transform fusion, singular
value decomposition fusion, etc. Wan et al. [15] proposed a remote sensing image fusion
method based on bootstrap filter and non-downsampled shear transform. By introducing
a bootstrap filter to preserve image details and combining the non-downsampled shear
transform for feature extraction, a high-quality remote sensing image fusion method is
achieved. Wu et al. [16] proposed a remote sensing image fusion method based on
the curvilinear wavelet transform and principal component analysis. By applying the
curvilinear transform for decomposition and reconstruction, and combining with princi-
pal component analysis for feature fusion, the enhancement and information extraction of
remote sensing images are achieved. However, after the spatial transformation, the edge
parts in the image may have overlapping or artefact problems. This is due to the fact
that the position of pixels may change during the transformation process, resulting in the
loss of information or aliasing in the edge region.

(2) Image fusion methods based on multiscale analysis. Yan and Li [17] provide a
comprehensive review of methods based on multiscale analysis in image fusion, includ-
ing strategies at three levels. For each level, the article introduces common multiscale
analysis algorithms and analyses their advantages and disadvantages. In addition, the
applicability of these methods in different application scenarios is discussed and future
research directions are proposed. However, in the process of multiscale analysis, image
information of different scales is extracted and fused, but some unavoidable information
loss or artefacts may be introduced in the fusion process. This may lead to the quality
degradation of the final fused image.

(3) Neural network based image fusion method. Sun et al. [18] proposed an exposure
fusion method based on deep unsupervised learning. By using extreme exposure image
pairs, the authors proposed a self-encoder network to learn a mapping for extracting
useful information from low- and high-exposure images, which produces better results in
the exposure fusion task. Sun et al. [19] introduced a Generative Adversarial Network
(GAN)-based fusion method for infrared and visible images. The authors proposed a mul-
tilevel GAN structure for generating fused images and introduced eye movement data for
training. Experiments demonstrate that the method produces clearer and more visually
perceptible results in infrared and visible light image fusion tasks.

Image super-resolution technology is also known as super-resolution image reconstruc-
tion. For the existing low-resolution images, the software algorithm can be used to obtain
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a better high-resolution image. Convolutional neural network has the characteristics of
displacement scaling and distortion invariance, which can better retain the spatial scale
information of the image. Remote sensing image fusion, on the other hand, requires the
extraction of features from multiple sources of image data, and then integrates a more
comprehensive, accurate, and reliable information description of a scene or target.

In 2015, Dong et al. [20] proposed a Super Resolution Convolutional Neural Networks
(SRCNN) based on deep learning framework. The SRCNN model is divided into three
levels according to the three steps of image extraction and mapping as well as high-
resolution image reconstruction. The SRCNN model can directly obtain the mapping cri-
terion between the high and low of the image, which exhibits high image super-resolution
performance.

1.2. Motivation and contribution. From the analysis above, it is clear that combin-
ing panchromatic and low-resolution multispectral images can preserve both the spatial
resolution and spectral information of the panchromatic images while producing high-
resolution multispectral images.

Therefore, in order to effectively improve the quality of low-resolution multispectral re-
mote sensing images, this work adopts SRCNN convolutional neural network with certain
prediction function under image super-resolution technique to process multispectral im-
ages and panchromatic images. The model of SRCNN convolutional neural network and
the algorithmic steps for remote sensing image fusion are described in detail. Experiments
are conducted on the proposed method and the corresponding experimental results are
given for comparison.

The main innovations and contributions of this work include:
(1) Image super-resolution processing of multispectral images is performed using SR-

CNN model, and the up-sampled multispectral images are divided into four channels to
be fed into SRCNN model respectively.

(2) The weights of SRCNN are generally initialised using two methods, i.e., Gaussian
distribution and encoder assignment, which are uncertain and have an impact on the
reconstruction accuracy of the image, but Particle Swarm Optimisation (PSO) algorithm
has a better convergence, which can be used to set up a better initial parameter of the
network, so in this paper, we use the PSO algorithm to optimise the initial weights of the
SRCNN, which in turn achieve the improve the resolution reconstruction accuracy.

(3) The images of the four channels obtained after processing and the panchromatic
image are sparsely represented with the overcomplete DCT dictionary. In accordance
with the sparse coefficient absolute value of the larger of the multi-spectral image of each
channel of the image and panchromatic image fusion, the fusion of the results of the
reconstruction to obtain the final fusion image.

2. Remote sensing image pre-processing.

2.1. Radiometric calibration. Sensor measurements do not coincide with physical
quantities such as the spectral reflectance or spectral radiant brightness of the target,
so there is a discrepancy between the visual measurements of the target and physical
quantities such as the spectral reflectance or spectral radiant brightness of the target
[21,22].

The purpose of radiometric correction is to eliminate various distortions in the image
data, thus radiometric correction lays the foundation for quantitative remote sensing in-
version. In quantitative remote sensing analyses, values such as radiance, reflectance and
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temperature are commonly used. These physical qualities are acquired by radiometric cal-
ibration, which is the transformation of voltage or digitally quantized quantities acquired
by sensors into absolute radiance.

Radiometric calibrations are divided into absolute and relative calibrations. Absolute
calibration is a quantitative relationship between the radiance value and the dimension-
less DN value. For general sensors, absolute calibration requires a linear relationship to
complete the conversion of the DN value to the radiant brightness value [23].

L = G ·DN + offset (1)

where G denotes the gain value and offset denotes the offset.
The newest of the U.S. Landsat satellite datasets is the Landsat 9 satellite [24,25].The

sensor types used in the Landsat 9 dataset are the Operational Land Imager 2 (OLI-2)
and the Thermal Infrared Sensor 2 (TIRS-2).The bands of the Landsat 9 situation is
shown in Table 1. In order to take advantage of the rich spectral information in the
Landsat 9 dataset, radiometric calibration is required. The DN values on the raw images
are converted to reflectance.

Table 1. Banding of Landsat 9

Band name Spectral range
Coastal/Aerosol 0.433-0.453 µm

Blue 0.450-0.515 µm
Green 25-0.600 µm
Red 0.630-0.680 µm

Near Infrared (NIR) 0.845-0.885 µm
Short-Wave Infrared 1 (SWIR 1) 1.560-1.660 µm
Short-Wave Infrared 2 (SWIR 2) 2.100-2.300 µm

Panchromatic 0.500-0.680 µm
Cirrus 1.360-1.390 µm

Thermal Infrared (TIRS) 1 10.60-11.19 µm
Thermal Infrared (TIRS) 2 11.50-12.51 µm

2.2. Geometric Correction of Remote Sensing Images. The geometric distortion
of remote sensing image data is related to the height, flight speed and rotation of the
sensor, etc., and geometric correction is a common method to correct the geometric dis-
tortion of remote sensing images [26]. Before the image is geometrically corrected, we first
find some typical features on the image as control points on the image, and then geomet-
rically transform the selected control points using certain mathematical transformation
relations. Among them, the selected control points need to be well distributed. In this
work, polynomial correction method is used to perform geometric correction.

Firstly, the relationship between the coordinates is established. Let (xi, yi) and (x′
i, y

′
i)

be the coordinates of the corresponding pixel points of the remote sensing image before
and after geometric correction, respectively.{

xi = fx(x
′
i, y

′
i)

yi = fy(x
′
i, y

′
i)

(2){
x′

i = Fx(xi, yi)
y′i = Fy(xi, yi)

(3)

where both the function f() and the function F() denote binary n-th degree polynomials
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Equation (2) is the indirect method while Equation (3) is the direct method. The
indirect correction method is to map each pixel point in the new image by the transform
function f() to find out the position of that pixel point in the original image and assign the
grey value of this pixel point to the corresponding pixel point in the new image [27,28].
The direct correction method is to obtain the position of the corresponding pixel point
in the new image for each pixel point in the original image by the mapping relation of
function F() and assign the grey value of this pixel point in the original image to the
corresponding pixel point in the new image.

Then, the boundary of the image needs to be determined. We use the method of
corresponding vertices to determine the boundary. Let the four vertices of the original
image be denoted as abcd, then the four vertices of the corrected image be denoted as
a′b′c′d′ . The schematic diagram of geometric correction of remote sensing image is shown
in Figure 1. 

x′
1 = max (x′a′, x′b′, x′c′, x′d′)

x′
2 = min (x′a′, x′b′, x′c′, x′d′)

y′1 = max (y′a′, y′b′, y′c′, y′d′)
y′2 = min (y′a′, y′b′, y′c′, y′d′)

(4)

x

y

a'a' b'

c'd'

(a) Image before geometric correction

x

y

a

c

b

d

(b) Image after geometric correction

Figure 1. Schematic diagram of geometric correction of remote sensing image

Finally, the width and height of the new image needs to be determined in order for
the boundary range of the image result to be transformed to the range required for
accuracy. The width and height of the original image and the centre coordinate point are
first determined, and then the width and height and centre point of the new image are
adjusted. {

row =
y′1−y′2
∆y

+ 1

col =
x′
1−x′

2

∆x
+ 1

(5)

Where row denotes the number of rows of the new image, col denotes the number of
columns of the new image, and ∆x denotes the precision factor.

3. Improved SRCNN.
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3.1. SRCNN model and its principles. The SRCNN model takes the relationship
between deep learning and traditional sparse coding as a basis for super-resolution re-
construction of images using a three-layer network. The entire network structure can be
viewed as three layers of feature extraction, nonlinear mapping, and high-resolution image
reconstruction.The structure of the SRCNN model is shown in Figure 2.

Figure 2. SRCNN model structure

Layer 1 network is used to extract and characterise the image blocks. Layer 1 network
can be represented as:

F1(Y ) = max (0,W1 ∗ Y +B1) (6)

where W1 denotes the filter, B1 denotes the bias, and ∗ denotes the convolution oper-
ation.

W1 contains n1 filters of size c× f1 × f1, c is the number of channels contained in the
image, and f1 is the filter null field size.

Layer 1 network extracts the n1 dimensional features of the image block while layer 2
network maps this n1 dimensional feature vector to n2 dimensional feature vector. Layer
2 network can be represented as:

F2(Y ) = max(0,W2 ∗ F1(Y ) +B2) (7)

where W2 contains n2 filters of size n1 × f2 × f2 and B2 denotes the n2-th dimensional
vector.

Conventional approaches are usually predefined fusion methods, e.g., dealing with over-
lapping regions by arithmetic averaging. However, SRCNN merges overlapping image
blocks using learning methods. A three-layer network is mainly used to complete the
process of image reconstruction. The third layer can be represented as:

F (Y ) = W3 ∗ F2(Y ) +B3 (8)

where W3 contains c filters of size n2 × f3 × f3 and B3 denotes a c-th dimensional vector.
SRCNN uses the mean square error as the loss function.

L(W,h) = 1/n
n∑

i=1

∥∥ F (Yi;W, b)−Xi

∥∥2
(9)

where n denotes the number of training samples, W denotes the weights, b is the bias
term, X is the real image and F (Y ) is the mapped image.

The minimum mean square error between the real image and the fused image results in
a high quality reconstructed image. SRCNN uses the standard gradient descent method
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to minimise the randomness of the loss function. Compared with traditional learning
algorithms, the SRCNN algorithm is able to automatically learn the hierarchical features,
which facilitates the reconstruction of the image to extract the features, and enriches the
edges of the reconstructed image with a good visual perception.

3.2. PSO-SRCNN model. The most commonly used methods of assigning or initialis-
ing the weights of Gaussian distributions are used to initialise the weights of the SRCNN
network, but they have a certain degree of unqualifiedness that weakens the reconstruc-
tion accuracy. If PSO is used to initialise the parameters, it may be possible to exploit its
search capability and convergence speed to achieve optimisation of the SRCNN network.
Therefore, in this work, the PSO algorithm is used to initialise the SRCNN weights.

As a heuristic global optimisation algorithm, the PSO algorithm can simulate the for-
aging behaviour of birds. The PSO algorithm is often used to find the optimal solution
during the training process of neural networks. Assuming that there are S particles
in M -dimensional space, the spatial position of the k-th particle can be expressed as
xk(xk1, xk2, ..., xkm), the flight speed as Vk = (Vk1, Vk2, ..., VkM), the best position in the
history of the flight route as Pk = (Pk1, Pk2, . . . , PkM), and the best position of the pop-
ulation as Pg = (Pg1, Pg2, . . . , PgM). For each generation the velocity and position of the
m-th dimensional (1 < m < M) particle are updated.

Vkm(l + 1) = ωVkm(t) + a1r1[pkm − xkm(t)] + a2r2[pgm − xkm(t)] (10)

xkm(m+ 1) = xkm(t) + Vkm(t+ 1) (11)

Where, t is the number of iterations, ω is the inertia weight, a is a constant called
acceleration factor, and r is a constant between [0, 1].
The flow of the proposed PSO-SRCNN model is as follows:
(1) The individual real images are cropped into sub-blocks of 32Ö32 size in the pre-

training stage and these sub-blocks are taken as input images. Afterwards, Gaussian
blurring is applied to the sampled images and combined with bicubic interpolation to
select the appropriate factor for enlargement, thus obtaining low-resolution image samples;

(2) Subblocks of training images of SRCNN are used as input values. weights and
thresholds of SRCNN are used as an initial population of PSO and the best fitness indi-
vidual is selected as the initial value of SRCNN;

(3) According to the basic idea of BP network, the gradient descent method is used
to optimise the parameters, and the residuals are used as a priori knowledge to find out
the optimal weights and then execute the PSO framework for iterative optimisation. The
best fitness of each particle is calculated, while the optimal solution in the population is
selected;

(4) Repeat the above steps until the global best solution is found, thus obtaining the
optimal weights and thresholds.

4. Remote sensing image fusion based on PSO-SRCNN.

4.1. Multi-channel sparse representation. In this work, the PSO-SRCNN model is
used to process low-resolution multispectral images.

The four channel images of the up-sampled low-resolution multispectral image are fed
into the convolutional neural network separately to obtain the enhanced images of the cor-
responding four channels. The corresponding multispectral images of these four channels
are sparsely represented with the panchromatic image. Here, the DCT dictionary is used,
which has a better representation of the texture information of the image. The sparse co-
efficients of the corresponding image blocks are derived using the OMP algorithm. Then
the larger coefficients are selected as the sparse coefficients of the fused image block. The
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principle of remote sensing image fusion method based on PSO-SRCNN is shown in Fig-
ure 3. Since the size ratio of the low-resolution multispectral image to the high-resolution

PAN

MS

PSO-SRCNN

PSO-SRCNN

PSO-SRCNN

PSO-SRCNN

Sparse representation 

of DCT dictionary

Sparse representation 

of DCT dictionary

Sparse representation 

of DCT dictionary

Sparse representation 

of DCT dictionary

Sparse representation 

of DCT dictionary

Fusion 

processing

Fusion 

image

Figure 3. PSO-SRCNN-based remote sensing image fusion approach

panchromatic image of the data acquired by the Landsat 9 satellite sensor is 4, the first
step is to up-sample the low-resolution multispectral image and feed the up-sampled im-
age into the PSO-SRCNN neural network. The four-channel image after processing by
PSO-SRCNN network is given in Figure 4.

(a) Multi-spectral images (b) Panchromatic images

(c) Channel 1 (d) Channel 2 (e) Channel 3 (f) Channel 4

Figure 4. Example of output image of PSO-SRCNN

The images of each of the four channels enhanced by the PSO-SRCNNmodel are fed into
the overcomplete DCT dictionary for sparse representation and the corresponding sparse
coefficients are obtained. Each small image block can be represented as the product of
the overcomplete dictionary and the sparse coefficients.{

X ′
PAN ≈ DαPAN

X ′
MS ≈ DαMS

(12)
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where α denotes sparse coefficients, D denotes DCT dictionary, X ′
PAN denotes a small

piece of panchromatic image corresponding to a particular channel, and X ′
MS denotes a

small piece of multispectral image corresponding to a particular channel.
After the image has been represented by the DCT dictionary, the item with the larger

absolute value of the sparsity coefficient is selected as the corresponding fused image block
X ′

Ft.

X ′
Ft =

{
DαPAN αPAN > αMS

DαMS αPAN < αMS
(13)

Then the whole image corresponding to the image block can be represented as:

XFt =
∑

X ′
Ft (14)

The weighting method is adopted to fuse the images after sparse representation. imgMS

denotes the multispectral image output from the PSO-SRCNN model with a single chan-
nel, while imgPAN denotes the panchromatic image, I denotes the unit matrix, α denotes
the weighting coefficients, and XF denotes the fused image under a particular channel.
Before the image is subjected to DCT dictionary representation for solving the sparse co-
efficients, a unitary operation is performed on the image, and the obtained XF is a block
representation of the image under unitary, so it needs to be de-unitised while fusion.

XF = a1 (a3imgPAN + a4XFt) / (1 + a4I) + a2 (a3imgMS + a4XFt) / (1 + a4I) (15)

The fused image XF obtained under the four channels is reconstructed to obtain the
final fused image F.

4.2. Over complete DCT dictionary. In this work, the DCT dictionary size is set to
64Ö256, the redundancy factor is 4, the number of dictionary atoms is 256, the window
sliding step is 1, and the window size is 8Ö8.
For a given sequence number x(n), the DCT dictionary can be expressed as:

Xc(0) =
1√
N

N−1∑
n=0

x(n) (16)

The corresponding matrix is of the form:

Xc = CNx (17)

where CN is an N Ö N matrix whose row vectors are cosine based.

5. Experimental results and analyses.

5.1. Experimental environment and experimental data set. The experimental
hardware environment is: Intel Core i5 2.2GHz processor, 6G RAM, 400G hard drive,
GTX1060 discrete graphics card. The experimental software environment is: Windows 7
operating system, Matlab 2012 (R2012a) simulation software.

The simulation experiment selects Landsat 9 satellite data. The acquired satellite
data is cropped in the experiment, and the block size is 64Ö64. In this experiment, the
PSO-SRCNN model is trained on caffe, and the simulation test is carried out on the
Matlab platform.The super-resolution factor is 2 in the SRCNN model, and the network
structure includes 3 convolutional layers and 1 anti-convolutional layer, the learning rate
is 0.001, the number of iterations is 10,000, and the loss function is the mean square
error (MSE).The PSO algorithm has a particle number of 50, a dimension of 2, inertia
weights of 0.6, and a maximum iterations number of 500. In order to validate the state-of-
the-art of the proposed remote sensing image fusion method, compared with the wavelet
transform [29], CNN [30], and the SRCNN [20] are compared.
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5.2. Image fusion quality evaluation metrics. Subjective qualitative evaluation is
also known as visual evaluation method. A direct observer evaluates the subjective effect
of the fused image under strictly controlled conditions. This method is based on the
subjective perception of a person and his or her own expertise to subjectively evaluate
the quality of an image. Different people may evaluate the same image differently and
the results are more subjective. Therefore, the international grading scale is divided into
five levels [31], as shown in Table 2.

Table 2. Five Levels of Image Quality.

Mark Visual criteria Quality criteria
5 Image fusion at a glance rare

4
Slight observation of differences

In image fusion effects
(of an unmarried couple)

be close
3 Image fusion effect is obvious usual
2 Presence of visual obstruction differ from
1 Unobservable extremely poor

Objective quantitative evaluation of image fusion results is to evaluate the fusion effect
using some quantitative indicators. Currently, there are many commonly used objective
quantitative evaluation indexes [32]. In this work, mean square error, mean absolute
error, correlation coefficient, and source entropy are chosen as the result quality evaluation
indexes.

(1) Mean square error(MSE). The smaller the mean square error, the closer the fused
image is to the reference image and the better the visual effect.

MSE =
1

M ×N

M∑
i=0

N∑
j=0

[IF (i, j)− IR(i, j)]
2 (18)

where M is the number of rows of the image, N is the number of columns of the image,
IF (i, j) is the grey value of the i-th row and j-th column in the standard reference image
F , and IR(i, j) is the grey value of the i-th row and j-th column in the fusion image R.
(2) Mean absolute error (MAE).

MAE =
1

M ×N

M∑
i=1

N∑
j=1

|IF (i, j)− IR(i, j)| (19)

(3) Correlation coefficient (CC).

CC(A,B) =

M∑
i=0

N∑
j=0

[
IF (i, j)− IF

]
×
[
IR(i, j)− IR

]
√

M∑
i=0

N∑
j=0

[
IF (i, j)− IF

]2 × M∑
i=0

N∑
j=0

[
IR(i, j)− IR

]2 (20)

where ĪF and ĪR are the mean values of the standard reference image F and the fused
image R, respectively.

(4) Source Entropy. Improving the amount of visual information is one of the main
goals of image fusion. An essential indication of the richness of visual information is the
signal source entropy. The amount of information in the fused image increases with source
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entropy value. The following is the definition of signal source entropy:

E = −
L−1∑
i=0

Pilog2(Pi) (21)

where E is the source entropy of the image, L is the total number of grey levels of the
image and P is the probability of occurrence of a pixel with grey value 1.

5.3. Image fusion results analysis. In this experiment, the PSO-SRCNN model is
trained on Caffe and tested by simulation on Matlab platform. In order to verify the
advancement of the proposed remote sensing image fusion method, it is compared with
wavelet transform, CNN and SRCNN. The remote sensing image fusion simulation results
are shown in Figure 5.

(a) Multi-spectral images (b) Panchromatic images

(c) Wavelet transform (d) CNN (e) SRCNN (f) PSO-SRCNN

Figure 5. Remote sensing image fusion simulation results

From the experimental results, it can be seen that the fused image of the wavelet
transform method is darker, and the spectral distortion is more serious; although the
CNN method can effectively improve the spatial resolution of the fused image, the spectral
information is seriously impaired as in the case of the wavelet transform method; compared
with the wavelet transform method and the CNN method, the SRCNN method achieves
a better result, better maintains the spectral information, but the clarity is is not high
enough; compared to other comparison methods, PSO-SRCNN method is slightly inferior
to wavelet transform method in maintaining spatial resolution information, but it achieves
better results in maintaining spectral information, and overall, PSO-SRCNN achieves
better results.

Table 3 shows the numerical metrics after fusion of ten image pairs. Compared with the
other three methods, the four objective evaluation indexes obtained from the fusion results
of PSO-SRCNN are higher, so the fusion effect of PSO-SRCNN model is better compared
with the original SRCNN model, which verifies its effectiveness and applicability.
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Table 3. Accuracy analysis of experimental results

Source
Entropy

CC MAE MSE

Wavelet transform 1.0895 0.5681 0.8891 0.3215
CNN 1.1239 0.6408 0.8627 0.3004

SRCNN 1.2375 0.7981 0.8209 0.2967
PSO-SRCNN 1.4579 0.8754 0.7556 0.2375

6. Conclusion. In this work, a PSO-SRCNN model is proposed for processing the fusion
of low-resolution multispectral images and panchromatic images. Firstly, the multispec-
tral image is divided into four different channels for processing, and all four different
channel images are fed into a convolutional neural network for the enhancement of high
frequency detail information. Then, the predicted multispectral and panchromatic images
are sparsely represented before fusion. A remote sensing image fusion method based on
PSO-SRCNN is proposed by adding PSO algorithm to the original SRCNN model. Fi-
nally, several sets of images from Landsat 9 satellite data were tested by both subjective
and objective evaluation indexes. The results show that all the proposed methods better
maintain the rich information of remote sensing images and achieve better fusion results.
The use of sparse algorithms leads to slower computing speed. Therefore, the direction of
subsequent research is how to solve the problem of large data volume and time-consuming
in the recovery process of the sparse algorithm under the premise of ensuring the perfor-
mance of the algorithm, so as to improve the calculation speed.
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