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Abstract. Urban energy planning is a crucial instrument for increasing the effective-
ness of urban energy usage, as well as for reducing emissions and conserving energy.
However, as only limited building information is available at the urban planning stage,
this makes it difficult to apply conventional energy consumption prediction methods to
current urban energy planning efforts. To address this problem, this work proposes a
building energy consumption prediction method based on intelligent computational wavelet
neural networks and BIM software. Firstly, a civil building is used as the research object,
and the parameter values for a standard building are set. At the same time, a standard
building information model was constructed using BIM software, taking a business-type
apartment building as an example. Then, wavelet neural networks were used to predict
and calculate the energy consumption of the model. The weights of the wavelet neural
network model were optimized using the discrete particle swarm optimization algorithm in
intelligent computing. The discrete particle swarm optimization algorithm introduces lin-
ear differential decreasing inertia weights and asymmetric linear transformation learning
factors so as to promote the convergence speed and convergence accuracy. The simu-
lation results show that the optimal prediction performance can be obtained when the
number of nodes in the hidden layer is 12. In terms of the annual hour-by-hour energy
consumption prediction results, the relative error of the intelligent computational wavelet
neural network is smaller than that of other neural networks, which can actually satisfy
the precision demand for practical application.
Keywords: Energy consumption Prediction; Building energy consumption; Wavelet
Neural Networks; Discrete particle swarm optimization algorithms; BIM software

1. Introduction. Energy consumption in buildings occupies an important place in global
energy consumption. According to the International Energy Agency (IEA), the building
sector accounts for about 40 % of the total global energy demand and this share is growing
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[1,2]. Rational prediction of energy consumption in buildings is important for optimizing
energy use, reducing carbon emissions and achieving sustainable development goals.

Building energy forecasting is vital to improving energy efficiency and operational ef-
ficiency in buildings. Accurate prediction of building energy consumption can provide a
scientific basis for building design, equipment selection and operation management. Based
on the prediction results, reasonable energy management strategies can be developed to
facilitate the application and promotion of building energy efficiency technologies [3,4],
reduce energy costs, improve indoor comfort and increase the overall operational efficiency
of the building. The prediction of building energy consumption involves the comprehen-
sive consideration of several complex factors. Building energy consumption is influenced
by a number of factors such as climatic conditions, building structure, usage patterns,
equipment and facilities [5,6]. By studying in depth the interrelationships and influence
mechanisms between these factors, the patterns of building energy consumption can be
better understood and provide a scientific basis for energy managers and policy makers.

With the rapid development of smart buildings and IoT technologies, the acquisition
and processing capacity of building energy consumption data has increased significantly,
providing more opportunities and challenges for building energy consumption prediction
research. Through the effective use of sensors, smart metering systems and big data anal-
ysis technologies, building energy consumption data can be collected and processed in real
time, helping to build more accurate and timely prediction models [7,8] and further pro-
moting the intelligence and automation of energy management. The prediction of building
energy consumption can also help optimise building design and operation. In the building
design phase, accurate prediction of energy consumption can guide the optimisation of
building structure, material selection and power system design, thereby achieving energy
saving targets.In the operational phase of a building, real-time monitoring and prediction
of energy consumption can help identify abnormalities and take appropriate measures to
improve energy efficiency and indoor comfort.

Building energy consumption prediction also has a greater research value in related
engineering fields [9,10]. For example, for the development of new building materials
and technologies, predicting energy consumption can assess their energy efficiency per-
formance and provide a scientific basis for their promotion and application. At the same
time, building energy consumption prediction also involves research content from several
interdisciplinary disciplines such as machine learning, data mining and model building,
which promotes interdisciplinary cooperation and innovation.

1.1. Related work. Currently, there are three basic categories that may be used to
group building energy forecasting techniques:

(1) Computer-based simulation methods. Currently, software that enables building en-
ergy simulation includes Energy-Plus, DeST, HKDLC, DOE-2 and BLAST, etc. Seyedzadeh
et al. [11] carried out a comparative analysis of DeST, EnergyPlus and DOE-2 building
energy simulation software. Wong et al. [12] used the EnergyPlus simulation software to
simulate radiant floor and displacement ventilation and air conditioning systems.

(2) Scenario analysis-based approach. The scenario analysis method is a method of
predicting energy consumption based on the energy consumption estimation method. In
particular, energy consumption estimation refers to a method of making subjective judg-
ments on energy consumption values by referring to relevant codes and manuals and
relying on certain experience. The indicator method is one such method [13]. The accu-
racy and precision of the estimations are often poor when utilizing the indicator approach
to predict building energy consumption, making it unsuitable for regional predictions of
building energy consumption. In addition, the index method only reflects the peak energy
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consumption of a building due to the combined effect of various influencing factors and
does not reflect the dynamic demand of individual building energy consumptions and the
energy consumption of a building group at the planning stage.

(3) Statistical regression-based methods. Statistical regression-based forecasting meth-
ods are currently the most widely used technical tools, such as stochastic time series and
regression models. Mocanu et al. [14] proposed a time series method applied to the pre-
diction of energy consumption in office buildings. Deb et al. [15] put forward an ARMA
model-based scheme for predicting energy consumption in commercial building clusters.
However, the existing statistical regression forecasts belong to a short-term forecasting
scenario, while the urban planning stage forecasts belong to a medium- to long-term
forecasting scenario.

The energy consumption of buildings is dynamic, stochastic and non-linear. Marvuglia
and Messineo [16] used neural networks to predict the energy consumption of air condi-
tioning and achieved good results. Researchers have suggested several enhanced neural
network prediction models in an effort to increase the prediction accuracy of neural net-
works. For example, Moayedi and Mosavi [17] combined chaos optimisation methods with
neural network methods and introduced them into their work on HVAC energy consump-
tion prediction. Liao [18] combined wavelet transform with neural networks to predict the
time-to-time energy consumption of air conditioners. Wavelet Neural Network (WNN)
can show good performance in dealing with nonlinear problems, signal processing, pattern
recognition and prediction. Wavelet Neural Networks have the following advantages for
building energy prediction:

(1) Multi-scale analysis capability: WNN is able to decompose signals into frequency
bands at different scales through wavelet transform, thus enabling analysis of energy con-
sumption data at different time scales. This allows WNN to capture more comprehensive
and accurate features in building energy consumption prediction.

(2) Non-linear modelling capability. Wavelet neural networks are able to generate
complex linkages between inputs and outputs by non-linear mapping of input data to a
higher dimensional feature space and through the neural network’s learning capabilities.
This enables wavelet neural networks to model the non-linear characteristics of building
energy consumption more accurately.

(3) Adaptive learning capability. Wavelet neural networks are capable of adaptive
learning of weights and thresholds through back propagation algorithms, i.e. adjusting
network parameters through multiple iterations to continuously optimise model perfor-
mance. This makes wavelet neural networks have good adaptability and learning ability
in building energy consumption prediction.

However, there are many parameters in WNN that need to be tuned and optimised,
such as weights and thresholds. In order to obtain the best prediction accuracy, manual
adjustment by experts with extensive experience is required and can be time and energy
consuming.

1.2. Motivation and contribution. The goal of intelligent computing is to achieve so-
lutions and decisions for complex problems based on artificial intelligence, pattern recog-
nition and other methods. Intelligent computing is a broad field covering a variety of
optimisation algorithms, including Particle Swarm Optimization (PSO) [19,20].

PSO algorithm is an important part of intelligent computing and plays a unique ad-
vantage in specific problem domains.PSO algorithm has better performance in dealing
with continuous optimization problems and is widely used in function optimization, ma-
chine learning, image processing and other fields. Therefore, this work proposes a method
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for predicting building energy consumption based on intelligent computing WNN and
Building Information Model (BIM) software.

The main innovations and contributions of this work include:
(1) A standard building model was created based on the constraints and the building

model was parameterised by BIM software using a business-type apartment building as
an example.

(2) We proposed the use of a discrete PSO algorithm to search the parameter space so
as to adaptively adjust the weighting parameters and threshold parameters in the wavelet
neural network to improve its performance and prediction accuracy, saving a lot of time
and cost.

(3) Since discrete PSO suffers from the problems of easily falling into local optimum and
premature convergence, this paper introduces Linear Decreasing Inertia Weight (LDIW)
[21] and Asymmetric Linear Transformation Learning Factor (ALTLF) [22,23] to upgrade
the convergence speed and convergence precision of the discrete PSO.

2. Creation of a standard building model.

2.1. Classification of standard buildings. As detailed building information is rela-
tively difficult to obtain in the planning stage, this work introduces the concept of standard
buildings to complete the modelling of building energy consumption prediction. A stan-
dard building is a representative building that reflects the current building form, building
scale, building envelope composition and internal building disturbance of a certain type
of building in society.

Buildings are typically divided into productive and non-productive categories based on
their intended use. Examples of productive buildings include industrial and agricultural
structures, while non-productive structures, also known as civil structures and divided
into residential and public buildings, are the focus of the study. As different buildings
have different energy consumption characteristics, this work will be classified mainly on
the basis of the nature of use and functional characteristics of the buildings. The standard
building classification of civil buildings in this work is shown in Table 1.

Table 1. Sample data

Basis of classification Building classification

Nature of use and
functional characteristics

Residential
buildings

Office
buildings

Shopping
mall

building

Hotel
buildin

In order to ensure a hot and humid environment in a building, energy consumption is
defined as the amount of energy that needs to be supplied to a room at a given moment in
time. There are many factors that have an impact on the building energy consumption,
such as outdoor temperature and humidity, solar radiation intensity, occupant density,
equipment power, envelope structure, etc. To facilitate the analysis of the many influ-
encing factors, this work summarises these influencing factors into three types: external
building disturbances, internal building disturbances and the building principal.

External building disturbance refers to the outdoor climate factors. The internal dis-
turbance factors of the building include the occupancy rate of indoor people, the density
of people, the installed power of equipment and lighting, the running time of air condi-
tioning, the set temperature and humidity of the room, etc. The building principal is the
influence factor consisting of the building’s own parameters.
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2.2. Standard building model. The research of this work is about the parameterisation
of the standard building model by BIM software [24] and the predictive analysis of the
energy consumption of the standard building model by using wavelet neural network.

The parameters of the standard building model are mainly obtained from studies, build-
ing standards and building codes. The model factors for standard buildings and their
sources are shown in Table 2. The parameters were selected based on the principle of
selecting parameters with a high correlation to the energy consumption of the building.

Table 2. Model factors for standard buildings and their sources

Classification Model parameters Source

Building ontology

Building bottom shape rectangle
Building bottom aspect ratio research report

building storey height Standards, specifications
building height Standards, specifications

Building orientation Standards, specifications
glazing ratio Standards, specifications

heat transfer coefficient Standards, specifications
transmittance Standards, specifications
absorptivity Standards, specifications

Interior of the building
personnel density Standards, specifications
equipment power Standards, specifications
Lighting power Standards, specifications

Outside the building
fresh air Standards, specifications

Indoor temperature and humidity Standards, specifications
Outdoor temperature and humidity Standards, specifications

Local conditions Air conditioning schedule Standards, specifications

2.3. Parameterisation of the building model based on BIM software. In order
to facilitate simplified calculation, certain information of the building is simplified in
this paper. For example, (1) the shape of the bottom surface of the building model is
considered as a rectangle; (2) the windows of all walls of the building are considered as
a single unit and the window-to-wall ratio is fixed; (3) the heat transfer of the indoor
envelope is not considered [25] and the floor height of the building is consistent.

On the basis of the above simplified calibrated building model, this paper takes a
business-type apartment building as an example and parameterises the building model
through BIM software. As an emerging information technology, BIM has gradually been
widely used in the field of construction engineering, and BIM refers to the creation and
application of one-to-one, internally coordinated and computable information in the de-
sign, construction, operation and management of construction projects. The use of BIM
technology for building modelling has the following advantages: (1) it enables visual edit-
ing; (2) the model has automatic change capability; and (3) parameter editing is more
convenient and efficient.

This work has been modelled using BIM software for a 13-storey business-type apart-
ment building, the specific 3D effect of which is shown in Figure 1. The detailed param-
eters for each floor are shown in Table 2. The external windows on all walls of each floor
of the business-type apartment building are considered as a whole, and each floor is also
considered as a whole in the energy consumption prediction process. The details of each
floor of the building model are shown in Table 3. It can be seen that the window-to-wall
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ratios for each floor of the building model range from 0.3 to 0.4 and the model has a
volume factor of 0.14.

Table 3. Model factors for standard buildings and their sources

Floor Area/m2 Volume/m2 Total wall
area/m2

Total window
area/m2

Total
window-to-wall ratio

Body shape
factor

1 storey 1603.31 8737.7 902.2 323.47 0.36 -
2, 3 storeys 1603.31 7134.4 736.65 271.3 0.37 -
4 storeys 1603.31 7775.72 802.87 292.17 0.36 -

5-15 storeys 1047.23 3612.74 435.87 168.29 0.39 -
Total 17932.8 70522.37 7972.94 3009.4 0.38 0.14

Figure 1. Example of figure

3. Building energy forecasting.

3.1. Several definitions and theorems. The main methods of predicting energy con-
sumption in traditional buildings at this stage include:

(1) Stochastic time series forecasting method. The most typical algorithm is the autore-
gressive moving average model ARMAmodel, with the univariate ARMAmodel expressed
as follow:

xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + εt − θtxt−1 − . . .− θqxt−q (1)

where εt denotes random interference noise.
(2) Regression model forecasting methods. This type of method includes one-dimensional

linear regression models and multiple linear regression models. Taking the one-dimensional
linear regression model as an example, the expressions for the explanatory variables in
the model are shown as follow:

Yi = β0 + β1Xi + ui, i = 1, 2, ..., n (2)

where Xi denotes the explanatory variables, β0 and β1 are theoretical parameters, ui

denotes the random disturbance term.
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(3) Artificial neural network forecasting method, of which the most typical is the BP
neural network forecasting model.

3.2. Construction of wavelet neural networks. The correlation factors in the sto-
chastic time series forecasting method and the regression model forecasting method are
usually selected empirically, and the artificial interference factors are too strong, making it
impossible to attenuate the causal relationship between some variables and the predictor
variables, which may adversely affect the accuracy of the predictor variables.

Compared with BP neural networks, WNN is a new type of layered, multi-resolution
artificial neural network constructed based on wavelet analysis theory [27], which can lower
the network’s parameter count, simplify computation, and increase the network’s capacity
for generalization by choosing the right wavelet basis functions and scale parameters.
Therefore, the WNN used in this paper predicts the energy consumption of building
models. WNN consists of m input layer nodes, n output layer nodes and s hidden layer
nodes.

ϕ =

{
ϕj =

1√
|aj|

ϕ(
x− bj
aj

) : aj, bj ∈ Rn, j ∈ Z

}
(3)

where ϕ (x) denotes a mother wavelet in time and frequency space, aj = {aj1, aj2, ..., ajm}
denotes the scale parameter, bj = {bj1, bj2, ..., bjm} denotes the transformation parameter
and x = {x1, x2, ..., xm} denotes the input to the WNN.
The 3-layer wavelet neural network structure is shown in Figure 2.

f(x)

f(x)

f(x)

x1

x2

...

xm

...

...

...

y1

y2

...

yn

Input layer Hidden layer  Output layer

Wi,j
Vj

f(x)f(x)φ

φ

φ

Figure 2. Three-layer wavelet neural network

The intra-network activity of neuron j is shown as follow:

vj =
m∑
i=0

Wij · xi (4)

where Wij denotes the weight between input i and hidden node j. The definition of
Morlet mother wavelet [28] is shown as follow:

ϕ(v) = cos(1.75x)e−
x2

2 (5)

Thus, the output of the j-th neuron is shown as follow:

ϕj =
1√
|aj|

ϕ

(
vj − bj
aj

)
(6)
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where aj denotes the frequency parameter and bj denotes the time parameter. The
transform and translation parameters for the initialised wavelet are shown as follow:

ai = 0.2 (xmax − xmin) (7)

bj = 0.5 (xmax + xmin) (8)

where xmax indicates the maximum input value and xmin the minimum input value. In
the standard form of WNN, the output is ’shown as follows:

f(x) =
n∑

j=1

Wjϕj(v) (9)

where Wj denotes the weight between the j -th neuron and the output node.

3.3. Learning steps for the WNN. The WNN is trained using a back propagation
method in order to find the percentage of each weight that causes the error . In addition,
the steepest descent method is used to minimise the instantaneous error generated by the
time t.

E(t) =
1

2
e2(t) =

1

2
(f(t)− d(t))2 (10)

where f indicates the model output and d indicates the target output.
The aim of network training is to find the complete vector network parameter weights

w = (ai, bi,Wij,Wj), thus minimising the error function. In this paper, an iterative
approach is used to process a training sample of size N. Firstly, the error derivative of
the weight vector is calculated at each iteration t. The weight vector is then updated by
Equation (9).

∆w(t+ 1) = −η · δE(t)

δw
+ µ ·∆w(t) (11)

where η denotes the learning rate and µ denotes the constant momentum term. The µ
can improve the speed of training and avoid bias when updating the weights.

In the weight vector, the different parameters are updated based on the partial deriva-
tives of the error function.

∆Wij(t+ 1) = −η · δE(t)

δWij

+ µ ·∆Wij(t) (12)

δE(t)

δWij

= e(t) · δf(t)
δWij

(13)

∆Wij(t+ 1) = −η · e(t) ·Wk · ϕk(xi(t)) ·
xi(t)

ai(t)
+ µ ·∆Wjk(t) (14)

The weights Wj between the hidden and output nodes are updated as follows:

∆aj(t+ 1) = −η · δE(t)

δaj
+ µ ·∆aj(t) (15)

δE(t)

δWj

= e(t) · δf(t)
δWj

= e(t) · ϕj(vj(t)) (16)

∆Wj(t+ 1) = −η · e(t) · ϕj(vj(t)) + µ ·∆Wj(t) (17)
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The expansion factor aj is updated as follows:

∆aj(t+ 1) = −η · δE(t)

δaj
+ µ ·∆aj(t) (18)

The conversion factor bj is updated as follows:

∆bj(t+ 1) = −η · δE(t)

δbj
+ µ ·∆bj(t) (19)

3.4. Discrete PSO-WNN. In this paper, the discrete PSO algorithm [29,30] is used to
optimize the weights and thresholds of WNN. Each particle represents the state of a set
of switches, with the corresponding bit in the particle taking the value 1 if the switch is
closed and 0 if it is broken. the initial weights and thresholds of the WNN are used as
the particles of the particle swarm. Multiple weight and threshold matrices are used as
the input set to the PSO to settle for the weights and thresholds that minimise Equation
(10).

Let the speed of flight of the i-th particle xi = (xi1, xi2, ..., xiN) be vi = (vi1, vi2, ..., viN).
Using the energy prediction accuracy as the fitness function, solve for the fitness maximum
pi = (pi1, pi2, ..., piN) of the i-th particle. Then, calculate the maximum value pg =
(pg1, pg2, ..., pgN) of all particles. The velocity update method for each binary bit is shown
as follow:

vk+1
id = ωvkid + c1r1

(
pkid − xk

id

)
+ c2r2

(
pkgd − xk

id

)
(20)

xk+1
id = xk

id + rvk+1
id (21)

where c1 and c2 are learning factors, ω denotes inertia weights, and r denotes a random
constant.

As discrete PSO itself suffers from the problems of being prone to local optima and
premature convergence, LDIW and ALTLF are introduced to improve the convergence
speed and convergence precision of the conventional discrete PSO.

(1) Introduction of LDIW. Inertia weights ω affects the search capability of the discrete
PSO algorithm, the global search capability of the discrete PSO algorithm is stronger
when the value of inertia weights is larger, and vice versa for local search capability.
Therefore, to make the discrete PSO have a strong global search capability in the early
stage and an accurate local search in the later stage, LDIW inertia weights are introduced
as follows:

w(k) = wstart − wstan − wend

K2
max

k2 (22)

Where wstart is the initial inertia weight [31], wend is the inertia weight at the maximum
number of iterations, and K is the maximum number of iterations. In general, the discrete
PSO algorithm performs best for wstart = 0.9 and wend = 0.4 [32].

(2) Introduction of ALTLF. learning factor affects the search capability and convergence
speed of the discrete PSO algorithm. in order to make the global search capability of the
discrete PSO algorithm stronger in the early iterations and convergence speed faster in
the later ones, this work uses ALTLF to improve the learning factor by updating it as
shown as follows:

c1 = c1 s +
(c1e−c1 s)k

Kmax
(23)

c2 = c2 s +
(c2e−c2 s)k

Kmax
(24)

where c1 s and c2 s represents the learning factors’ beginning values, while c1e and c2e
represents their end values [33].
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3.5. Building energy consumption prediction process. The discrete PSO-WNN
based building energy consumption prediction process is:

Step 1: Data pre-processing, normalizing the original economic sample data as follows:

y =
x−min

max−min
(25)

where x represents the original sample data, max represents the maximum value of the
sample data and min represents the minimum value of the sample data.

Step 2: Split the data into training samples and test samples;
Step 3: initializing the parameters of the WNN and the parameters of the discrete PSO

algorithm;
Step 4: Optimization of the weight parameters and threshold parameters of the WNN

using the discrete PSO;
Step 5: Calculating the WNN’s output and error numbers while training it with the

best possible parameters;
Step 6: Building energy prediction using test samples.

4. Experimental results and analysis.

4.1. Evaluation metrics. In this work, the Root-Mean-Square Error (RMSE) is used
to quantitatively evaluate the results of energy consumption forecasting in order to verify
the feasibility of the proposed forecasting method.

RE =
|AEC− FEC|

AEC
× 100% (26)

AE =
N∑
i=1

REi

N
(27)

RMSE =

√√√√√ N∑
i=1

RE2
i

N
(28)

where AEC indicates actual energy consumption and FEC indicates predicted energy
consumption.

400 data were randomly selected as training data and 100 data as test data for the
building energy prediction method proposed in this paper.

4.2. Evaluation metrics. After setting the initial parameters, the number of nodes (S)
of the hidden layer of the neural network was first differentially set so that the opti-
mal neural network size could be set for the building energy prediction simulation. The
simulation results are shown in Table 4.

It can be seen that when S is 12 and 10 respectively, the hourly and daily forecasts
of the annual energy consumption tend to stabilise. Therefore, the optimal number of
nodes in the hidden layer of the WNN structure is 12 for the time-to-time prediction of
the business-type apartment building model in the subsequent simulation.
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Table 4. Tracking performance for different network sizes

Annual energy consumption S Max. error/KW Average error/KW

Time-by-time forecast results

3 0.903 0.88
5 0.769 0.73
8 0.665 0.641
10 0.533 0.52
12 0.42 0.394
15 0.42 0.394

Day-by-day forecast results

3 8.65 8.39
5 6.25 6.02
8 4.91 4.67
10 4.01 12.85
12 4.01 12.85
15 4.01 12.85

Figure 3. Training error curve

4.3. Training error analysis. The prediction results satisfy convergence after the train-
ing count reaches 524. The relative training error is shown in Figure 3, and the energy
consumption prediction results of the discrete PSO-WNN are shown in Figure 4.

It can be seen that the average RMSE for training is 8.31 $ and the standard RMSE for
training is 4.89 % after discrete PSO-WNN training. The predicted average RMSE was
11.06 %, the predicted standard RMSE was 8.13 % and the predicted maximum RMSE
was 24.25 %. This shows that the discrete PSO-WNN building BIM energy prediction
algorithm proposed in this paper is feasible.

4.4. Comparative results of energy consumption predictions. The experiment
divided the 365 days of the year into 8760 hours (0:00 on December 1 to 24:00 on January
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Figure 4. Comparison of predicted sample output vs. original energy consumption

31). The hour-by-hour energy consumption forecast results for the 8760 hours are shown
in Figure 5.

Figure 5. Time-to-time forecasting results of annual energy consumption

It can be seen that the discrete PSO-WNN can accurately predict the air condition-
ing energy consumption values for every hour of the year. To verify the optimisation
performance of the discrete PSO algorithm, the energy consumption predictions of the
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conventional WNN and the discrete PSO-WNN were simulated separately and the simu-
lation results are shown in Figure 6.

It can be seen that the predicted energy consumption for both calculation methods
increases gradually from around 5:00 am onwards. In other words, the hour-by-hour
trend of energy consumption is more or less the same for both methods. However, the
predicted values of the discrete PSO-WNN are closer to the actual values than those of the
conventional wavelet neural network. Therefore, in terms of the dynamic characteristics of
the time-to-time energy consumption, the discrete PSO-WNN BIM energy consumption
prediction method can meet the requirements of practical prediction accuracy.[?]

5. Conclusions. In this work, a building energy consumption prediction method based
on discrete PSO-WNN and BIM software was proposed. In this paper, a standard building
information model was constructed using BIM software, taking a business-type apartment
building as an example. Then, WNN was applied to predict and calculate the energy
consumption of the model. The discrete PSO algorithm was used to optimise the weights
of the WNN model. The discrete PSO algorithm introduces LDIW and ALTLF in order
to improve the convergence speed and convergence accuracy. The simulation results show
that the optimal number of hidden layer neuron nodes in the WNN structure is 12 for
the hour-by-hour prediction of business-type apartment buildings, and that the relative
error of the discrete PSO-WNN is smaller than that of other neural networks in terms of
the annual hour-by-hour prediction results, which can meet the requirement of meeting
the prediction accuracy in practice. However, WNNs are prone to overfitting in building
energy consumption prediction applications, especially when the sample data is small.
In addition, there are certain uncertainties in building energy consumption forecasting,
such as errors in weather forecasts or unknown external disturbances. Therefore, further
research will be carried out to address these two issues in the follow-up.
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