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Abstract. The elephant clan optimization algorithm is a meta-heuristic algorithm that
was developed by simulating elephant behavior. However, the algorithm has issues with
slow convergence speed, poor convergence accuracy, and easy local optimum fall-in. Based
on this, this paper proposes an improved elephant clan optimization algorithm. In this pa-
per, we mainly improve the population initialization based on the additional autonomous
movement strategy, the Euclidean distance-based community division, and the early ma-
turity suppression mechanism to improve the population diversity to avoid falling into
the local optimum. At the same time, the improved individuals balance the convergence
speed and diversity with autonomous positional movement and novel updating strategy, in
addition, this paper chooses different replacement methods according to different fitness
values and improves the next convergence speed and robustness by the simplex method in
the late stage of evolution. Finally, experiments are performed on 28 benchmark func-
tions. The findings demonstrate that the IECO algorithm clearly outperforms the original
ECO algorithm and other top algorithms in terms of convergence speed, convergence ac-
curacy, and algorithm stability.
Keywords: Elephant clan optimization, Meta-heuristic, Global optimization, Bench-
mark functions

1. Introduction. Optimization problems, such as shortest time, shortest path, optimal
parameters, etc., are widely found in the fields of Internet advertising, recommender sys-
tems, unmanned vehicles, etc. To solve such complex optimization problems, researchers
try to solve the problems using meta-heuristic algorithms, which are proposed by sim-
ulating nature and human intelligence, among others. Compared with traditional opti-
mization methods, meta-heuristic algorithms are a flexible and gradient-variation-ignoring
approach, and their well-studied and exploited capabilities can be applied to a variety of
complex global optimization problems.

Meta-heuristic algorithms are used to solve optimization problems by simulating the
behavior of collective intelligence. Metaheuristic algorithms may be categorized into three
categories in line with distinct heuristic notions. The first group consists of metaheuris-
tic algorithms that are motivated by physical occurrences, such as BB-BC [1], GSA [2],
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WEO [3], LSA [4], AOA [5], etc. The Atomic Orbital Search (AOS) optimization tech-
nique was introduced by Azizi in the same year, and it was motivated by the atomic
theory of quantum mechanics [6]. The second category consists of metaheuristic algo-
rithms, such as PSO [7], ACO [8], GWO [9], MA [10], ABC [11], BA [12], WOA [13], etc.,
that are motivated by the behavior of biological groupings. New metaheuristic algorithms
have been proposed in the last few years. The Raccoon Optimization Algorithm (ROA),
developed in 2019 by Sina et al., was inspired by how raccoons hunt for high-quality food
quickly using their eyesight and touch [14]; By idealizing and simplifying the monarch
butterfly movement, Wang et al. created Monarch Butterfly Optimization (MBO) in the
same year [15]; Li et al.’s development of the slime mold algorithm (SMA) in 2020 was
inspired by the behavioral and physical changes that Physarum polycephalum endured
during foraging [16]; The Elephant Clan Optimization (ECO) method was developed in
2021 by Jafari et al. by modeling the fundamental aspects of elephant individual and
group behavior [17]; Hashim et al. introduced a snake optimizer (SO) in 2022 based on
the foraging or mating behavior of snakes in varied temperature and food availability
scenarios [18]. The third category is metaheuristic algorithms inspired by other mech-
anisms, such as genetic processes. Examples are GA [19], DE [20], IA [21], SOS [22],
etc. The Blood Coagulation Algorithm (BCA), motivated by platelet cooperation and
the thrombosis process, was devised by Drishti Yadav et al. in the same year [23].

Compared with the traditional metaheuristic algorithms, the new metaheuristic al-
gorithms proposed in recent years often come with more novel and efficient evolution
strategies, which are very likely to greatly improve the optimization effect, and further
improvement of the new metaheuristic algorithms will inevitably gradually attract the at-
tention of scholars. In this context, this paper improves the Object Family Optimization
(ECO) algorithm and proposes an Improved Elephant Family Optimization (IECO) al-
gorithm to further improve its convergence speed, convergence accuracy, and algorithmic
stability. The main contributions of this paper are as follows:

(1) Improvement of the initialization phase. Based on the autonomous movement habits
of natural elephant populations, a population initialization approach with additional au-
tonomous movement strategies is proposed to increase population diversity: The proposed
Euclidean distance-based population partitioning method avoids the blindness of the orig-
inal random partitioning method and different balances convergence speed and population
diversity: A premature suppression method, inspired by ABC, is put forward to enhance
the likelihood that the algorithm will leave the local optimum.

(2) To improve the individual renewal methods of family clans. According to different
evolutionary stages and member types, learning from different good evolutionary genes,
and introducing autonomous positional movement, we propose a new search strategy for
individual family clan members and matriarchs based on autonomous positional movement
to balance convergence speed and population diversity.

(3) A new male elephant individual renewal strategy is proposed, in which each male
moves under the pull of the central position of each female matriarch and its autonomous
moving position, avoiding the randomness of the original path and further balancing the
algorithm’s population diversity and rate of convergence.

(4) To propose new individual replacement strategies for segments of the family clan.
Adult elephants among them select various replacement strategies based on their fitness
values, which accelerates convergence while retaining population variety and strengthens
the algorithm’s ability to handle various problems with optimization; The population
diversity is maintained and the convergence speed of the algorithm is increased in the
early stages of evolution by the inferior individuals learning from the superior individuals
while retaining some of their knowledge. In the later stages of evolution, the simplex



An Improved Elephant Clan Optimization Algorithm for Global Function Optimization 765

method is used to speed up convergence while new superior individuals may be born to
further increase population diversity.

Testing on the CEC2013 test set reveals that the IECO reported in this paper exhibits
significant improvements over ECO and four more conventional optimization algorithms
in terms of convergence time, accuracy, and stability.

This essay’s remainder is organized as follows: The operation and workings of the ECO
algorithm are explained in Section 3. In Section 4, the flaws of the original ECO approach
are discussed and an improved IECO algorithm is proposed. Section 5 compares the
IECO algorithm to the original ECO technique and other more widely used contemporary
methods using simulation results from the CEC2013 test function set. An overview of the
method suggested in this work is provided in Section 6.

2. Related work. In order to further enhance the optimization effect and improve the
existing meta-heuristic algorithms, researchers have conducted a lot of studies. The
DLPSO method was created by Zhang et al. [24], which chooses the best vectors from
those dispersed throughout the search space, creates a new vector, and moves to the better
vector location, increasing the likelihood of leaving the local optimum; By mimicking the
human forgetting phenomena, Xia et al. suggested an extended PSO with forgetting ca-
pacity (XPSO) [25] and accelerated the algorithm’s convergence; Han et al. proposed the
IGTOA algorithm [26] in 2022 to improve the convergence speed and accuracy of the al-
gorithm through dynamic partitioning and a new subspace search mode; Song et al. used
the hybrid mechanism of complete learning and incomplete learning to propose the INC-
CLA algorithm to improve the search and development capabilities of the algorithm [27];
Haroon et al. in 2022 proposed a Gaussian Mutation-Spider Monkey Optimization (GM-
SMO) algorithm to solve overfitting and unbalanced data in scene classification. Gauss-
ian mutation improves the diversity of the algorithm’s population, allowing GM-SMO
to better balance exploration and exploitation [28]; Chen et al. in 2023 proposed a ge-
netic algorithm combined with simulated annealing to solve the Vehicle Routing Problem
(VRP) [29]; A multi-population individual-based artificial bee colony algorithm (IDABC)
was proposed by Zhou et al. [30], which introduces various evolutionary operators into
each subpopulation and enhances the evolutionary operators based on individual fitness
values, distances, and other information to improve the algorithm’s capacity to look for
potential solutions; A new algorithm, the Chaos-based Phasmatodea population evolu-
tion algorithm (CPPE) [31], was proposed by Wu et al. Chaotic mapping replaces the
initialized population of the original PPE algorithm, thus improving the performance and
convergence of the algorithm; Ye et al. introduced the RNSABC method [32], which uses
a depth-first search strategy to improve the search capabilities of the subsequent bee and
a random neighborhood architecture to ensure that each solution has a random neighbor-
hood; Wu et al. proposed a chaos-based tumbleweed optimization algorithm (CTOA) [33],
which improves population diversity and global explorability while preventing the algo-
rithm from falling into a local optimum by incorporating 12 common chaotic maps into
the optimization process; By enhancing the explosion scheme, including a GS Gaussian
explosion operator, and including a depth information sharing mechanism, Chen et al.
enhanced the Fireworks algorithm [34]; The quasi-oppositional chaotic symbiotic biolog-
ical search algorithm (QOCSOS) was developed by Truong and colleagues to increase
the algorithm’s search exploitation capacity [35]. This algorithm incorporates two search
techniques, such as chaotic local search and quasi-oppositional learning; Mahmoud et al.
suggested the improved whale optimization salp swarm algorithm (IWOSSA) [36], which
mixes salp swarm and the improved whale optimization approach; By introducing velocity
and recall to aid persons during the localization phase and a refraction-based developing
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strategy, a velocity-based butterfly optimization algorithm (VBOA) (proposed by Long
et al.) [37] significantly boosts the variety of the population and the algorithm’s capacity
for exploration.

From the above study on the improvement of the existing meta-heuristic algorithm,
it can be seen that compared with the original algorithm, the performance of the im-
proved algorithm has a certain degree of improvement, but there is still a large space for
improvement of convergence performance and stability performance when solving com-
plex problems. The advantages of the IECO algorithm proposed in this paper are: (1)
It can effectively balance the convergence speed and population diversity, which is con-
ducive to the further improvement of the convergence speed and convergence accuracy
of the algorithm. (2) Its better stability makes it more competitive in solving complex
problems.

3. Elephant clan optimization algorithm. In the natural world, elephant popula-
tions are typically divided into male herds and family herds. These family herds are led
by female matriarchs who demonstrate impressive learning and memory skills. These
skills allow them to lead their herds on long-distance migrations in search of suitable
resources for survival. Inspired by this behavior, Jafari et al. proposed the elephant clan
optimization algorithm (ECO). In ECO, each individual in the algorithm represents the
location of an elephant, and the fitness value represents the availability of survival re-
sources in that location. The algorithm consists of three stages: initialization and herd
division, individual herd update, and individual herd replacement. Algorithm 1 provides
the pseudo-code for ECO, and the key phases of the algorithm are briefly explained below.

3.1. Population initialization and clan delineation. Suppose the dimension of the
problem to optimize isD, and the populationX contains a total ofN individual elephants.
The initial position X0

i of each elephant is randomly generated according to Equation (1)
at the beginning of the algorithm.

X0
i (j) = Xmin(j) + r ×

(
Xmax(j)−Xmin(j)

)
(1)

Where, i = 1, 2, . . . , N , j = 1, 2, . . . , D,Xmax(j) and Xmin(j) are the upper and lower
bounds of the j-th dimension of the search space for the optimization issue, and r is a
random integer with uniform distribution over the range [0, 1].

After generating the initial population X,N individual elephants in X were randomly
and equally distributed among Nc populations. Nc − 1 clans are family clans, and 1 clan
is a male elephant clan; each clan contains a total of Ne(Ne = N/Nc) individual elephants.

3.2. Individual renewal of family clans. In each family clan, the individual elephant
with the best fitness score was the matriarch of the family clan, and the other individual
elephants were clan members. Clan members and matriarchs use different evolutionary
approaches for individual renewal as follows.

(1) Individual renewal of clan members
Each clan member moves toward their family clan matriarch and completes self-renewal

according to Equation (2):

X it+1
FCi,m(j) = X it

FCi,m(j) + r × α×
[
X it

FCi,M(j)−X it
FCi,m(j)

]
(2)

Where X it
FCi,M and X it

FC,m represent the matriarch of the i-th (i = 1, 2, . . . , Nc−1) family
clan XFCi

at it-th iteration and the m-th (m = 1, 2, . . . , Ne) clan member after sorting,
respectively. r is a uniformly distributed random number in the range [0, 1]. α is a scaling
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Algorithm 1: ECO

Input : Optimization problem dimension: D; the number of populations: Nc; the
number of members per population: Ne; the number of mating available:
Nm; scaling factor: α, β; the maximum number of iterations: Maxiter

Output: Optimal solution and its fitness value
1 Variable initialization (Nd, Nc, Ne, Nm, α, β, Maxiter)
2 Individual elephant locations were initialized as described in Section 3.1, and the

herd was divided into the Nc − 1 family herd and 1 male herd.
3 Calculation of fitness values for each individual in each clan
4 while it <= Maxiter do
5 Update each elephant’s position in each family clan as described in Section 3.2.
6 Update each elephant’s position in the male herd as described in Section 3.3.
7 Calculate the fitness value for each of the new elephants.
8 Sorting of the elephants in each of the clans
9 for I = 1 : Nc − 1 do

10 Determine the worst baby elephant, departing adult elephant, and mating
elephant in the ith family clan in the manner described in Section 3.4.

11 As described in Section 3.4, two new individuals were created to replace the
worst baby elephant and the departing adult elephant in this family clan.

12 Departing adult elephants replaced the worst elephant in the male herd in a
2.4-section manner.

13 Update the worst elephants in the male elephant population
14 end
15 end
16 Output of the optimal global solution

factor that controls the balance between algorithm exploration and development. It is
advised that α be set to 2 , although different values can be used.
(2) Female elephant matriarch updated
According to Equation (3), the matriarch of the family clan of female elephants com-

pletes self-renewal based on the ideal location of the entire population.

X it+1
FCi,M(j) = X it

FCi,M(j) + r × β ×
[
X it

Best(j)−X it
FCi,M(j)

]
(3)

Where X it
Best (j) represents the j-th dimension of the best position obtained by the entire

population containing all elephants in i-th generation. r is a uniformly distributed random
number in the range [0, 1]. β is a scaling factor that regulates the balance of algorithm
exploration and development. It is advised to set it to 2, however, various numbers can
be used depending on the optimization problem.

3.3. Individual renewal of male elephant populations. The elephants in the male
herd move aimlessly in the search space, as shown in Equation (4).

X it+1
MC,n(j) = X it

MC,n(j) + r1 × p×
[
Xmax(j)−Xmin(j)

]
(4)

Where X i+1
MC,n(j) is the j-th dimension of the n-th (n = 1, 2, . . . , Ne) elephant in the male

elephant population XMC of the it+ 1-th iteration. rl is a uniformly distributed random
number in the range [−1, 1]. As indicated in Equation (5), p is a parameter that gets
smaller with each iteration and controls the typical bishop’s range of movement in the
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search space.

p = 1−
(
c× it

itmax

)
(5)

Where itmax and it are the maximum and current repetitions. c is a fixed parameter, usu-
ally set to 0.5 for better results, but it can also be modified according to the optimization
of your problems.

3.4. Replacement of specific individuals from each ethnic clan. In ECO, the
worst juvenile elephants in the family clans will be replaced, and an elephant will leave
the family clan, while only the worst calves in the male clan may be replaced. The specific
way is as follows.

(1) Replacement of specific individuals in the family clan
Each family clan contains mating elephants and adult elephants. Among them, the

mating elephant is the Nm elephant with the best fitness value in that family clan (in
general, Nm is set to 3, but it can be modified according to the optimization problem).
In contrast, an adult elephant is an elephant that leaves its home colony and is randomly
selected from the remaining Ne-Nm-1 elephants except for the mating elephants and the
elephants with the poorest fitness values.

The worst individual and the adult elephant individual in each family clan are each
replaced by two new individuals, generated according to Equation (6), as follows.

X it+1
FCi,Call(j) = r ×

(
X i+1

FCi,Rf (j) +X it+1
MC,Rm(j)

2

)
(6)

Where X it+1
FCi,Calf denotes a newly generated baby elephant in the family colony X it+1

FCi in

it + 1-th iteration, X it+1
FCi,Rf (Rf ∈ [1, . . . , Nm]) indicates a randomly selected individual

among the mating elephants in it+1-th iteration, and X it+1
MC,Rm denotes the best elephant

in the male settlementXMC in it+1 iteration; r is a uniformly distributed random number
in the range [0, 1].

(2) Replacement of the worst individuals in the male clan
The worst elephants in the male clan may be replaced by adult elephants leaving the

respective family clan, as shown in Equation (7).

X it+1
MC, worst =

{
X it+1

FCi,Gm, if f
(
X it+1

FCi,Gm

)
< f

(
X it+1

MC, worst

)
X i++1

MC, worst , else
(7)

Where X it+1
MC, worst is the worst elephant in the it + 1-th iteration of the male clan, and

X it+1
FCi,Gm is the adult elephant that left the family clan X it+

FCi in the it+ 1-th iteration.

4. Improved elephant clan optimization algorithm. The elephant clan optimiza-
tion algorithm has to be enhanced in order to increase convergence speed and accuracy.
This paper makes comprehensive improvements to each essential operation of the ECO
algorithm. It suggests an improved elephant clan optimization process, represented by
the flowchart in Figure 1.

4.1. Initialization phase improvements. (1) Method for initializing a population with
a strategy for additional autonomous movement

The ECO algorithm simulates the behavior of elephants as they migrate under the
leadership of each clan leader. Of course, this fast access to elite evolutionary information
inevitably speeds up the algorithm’s convergence considerably. However, it also allows
for rapid population aggregation, significantly reducing population diversity. If the ideal
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Figure 1. Flowchart of the IECO algorithm

individual’s location differs from the actual theoretical position and is at a certain local
peak, the algorithm may stall and enter a local optimum.

Indeed, all-natural elephants have autonomous consciousness and carry out small inde-
pendent movements around their environment, which is a significant factor preventing the
rapid aggregation of elephant populations. To prevent the algorithm from falling into a
local optimum to increase the diversity of the population and simulate the above behaviors
based on the original elephant position, this section adds an autonomous movement range
and an autonomous movement position for each elephant. This is shown in Equations (8)
and (9).

∆X0
i (j) = ∆Xmin(j) + r ×

(
∆Xmax(j)−∆Xmin(j)

)
(8)

Where ∆X0
i (j)(i = 1, 2, . . . , N, j = 1, 2, . . . , D) is the range of autonomous movement

of the i-th elephant in the j-th dimension at the initial time, r is a uniformly dis-
tributed random number in the range [0, 1]. ∆Xmax(j) = F ×

(
Xmax(j)−Xmin(j)

)
and

∆Xmin(j) = −∆Xmax(j) correspond to the upper and lower limits of the j-th dimensional
autonomous motion space. In general, F can be taken as 0.005 for better results or can
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be set by yourself.
ZX0

i (j) = X0
i (j) + ∆X0

i (j) (9)

As individuals move closer together as evolution progresses, each elephant’s autonomous
range of movement should also decrease. Considering this, the independent moving range
updating method shown in Equation (10) is proposed.

∆X it+1
i (j) =

[
0.9−

(
0.8× it

itmax

)]
×∆X it

i (j) (10)

(2) Euclidean distance-based clan delimitation
ECO is susceptible to the following two scenarios when clan divisions are made and

each elephant is randomly and equally assigned to each clan: (1) Some clans have a con-
centration of several quality elephants, while individuals in individual clans are relatively
inferior. For those clans composed of relatively poor individuals, their matriarchs will
also be poorer, and it will be difficult for the various elephants within that clan to quickly
gain a better position under their leadership. This will have an effect on the algorithm’s
convergence speed. (2) The patriarchs of certain clans are very close to each other, and
these clans are very susceptible to aggregation with evolution under the leadership of the
patriarch, leading to a rapid loss of population diversity. In summary, the patriarchs of
each clan should be relatively good and non-aggregated. With this in mind, the following
Euclidean distance-based clan delineation is proposed.

Step 1, identify the patriarch. Assuming a total of Nc clans, the most outstanding 3Nc

individuals are selected first, and the most impressive individual is made the patriarch
of the first clan. Then, the Euclidean distance between each individual and clan leader
1 is calculated, divided into two groups according to the size of the Euclidean distance,
and the most outstanding individual in the group with the more considerable Euclidean
distance is selected as the leader of the second clan. Again, the distance between the
remaining individuals other than the patriarch and these two patriarchs is calculated,
and the two individuals closest to each patriarch are included as members of their clan.
Finally, the above patriarchs and clan members are removed, and the above process is
repeated to identify other patriarchs and clan members from the remaining members until
all individuals are divided into individual clans.

To better understand the process of determining the patriarchs. Figure 2 shows the
specific determination process for the optimized 2-dimensional rotated Katsuura function.
It is assumed that it is divided into 5 clans. First, Choose the member with the highest
fitness value x1 as clan leader 1, and determine the distance in Euclidean space between
each of the remaining individuals and x1, where {x8, x14, x6, x15, x11, x10, x9} are
closer to x1, while {x3, x5, x13, x7, x12, x2, x4} are farther from x1. Among the further
away individuals, x2 has the highest fitness value and is chosen as clan leader 2. Then
compute the Euclidean distances to x1 and x2 for the remaining individuals except x1
and x2, where {x8, x14} is closest to patriarch x1 and is split into clan 1, while {x13, x5}
is closest to patriarch x2 and is divided into clan 2. Again, except for clan 1 and clan
2, the remaining 9 individuals, including {x3, x4, x6, x7, x9, x10, x11, x12, x15}, The
clan leader of clan 3 is chosen as the individual with the highest fitness value x3. and
the distance between each individual in {x3, x4, x6, x7, x9, x10, x11, x12, x15} and x3 is
calculated, and in the more distant group { x11, x6, x10, x15}, individual x6 has the best
fitness value and is selected as clan elder 4, and the Euclidean distances of individuals
{x4, x7, x9, x10, x11, x12, x15} from x3 and x6 are calculated, where {x9, x7} is closest
to clan elder x3 and is divided to clan 3, while {x15, x10} is most comparable to clan elder
x6 and is divided to clan 4. Finally, the best individual from the remaining individuals
{x4, x11, x12} is selected as the patriarch of clan 5.
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Figure 2. Schematic illustrating the process used to determine the Patri-
arch

Step 2, clan partitioning. Nc clan leaders and individual clan members are identified
in step 1, and the Euclidean distance between other individuals and each clan leader is
calculated. Each clan leader, in turn, selects an individual with the smallest Euclidean
distance to join that clan until all individuals are divided.

To examine the effect of the Euclidean distance-based clan division method proposed
in this section, an optimized 2-dimensional Rotated Katsuura function is used for the
clan division of 20 individuals, and the results of random uniform division and Euclidean
distance-based division are shown in Figure 3. With the original random division, the clan
leaders of clans 1 and 4 are close to each other, and the fitness value of clan leader X11 of
clan 4 is 44.3107, which is a poor individual. It can be seen that clan 2 has more excellent
individuals gathered in it, while with the Euclidean distance-based clan division, there is
no close distance between the clan leaders, and the fitness values of each clan member
have evenly distributed. The problem of clustering of better or worse individuals does
not occur.

(a) Graph based on random uniform division results
(b) Graph of division results based on Euclidean distance
In summary, compared with the original random uniform division method, each clan

leader in this section of community division belongs to relatively superior individuals,
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(a) Graph based on random uniform division results

(b) Graph of division results based on Euclidean distance

Figure 3. Comparison of random uniform division and Euclidean distance
division results

ensuring the algorithm’s convergence speed. In addition, clan leaders do not cluster
among clan leaders within the constraints of Euclidean distance, thus ensuring that clans
do not cluster prematurely and thus ensuring population diversity.

(3) Premature suppression strategy
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Like other swarm intelligence algorithms, ECO suffers from the phenomenon that as
evolution proceeds, the distribution of individuals gradually becomes denser, the popula-
tion diversity decreases, the motivation for further evolution is lacking, and the population
appears to be caught in a local optimum. In the artificial bee colony algorithm, when
an individual’s fitness value remains constant over successive limit generations, the indi-
vidual’s current position is dropped, and a new position is generated to take part in the
evolution of the following generation. This procedure increases the algorithm’s ability to
depart from the local optimum to some extent. Based on this concept, this study intro-
duces a control parameter limit: if the optimal fitness value does not change in subsequent
limit generations, a new individual is created at random in the search space to replace
the original optimal individual.

Many experiments have confirmed that if the limit is too large, the time to catch the lo-
cal optimum is too long. As evolution progresses, all individuals grow more similar to the
ideal individual, and the likelihood of leaving the optimum region diminishes considerably.
While the limit value is too small, the frequent introduction of other evolutionary infor-
mation may change the population’s evolutionary direction and reduce the algorithm’s
convergence speed. After several experiments, we found that the general limit is set to 10
to achieve better results, but also, according to the specific problems, set their own.

4.2. Improvement of individual renewal method of family clans. In each family
clan, the best individual is the mother elephant, from whom all clan members learn. The
mother elephant is largely in charge of rapidly exploring the region where the theoretical
ideal location is situated, while clan members are in charge of preserving population
variety in order to supply the mother elephant with excellent evolutionary information
for rapid convergence. While this relatively single-learning strategy can boost convergence
time by some amount, it significantly reduces species diversity and raises the chance of
the algorithm being caught in a local optimum. Given this, the individual renewal of clan
members and maternal elephants in family clans is improved.

(1) An individual update approach for clan members based on autonomous location
traction

This section suggests a method to update the individual population members based on
autonomous location traction, as indicated in Equation (11), for better maintenance of
species diversity and not degrade the algorithm’s convergence speed too much.

X it+1
FCi,m(j) =


ZX it+1

FCi,m(j) + r × α×
[
X it

FCNC−i,M
(j)−X it

FCi,m(j)
]

+r × α×
[
X it

MC,Rm(j)−X it
FCi,m(j)

]
, if m > Ne/2

ZX it+1
FCi,m(j) + r × α×

[
X it

FCi,M(j)−X it
FCi,m(j)

]
+r × α×

[
X it

MC,Rm(j)−X it
FCi,m(j)

]
, else

(11)

Where X it
FCNc−i,M

represents the matriarch of the female elephant in the Nc − i th fam-

ily group XFCNc−i
at the i-th iteration. ZX it+1

FCi,m is the autonomous position of the
m(m = 1, 2, . . . , Ne) th clan member after sorting at it+1 iteration, and r is a uniformly
distributed random number in the range [0, 1] · α is the improved adaptive scaling factor,
as shown in Equation (12).

α = 2−
(
c× it

itmax

)
(12)

Where c as a fixed value is usually set to 0.5 to achieve the best results, but other values
can be set depending on the optimization problem itself.

In conclusion, the clan member individual renewal approach based on autonomous lo-
cation traction described in this paragraph has the following strengths over the original
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method: To begin, unlike the old method of learning exclusively from this clan’s most
excellent female elephant, the learning objects in this part include the best male person
as well as females from other clans. The females of other clans that each clan has learned
from are not identical, so the relatively abundant information on outstanding evolution
gives each elephant more outstanding evolutionary directions, which does not slow down
the algorithm’s convergence speed but unquestionably can further increase population
diversity. In addition, those superior clan members with relatively similar evolutionary
information to the mother elephant from whom they are learning can quickly move closer
to the mother and provide her with more refined information. And those members of the
clan who are genetically different from their mothers learn from the mothers of neigh-
boring clans, improving communication with other regions, providing richer evolutionary
information for the clan, and avoiding the algorithm’s emergence of a local optimum.
Second, the small search range does not reduce the convergence speed of the algorithm,
and the introduction of autonomous locations significantly improves population diversity.
Third, the scale factor controls the search range of individuals, and this section transforms
the original constant scale factor into a form that decreases gradually with iteration. In
the early stages of evolution, each individual is far from the theoretical optimum, and a
more extensive search range allows individuals to move quickly toward the region where
the optimum academic lies, thus accelerating the algorithm’s convergence. In the late
evolutionary stage, the individuals are not very different and are closer to the theoret-
ical optimum, and the smaller search range is more conducive to refined search, thus
accurately locking in the theoretical optimum.

(2) An individual update approach for matriarchs based on autonomous location trac-
tion

As mentioned above, the matriarchs in the ECO algorithm are all traversed by the
globally optimal individuals and quickly approach the globally optimal region. However,
many experiments have confirmed insufficient population diversity for specific complex
optimization problems to explore more refined global optimal solutions. Considering that
the autonomous movement position of an individual is the result of individual exploration
in a small area, which has a weak impact on the convergence rate of the algorithm while
providing more evolutionary direction and diversity, this section proposes an autonomous
position traction-based matriarch updating approach as shown in Equation (13).

X it+1
FCi,M(j) = ZX it+1

FCi,M(j) + r × β ×
[
X it

Best(j)−X it
FCi,M(j)

]
(13)

Where ZX it+1
FCi,M is the autonomous movement position of the matriarch in this clan at

the it + 1 iteration, obtained similarly to Equation (11); the scale factor β is calculated
according to Equation (14).

β = 3−
(
c× it

itmax

)
(14)

As can be seen from Equations (13) and (14), the scale factor gradually decreases as the
iteration proceeds, which can ensure that in the early evolutionary stage, these matriarchs,
which are more different from the optimal global individuals, learn more from the optimal
global individuals to make sure that the algorithm converges fast. In contrast, the gap
between matriarchs and optimal global individuals is fragile in the late evolutionary stage.
A small amount of learning from the optimal global individuals, focusing more on fine
exploration near themselves, can further enhance the possibility of locking the optimal
global. Furthermore, suppose a female elephant individual is the optimal global individual.
In that case, its position does not change at all when the update of the female individual
is performed according to Equation (3) in the original ECO, while Equation (13) proposed
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in this section relocates the individual’s position to the autonomous moving place, which
provides more evolutionary information and avoids the waste of computational resources
caused by the original invalid search.

4.3. Improvement of the individual renewal method of the male elephant clan.
An in-depth analysis of the ECO algorithm shows that the role of the male elephant
clan is mainly twofold: First, the desire to generate globally optimal positions to provide
the female clan leader with an incentive to evolve. Second, it is used to replace some
members of the family clan to provide more evolutionary information to family members.
However, Equation (4) shows that male elephant individuals use a random way to search
for new positions in the defined domain, and this blind random search can ensure a
good diversity of male elephant populations. However, it is not very easy to produce new
individuals better than the matriarchs and obviously cannot provide excellent evolutionary
information for the matriarchs. Furthermore, even if evolutionary information from the
male elephant population flows into the family clan through replacement operations, the
male population is highly susceptible to being eliminated in the evolutionary process due
to the extremely low probability of being genetically superior to family clan members and
cannot add to the population diversity of the family clan.

Given this, the male elephant individual renewal formula is given in Equation (15) to
ensure that the male elephant clan produces as much evolutionary information as feasible
and has a specific population diversity.

X it+1
MC,n(j) = ZX it+1

MC,n(j) + r × p×
(
X it

Center −X it
MC,n(j)

)
(15)

Where ZX it+1
MC,n is the autonomous movement position of the n-th (n = 1, 2, . . . , Ne)

elephant in the it+1 st iteration of the male elephant clan XMC . p is calculated according
to Equation (5) to control the step size of the male bishop towards the center. X it

Center is
the center of the maternal elephant patriarch in all family clans of the it-th iteration, as
shown in Equation (16).

X it
Center =

1

Nc− 1
×

Nc−1∑
i=1

X it
FCi,M (16)

In summary, each male elephant individual learns from the center of the female ma-
triarch in all family clans. Since each female matriarch carries almost the best current
evolutionary information, it can provide the most excellent evolutionary motivation to the
male individual, which ensures the excellence of the new male individual and increases
the possibility of producing individuals that are more excellent than the female matriarch,
which in turn promotes the rapid convergence of the algorithm. In addition, since the
center of the matriarchs is in a different location from each matriarch, i.e., the male ele-
phant population evolves along a different evolutionary direction from each family group,
the gradual reduction of the control step by parameter ensures that the new male indi-
viduals are different from the other matriarchs. The algorithm’s ability to explore other
regions of excellence, aided by the autonomous movement of position, is increased, further
complementing the diversity of the population.

4.4. Improvement of individual replacement strategy for part of the family
clan. As seen in Section 3.4, an adult elephant and the worst baby elephant in each
family clan are replaced by two new individuals generated by Equation (6). The unique
individual is equivalent to the result of a random search with the origin as the center
and the distance from the source to the center of the best male elephant individual and
the better individual in this family clan as the search range, as shown in Equation (6).
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Although the central position of the best male individual and the better individual in
this family clan is highly likely to have a better fitness value, the random search is more
blind, and the new individual is most likely inferior to the adult elephant and the worst
baby elephant. The direct replacement is likely to cause the evolutionary resources of the
family clan to regress, which in turn reduces the convergence speed of the algorithm and
even leads to deviation from the evolutionary trajectory of evolutionary excellence and,
thus, ineffective merit search.

In view of this, the method of creating new individuals and the process of replacing
them will be improved as follows.

(1) Improve the adult elephant replacement strategy
Since adult elephants are not the superior elephants within this clan, the following

replacement of adult elephants is proposed to ensure the algorithm’s convergence speed
and increase the population’s diversity. If an adult elephant’s fitness value is less than
its clan’s average fitness value, it is replaced by the central position of all clan members,
as shown in Equation (17). Otherwise, the better individual is selected from both the
original adult elephant individual and the new individual, as shown in Equation (18), to
replace the actual adult elephant.

X it+1
FCi,Gm(j) =

1

Ne

Ne∑
i=1

X it+1
FCi (j) (17)

X it+1
FCi,Calf (j) = X it+1

FCi,Gm(j) + r ×

[
X it+1

FCi,Rf (j) +X it+1
MC,Rm(j)

2
−X i+1

FCi,Gm(j)

]
(18)

An in-depth study reveals that the adult elephant replacement approach described in
this section outperforms the previous adult elephant replacement strategy in the follow-
ing ways: First, if the position evaluation of the adult elephant is inferior to the average
position evaluation of the clan in which it is located, the position evaluation of the central
position of all members of that clan has a higher probability of being better than the new
individual generated according to Equation (6) and the adult elephant itself, and if the
position evaluation of the adult elephant is better than the average position evaluation of
the clan in which it is located, the new adult individual must not be inferior to the original
adult elephant. Obviously, the current section approach has significantly better evolution-
ary information and, thus, a better convergence speed. Second, from Equation (18), the
new individual retains the evolutionary information accumulated by the adult elephants
in the evolutionary process and makes full use of the superior evolutionary details of the
better elephant individuals and the best male individuals in the clan, which not only
preserves the population’s variety but also enhances the likelihood of the new individual
outperforming the original adult elephants, thus increasing the convergence speed of the
algorithm. Third, this section uses different evolutionary approaches to generate unique
individuals according to the degree of superiority and inferiority of adult elephants, al-
lowing individuals with a higher-than-average rank to retain their superior evolutionary
information while introducing information from other outstanding individuals. At the
same time, individuals with inferior rank carry too few adequate evolutionary details,
which is not conducive to the evolution of the population, and are replaced by the central
position of members, which enriches the evolutionary information of new individuals to a
certain extent, increases the population’s diversity, and increases the algorithm’s ability
to handle a variety of optimization challenges.

(2) Improve the inferior small elephant replacement strategy
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As described in Section 3.4, except for adult elephants, the ECO algorithm replaces only
the worst individuals in family clans. These inferior individuals, while good for maintain-
ing population diversity, significantly reduce the convergence speed of the algorithm. In
addition, in the early iterations of the algorithm, individuals are far from the theoretical
optimal position and have significant individual differences, which can enhance the con-
vergence of the algorithm. In the late iteration of the algorithm, individuals do not differ
much and should focus on providing population diversity to avoid the algorithm getting
caught in the local optimum. To boost the algorithm’s convergence speed and retain as
much population variety as possible, the worst 0.3Ne tiny elephants in each family clan
were immediately replaced by creating new individuals in the evolutionary stage in the
following manner.

In the pre-evolutionary period, i.e., it < itmax, new individuals are generated by
Equation (19).

X it+1
FCi,Calf (j) = X it+1

FCi,w(j) + r ×

[
X it+1

FCi,Rf (j) +X it+1
MC,Rm(j)

2
−X it+1

FCi,w(j)

]
(19)

Where X it+1
FCi,w is the worst individual to be replaced in the it + 1 iteration of the family

clan X it+1
FCi

.
In the late stage of evolution, i.e., it ≥ itmax, the position correction is performed

using the following simplex method to generate new individuals.
First, the reflection point XFCi,r of the individual X it+1

FCi,w
to be corrected is calculated

according to Equation (20).

XFCi,r = XFCi,c + a× (XFCi,c −XFCi,w) (20)

The reflectance coefficient, generally set to 1. XFCi,c is the midpoint of the best indi-
vidual XFCi,best and the second-best individual XFCi,er that this clan has searched for so
far, as shown in Equation (21).

XFCi,c =
XFCi,best +XFCi,er

2
(21)

Then a new individual X ′
FCi,w is generated by the fitness relationship between individu-

als, replacing XFCi,w if X ′
FCi,w is superior to XFCi,w. Otherwise, leave XFCi,w unchanged.

When Fit (XFCi,r) < Fit (XFCi,best), the expansion operation is performed using Equation
(22). When Fit (XFCi,r) > Fit (XFCi,w), the compression operation is performed using
Equation (23); otherwise, the contraction operation is performed using Equation (24).

XFCi,w
′ = XFCi,c + λ× (XFCi,r −XFCi,c) (22)

Where λ is the expansion factor, which is generally set to 2.

XFCi,w
′ = XFCi,c + η × (XFCi,w −XFCi,c) (23)

Where η is the compression factor, which is generally set to 0.5.

XFCi,w
′ = XFCi,c − µ× (XFCi,w −XFCi,c) (24)

Where µ is the shrinkage factor, which is generally set to 0.5.
In conclusion, the inferior individual replacement technique presented in this section

provides the following benefits: First, the population diversity is more adequate and the
difference between individuals is more significant in the early stages of algorithm evolu-
tion, according to Equation (19). The inferior small elephant learns from the superior
individuals in the clan, which preserves some of its genes to a certain extent, maintains
population diversity, and improves its evolutionary information quickly to shorten the
gap between it and the optimal individuals, thus improving the convergence speed of the



778 Y.-J. Wang and W.-Y. Liu

algorithm. Second, at later stages of evolution, individuals are less different from each
other, and the rate of development of more superior individuals relying on the available
evolutionary information slows down significantly. The simplex method can effectively
improve the minimum by internal compression, external compression, mapping, and ex-
pansion of the minimum within the simplex, which increases the possibility of the new
individual outperforming the original one and can enhance the algorithm’s convergence
speed by some amount. More importantly, the simplex method differs from the authen-
tic method of individual crossover variation and has the potential to generate new good
individuals in other new regions, providing new evolutionary information for algorithmic
evolution and further complementing population diversity.

5. Experimental results and analysis. Experiments are conducted in two portions
of this study to validate the effectiveness of the IECO algorithm. (1) Validate the effec-
tiveness of the four recommended improvement options. (2) Compare the modified IECO
algorithm’s performance against that of the original ECO algorithm and four additional
more typical evolutionary algorithms with good performance.

For the experimental simulation in this part, the CEC2013 test set is utilized. 28 test
functions are included in the CEC2013 test set, of which F1 through F5 are single-peaked
functions with a single ideal value and are used to assess how well the algorithm achieves
convergence. Multi-peak functions like F6–F20 are utilized to show how the method might
depart from the local optimum since they have a number of locally optimal solutions.
The composite functions are F21 through F28. The CEC2013 test set is described in the
literature. [38].

To assure the fairness of the algorithm comparisons, all algorithms were run on a
Windows 10 computer with an Intel(R) Core(TM) i7-7700HQ CPU operating at 2.80
GHz and programmed in MATLAB R2021a.

5.1. Validation of the efficacy of each improvement measure. Section 3 demon-
strates four ways in which the IECO method outperforms the ECO algorithm. In this
study, the appropriate improvement strategy in IECO is eliminated in order to verify
the efficacy of the four improvement strategies, and four new improvement algorithms are
created in their place. This includes an improved algorithm for removing the initialization
phase improvement strategy in Section 3.1 of IECO, an enhanced algorithm for removing
the family clan individual update method improvement strategy in Section 3.2 of IECO,
an improved algorithm for removing the male elephant clan individual update method im-
provement strategy in Section 3.3 of IECO, and an improved algorithm for removing the
family clan individual replacement strategy in Section 3.4 of IECO. For ease of reference,
the four new and improved algorithms above are referred to as IECO1, IECO2, IECO3,
and IECO4, respectively, and are compared to the IECO algorithm on the CEC2013 test
set.

To ensure fairness, the number of populations in each method is set to N = 50, the
dimension of the test function is set to D = 30, and the maximum number of function
evaluations is set to MaxFEs = 150000. Table 1 shows how the additional parameters of
each algorithm are configured. To exclude the possibility of a single algorithm operation,
each algorithm is performed separately 30 times on each test function.

Table 2 displays the running results of each algorithm on 28 test functions in 30 dimen-
sions, where “±” represents the average and standard deviation of the optimal value in 30
tests, respectively, and excludes an improvement method for the same function. The data
for which the enhanced method is clearly inferior to the IECO algorithm is highlighted
in black. The Friedman test [39] and the Wilcoxon rank sum test with a significance
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Table 1. Algorithm related parameters

Algorithm Initial parameters

IECO numberC = 5; Swarmsize = 10; Nmat = 3; limit = 10
IECO1 numberC = 5; Swarmsize = 10; Nmat = 3
IECO2 numberC = 5; Swarmsize = 10; Nmat = 3; limit = 10; Alpha = 1.5; Beta = 1.5
IECO3 numberC = 5; Swarmsize = 10; Nmat = 3; limit = 10
IECO4 numberC = 5; Swarmsize = 10; Nmat = 3; limit = 10

level of 5% were conducted between the IECO algorithm and the improved algorithms to
further confirm the distinctions between the two, and the results are displayed in Tables 3
and 4, respectively. When the p-value in Table 3 is greater than 0.05, it means that there
is no significant difference between the corresponding enhanced algorithm and the IECO
method, as shown by the symbol “=”. If the p-value is less than 0.05 and the average value
of the optimal solution obtained in 30 trials of the corresponding improved algorithm is
better than the IECO algorithm, it indicates that the corresponding improved algorithm
is significantly better than the IECO algorithm, which is indicated by the symbol “+”.
Otherwise, the symbol “−” indicates that the performance of the associated upgraded
method is considerably lower than that of the IECO algorithm. The algorithm performs
better overall if the average ranking that it correlates to in Table 4 is lower.

Table 2. The comparison results of each of the improved algorithms and
the IECO algorithm in the 30-dimensional CEC2013 test set.

IECO IECO1 IECO2 IECO3 IECO4

F1 0.00E + 00± 0.00E + 00 1.26E− 27± 3.04E− 27 7.15E+ 00± 3.33E+ 01 2.28E+ 03± 7.99E+ 02 6.33E− 12± 1.70E− 11
F2 1.45E + 06± 1.56E + 06 1.24E + 06± 1.77E + 06 1.77E+ 07± 1.49E+ 07 1.01E+ 08± 4.06E+ 07 3.39E+ 06± 1.58E+ 06
F3 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 4.44E+ 07± 2.43E+ 08 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00
F4 1.75E + 04± 6.13E + 03 1.72E + 04± 1.36E + 04 7.43E+ 04± 9.28E+ 03 1.19E+ 05± 1.95E+ 04 3.73E+ 04± 6.68E+ 03
F5 0.00E + 00± 0.00E + 00 6.60E− 19± 3.54E− 18 6.72E− 08± 1.72E− 07 1.63E+ 03± 6.69E+ 02 6.80E− 09± 1.15E− 08
F6 3.23E + 01± 2.89E + 01 4.94E+ 01± 3.59E+ 01 9.24E+ 01± 4.53E+ 01 3.64E+ 02± 1.13E+ 02 5.55E+ 01± 2.77E+ 01
F7 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 9.02E+ 02± 1.36E+ 03 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00
F8 2.12E + 01± 4.96E − 02 2.10E + 01± 4.79E − 02 2.11E + 01± 1.18E − 01 2.12E+ 01± 6.36E− 02 2.12E+ 01± 5.88E− 02
F9 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 1.27E+ 01± 1.27E+ 01 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00
F10 2.96E − 01± 1.63E − 01 3.16E− 01± 1.80E− 01 2.35E+ 01± 4.48E+ 01 5.53E+ 02± 1.85E+ 02 3.40E− 01± 1.61E− 01
F11 0.00E + 00± 0.00E + 00 3.32E− 01± 1.64E+ 00 1.54E+ 01± 1.60E+ 01 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00
F12 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 1.51E+ 02± 3.05E+ 01 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00
F13 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00 1.96E+ 02± 3.90E+ 01 0.00E + 00± 0.00E + 00 0.00E + 00± 0.00E + 00
F14 1.41E + 03± 3.48E + 02 1.73E+ 03± 3.90E+ 02 2.96E+ 03± 3.96E+ 02 7.31E+ 03± 1.10E+ 03 1.05E + 03± 2.85E + 02
F15 2.77E + 03± 6.91E + 02 3.26E+ 03± 8.14E+ 02 4.02E+ 03± 5.71E+ 02 8.68E+ 03± 3.96E+ 02 3.19E+ 03± 7.74E+ 02
F16 4.35E + 00± 6.04E − 01 2.61E + 00± 1.93E − 01 6.99E − 01± 2.61E − 01 4.44E+ 00± 7.04E− 01 4.70E+ 00± 5.07E− 01
F17 3.40E + 01± 1.35E + 01 5.46E+ 01± 1.89E+ 01 9.22E+ 02± 1.77E+ 02 4.45E+ 02± 8.64E+ 01 5.36E+ 01± 1.46E+ 01
F18 9.87E + 01± 7.53E + 01 5.93E + 01± 3.42E + 01 1.00E+ 03± 2.25E+ 02 4.81E+ 02± 1.24E+ 02 1.68E+ 02± 6.13E+ 01
F19 2.97E + 00± 7.08E − 01 3.82E+ 00± 1.48E+ 00 1.66E+ 03± 1.18E+ 03 1.19E+ 02± 9.22E+ 01 1.40E+ 01± 5.27E+ 00
F20 0.00E + 00± 0.00E + 00 6.00E+ 00± 7.47E+ 00 1.45E+ 01± 4.53E− 03 1.35E+ 01± 4.57E+ 00 4.27E+ 00± 6.59E+ 00
F21 4.00E + 02± 0.00E + 00 4.00E+ 02± 1.90E− 13 4.12E+ 02± 5.24E+ 01 7.95E+ 02± 1.56E+ 02 4.00E+ 02± 1.51E− 06
F22 1.44E + 03± 4.13E + 02 1.72E+ 03± 6.51E+ 02 4.04E+ 03± 7.44E+ 02 8.30E+ 03± 1.14E+ 03 1.08E + 03± 3.21E + 02
F23 3.17E + 03± 7.89E + 02 3.14E + 03± 6.74E + 02 5.18E+ 03± 7.91E+ 02 8.95E+ 03± 4.97E+ 02 3.21E+ 03± 9.04E+ 02
F24 2.03E + 02± 9.52E + 00 2.00E + 02± 1.35E − 01 2.60E+ 02± 3.71E+ 01 2.17E+ 02± 1.96E+ 01 1.97E + 02± 1.82E + 01
F25 2.98E + 02± 2.31E + 01 2.46E + 02± 4.93E + 01 3.13E+ 02± 2.87E+ 01 3.07E+ 02± 2.82E+ 01 2.30E + 02± 1.09E + 01
F26 2.97E + 02± 2.94E + 01 3.04E+ 02± 2.64E+ 01 3.38E+ 02± 6.34E+ 01 3.04E+ 02± 4.62E+ 01 3.00E+ 02± 3.16E− 06
F27 4.13E + 02± 2.06E + 02 3.34E + 02± 8.05E + 01 1.07E+ 03± 2.93E+ 02 6.33E+ 02± 2.82E+ 02 3.16E + 02± 1.10E + 00
F28 8.21E + 02± 2.00E + 01 7.80E + 02± 1.85E + 02 4.17E+ 03± 4.50E+ 02 2.26E+ 03± 3.59E+ 02 9.08E+ 02± 8.25E+ 01

According to Table 2, there are 13 functions, 26 functions, 22 functions, and 17 func-
tions, respectively, where the performance of the aforementioned four enhanced algorithms
is less than that of the IECO method. The Wilcoxon rank sum test results of the IECO1
algorithm and the IECO algorithm on four test functions are “+,” suggesting that the
IECO1 method outperforms the IECO algorithm on these four functions, as shown in
Table 3. The Wilcoxon rank sum test results for eight test functions are “−”, indicating
that the IECO1 algorithm outperforms the IECO technique on these eight test functions.
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Table 3. Wilcoxon rank sum test results of each improved algorithm and
IECO algorithm

Function
p-value(vs.IECO)

IECO1 IECO2 IECO3 IECO4

F1 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F2 0.122(=) 0.000(−) 0.000(−) 0.000(−)
F3 1.000(=) 0.334(=) 1.000(=) 1.000(=)
F4 0.057(=) 0.000(−) 0.000(−) 0.000(−)
F5 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F6 0.047(−) 0.000(−) 0.000(−) 0.004(−)
F7 1.000(=) 0.000(−) 1.000(=) 1.000(=)
F8 0.000(+) 0.002(+) 0.000(−) 0.000(−)
F9 1.000(=) 0.000(−) 1.000(=) 1.000(=)
F10 0.784(=) 0.000(−) 0.000(−) 0.201(=)
F11 0.161(=) 0.000(−) 1.000(=) 1.000(=)
F12 1.000(=) 0.000(−) 1.000(=) 1.000(=)
F13 1.000(=) 0.000(−) 1.000(=) 1.000(=)
F14 0.002(−) 0.000(−) 0.000(−) 0.000(+)
F15 0.028(−) 0.000(−) 0.000(−) 0.022(−)
F16 0.000(+) 0.000(+) 0.492(=) 0.022(−)
F17 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F18 0.102(=) 0.000(−) 0.000(−) 0.000(−)
F19 0.030(−) 0.000(−) 0.000(−) 0.000(−)
F20 0.000(−) 0.000(−) 0.000(−) 0.001(−)
F21 1.000(=) 0.000(−) 0.000(−) 0.000(−)
F22 0.176(=) 0.000(−) 0.000(−) 0.000(+)
F23 0.842(=) 0.000(−) 0.000(−) 0.807(=)
F24 0.299(+) 0.000(−) 0.000(−) 0.004(+)
F25 0.000(+) 0.003(−) 0.000(−) 0.000(+)
F26 0.893(=) 0.000(−) 0.039(−) 0.000(−)
F27 0.270(=) 0.000(−) 0.001(−) 0.206(=)
F28 0.348(=) 0.000(−) 0.000(−) 0.000(−)

+/ = /− 4/16/8 2/1/25 0/7/21 4/9/15

Table 4. Friedman test results of the five algorithms

IECO IECO1 IECO2 IECO3 IECO4

Avg.rank 1.77 2.27 4.39 4.05 2.52
sort 1 2 5 4 3

In comparison, the Wilcoxon rank sum test results on the remaining 16 test functions
are “=”, indicating that their performance is comparable. The IECO2 algorithm out-
performs the IECO algorithm on 2 test functions, is identical to the IECO algorithm
on 1 test function, and is inferior to the IECO algorithm on 25 test functions. IECO3
performs similarly to the IECO algorithm on seven tested functions and inferiorly to the
IECO algorithm on 21 tested functions. The IECO4 algorithm outperforms the IECO
algorithm on 4 test functions, is similar to the IECO algorithm on 9 test functions, and is
inferior to the IECO algorithm on 15 test functions. It can be seen from Table 4 that after
removing one of the corresponding improved strategies in IECO, the rank mean of the
corresponding improved algorithm is larger than that of the IECO algorithm, indicating
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that all four improved strategies proposed in this paper have a significant impact on the
overall performance of the IECO algorithm.

In conclusion, the four improvement tactics described in this research are extremely
effective. The improvement techniques in sections 3.2 and 3.3 have a greater influence on
the performance of the IECO algorithm, whereas the other two improvement algorithms
do not differ much in terms of IECO algorithm performance.

5.2. IECO’s performance in contrast to other algorithms. To verify whether
the performance of the IECO algorithm is superior in terms of convergence accuracy
and speed, this section compares it with the ECO algorithm and four previously ex-
cellent evolutionary algorithms on the CEC2013 test set. These include the backward-
learning enhanced sine cosine algorithm (ESCA) [40], the improved crow search algo-
rithm (ICSA) [41], the enhanced Archimedean classification feature selection algorithm
(EAOA) [42], and the dual population-based artificial tree algorithm (IATTP) [43]. The
maximum number of function evaluations is MaxFEs = 150000, and the number of popu-
lations is N = 50 for all algorithms to guarantee that the comparison is fair. Table 5 shows
the additional parameter settings of each method, where the settings of each comparing
algorithm are consistent with the original text.

Table 5. Initial parameter settings for each algorithm

Algorithm Initial Parameters

IECO numberC = 5; Swarmsize = 10; Nmat = 3; limit = 10
ECO numberC = 5; Swarmsize = 10; Nmat = 3; Alpha = 1.5; Beta = 1.5
ESCA Pc = 0.6, r2 = 2*pi*rand(0,1), r3 = 2*rand(0,1), r4 = r5 = r6 = r7 = r8 = rand(0,1)
ICSA AP = 0.1; FL = 1.5
EAOA C1 = 2; C2 = 6; C3 = 2; C4 = 0.5
IATTP h1 = h2 = h3 = 0.5; h4 = 0.8; m = 50, q = 0.8

(1) Comparison of the convergence accuracy of the IECO algorithm with that of other
algorithms

In order to fully compare the performance of the IECO algorithm and other algorithms
in terms of convergence accuracy, the tests are carried out on the CEC2013 test sets
of two different dimensions, D = 30 and D = 100. On the 30- and 100-dimensional
CEC2013 datasets, the mean and standard deviation of 30 individual experiments for
each method are displayed in Tables 6 and 7, respectively. The function that achieves the
best optimization on the same function is marked in black. A Wilcoxon rank-sum test
between the IECO algorithm and the other algorithms was carried out with a 5% level
of significance in order to further confirm the distinctions between the two. The results
are displayed in Table 8. The Fridman test results are included in Table 9 for a thorough
analysis of the overall performance of all methods.

Table 6 indicates that the IECO method achieves the global optimum on nine test
functions, including F1, F3, F5, F7, F9, F11, F12, F13, and F20 for the 30-dimensional
optimization issue. On the F3, F7, and F9 test functions, the ECO algorithm reached the
global optimum. However, the IECO algorithm completed better mean values than the
ECO algorithm on the remaining test functions; ESCA only produced theoretically ideal
outcomes for F3 and F11; ICSA obtained theoretically ideal values for F3, F7, F9, F12,
and F13 functions; EAOA obtained the theoretical optimum on F11 only; Six functions,
including F3, F7, F9, F11, F12, and F13, have the theoretical optimum determined via
IATTP. As demonstrated in Table 8, the ECO method performs similarly to the IECO al-
gorithm on four functions but considerably worse on 24 tested functions; ESCA performs
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similarly on seven functions but significantly worse on 21 functions. ICSA’s performance
was level on 5 of the 23 assessed functions but considerably poorer on the remaining 23
functions. EAOA performs much better on F16 alone but significantly worse on the rest
of the 25 functions. Only two of the test functions have a considerably higher perfor-
mance than the IATTP, while the other eighteen have a significantly lower performance.
In conclusion, for the 30-dimensional CEC2013 test set, compared with other represen-
tative algorithms, the IECO algorithm proposed in this paper has obvious advantages in
convergence accuracy.

Table 6. Data results of the IECO algorithm and other algorithms on the
30-dimensional CEC2013 test set

IECO ECO ESCA ICSA EAOA IATTP

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

F1 0.00E+00 0.00E+00 2.17E+01 3.55E+00 4.09E+03 7.40E+02 4.10E+01 4.42E+01 1.75E+03 4.88E+02 4.40E+00 1.58E+00
F2 1.45E+06 1.56E+06 1.01E+07 3.33E+06 1.71E+08 3.81E+07 2.15E+07 6.63E+06 7.53E+07 2.60E+07 1.19E+07 4.54E+06
F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.79E+06 1.12E+07 0.00E+00 0.00E+00
F4 1.75E+04 6.13E+03 1.07E+05 1.77E+04 5.37E+04 5.60E+03 1.31E+04 3.17E+03 5.36E+04 5.91E+03 1.16E+03 5.78E+02
F5 0.00E+00 0.00E+00 9.76E+00 1.99E+00 4.80E+03 1.13E+03 2.66E+02 1.50E+02 9.51E+02 2.91E+02 2.03E+01 8.50E+00
F6 3.23E+01 2.89E+01 5.35E+01 2.62E+01 5.13E+02 1.58E+02 1.29E+02 3.10E+01 2.15E+02 5.80E+01 8.24E+01 2.20E+01
F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.95E+00 2.02E+01 0.00E+00 0.00E+00 1.45E+01 2.02E+01 0.00E+00 0.00E+00
F8 2.10E+01 3.37E-02 2.10E+01 5.35E-02 2.10E+01 5.77E-02 2.10E+01 4.35E-02 2.10E+01 6.21E-02 2.10E+01 5.95E-02
F9 0.00E+00 0.00E+00 2.37E+00 7.03E+00 2.58E+00 9.86E+00 0.00E+00 0.00E+00 3.98E+00 8.86E+00 0.00E+00 0.00E+00
F10 2.96E-01 1.63E-01 7.70E+00 1.86E+00 1.12E+03 1.95E+02 1.06E+02 5.49E+01 6.51E+02 1.50E+02 2.44E+01 9.23E+00
F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.98E-01 8.51E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F12 0.00E+00 0.00E+00 8.70E+01 6.87E+01 7.09E+00 3.88E+01 0.00E+00 0.00E+00 1.61E+02 4.07E+01 0.00E+00 0.00E+00
F13 0.00E+00 0.00E+00 1.07E+01 3.07E+01 1.91E+01 5.83E+01 0.00E+00 0.00E+00 1.65E+02 5.81E+01 0.00E+00 0.00E+00
F14 1.41E+03 3.48E+02 3.92E+03 4.60E+02 7.32E+03 4.48E+02 2.69E+03 7.60E+02 4.19E+03 3.73E+02 6.79E+03 3.03E+02
F15 2.77E+03 6.91E+02 5.43E+03 4.44E+02 7.61E+03 2.54E+02 6.64E+03 6.17E+02 5.38E+03 6.37E+02 6.86E+03 7.74E+02
F16 4.35E+00 6.04E-01 2.98E+00 3.20E-01 2.77E+00 3.40E-01 2.67E+00 2.93E-01 2.30E+00 3.79E-01 2.67E+00 3.33E-01
F17 3.40E+01 1.35E+01 2.17E+02 1.82E+01 5.61E+02 6.35E+01 8.90E+01 2.91E+01 4.41E+02 4.59E+01 2.04E+02 1.34E+01
F18 9.87E+01 7.53E+01 2.85E+02 1.53E+01 5.64E+02 5.03E+01 2.13E+02 2.78E+01 4.58E+02 6.41E+01 2.22E+02 1.90E+01
F19 2.97E+00 7.08E-01 1.86E+01 1.40E+00 8.69E+02 5.97E+02 1.15E+01 3.79E+00 8.78E+01 6.06E+01 1.74E+01 2.08E+00
F20 0.00E+00 0.00E+00 1.45E+01 9.72E-01 2.65E+00 5.41E+00 6.95E+00 4.80E+00 1.41E+01 1.09E+00 7.16E-01 2.48E+00
F21 4.00E+02 0.00E+00 4.15E+02 6.50E+01 6.02E+02 2.87E+01 4.29E+02 3.09E+01 5.42E+02 4.13E+01 4.02E+02 4.47E-01
F22 1.44E+03 4.13E+02 4.05E+03 5.42E+02 7.61E+03 3.57E+02 2.27E+03 7.99E+02 4.95E+03 6.16E+02 7.04E+03 3.74E+02
F23 3.17E+03 7.89E+02 6.07E+03 5.82E+02 7.98E+03 3.24E+02 5.08E+03 1.35E+03 6.60E+03 8.65E+02 7.58E+03 3.89E+02
F24 1.97E+02 1.83E+01 2.03E+02 1.17E+01 3.03E+02 3.87E+00 2.02E+02 5.23E+00 2.40E+02 3.49E+01 2.00E+02 1.12E-01
F25 2.98E+02 2.31E+01 2.77E+02 3.44E+01 3.02E+02 3.72E+00 2.76E+02 2.76E+01 3.00E+02 1.01E+01 2.22E+02 2.13E+01
F26 2.97E+02 2.94E+01 2.99E+02 5.71E+01 3.67E+02 5.93E+01 2.96E+02 2.77E+01 3.54E+02 4.24E+01 2.54E+02 5.04E+01
F27 3.13E+02 1.91E+01 6.03E+02 2.85E+02 2.60E+03 1.92E+02 3.70E+02 1.35E+02 9.98E+02 1.30E+02 3.20E+02 2.19E+00
F28 8.21E+02 2.00E+01 1.06E+03 3.68E+02 2.23E+03 1.70E+02 1.70E+03 4.64E+02 3.14E+03 1.09E+03 1.02E+03 2.18E+01

Table 7 shows that the IECO method successfully solves the 100-dimensional optimiza-
tion issue for the global optimum on three test functions, including F3, F7, and F11.
ECO achieves the global optimum on F3 and F7, except on F6, F8, and F16, where ECO
obtains better mean values than the IECO algorithm, but on the remaining 23 functions,
ECO obtains worse mean values than the IECO algorithm; ESCA and EAOA achieved a
global optimum on F11; Neither ICSA nor IATTP achieved the theoretical optimal value
on any function. As demonstrated in Table 8, ECO performs much worse than the IECO
algorithm on all 20 functions examined, with the exception of three functions, namely F6,
F8, and F16; ESCA has the same performance on 2 test functions, significantly better
performance on 2 functions, but significantly worse performance on 24 functions; ICSA
performs equally well on four functions, noticeably better on four functions, and signifi-
cantly worse on the other 20 functions examined; EAOA performs much worse on the 24
examined functions, only doing slightly better on F8 and F16; IATTP performs consider-
ably worse on 21 of the assessed functions, while only doing significantly better on three
of them. In summary, it demonstrates that the IECO algorithm described in this research
has a considerable advantage in convergence accuracy when compared to existing typical
approaches for high-dimensional optimization problems. The performance difference be-
tween the methods is greater than the performance gap for 30-dimensional optimization
problems.
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Table 7. Data results of the IECO algorithm and other algorithms on the
100-dimensional CEC2013 test set

IECO ECO ESCA ICSA EAOA IATTP

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

F1 2.32E-13 8.31E-13 9.99E+01 1.14E+02 6.65E+04 6.76E+03 1.41E+04 4.57E+03 3.61E+04 5.27E+03 3.23E+03 5.81E+02
F2 1.33E+07 8.86E+06 3.94E+07 7.77E+06 9.62E+08 1.48E+08 2.35E+08 6.43E+07 1.14E+09 1.99E+08 2.28E+08 4.66E+07
F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.95E+14 1.06E+15 4.12E+11 3.75E+11 6.97E+14 1.45E+15 9.69E+10 1.80E+11
F4 1.26E+05 4.17E+04 3.53E+05 3.99E+04 2.14E+05 1.46E+04 9.61E+04 1.24E+04 1.55E+05 1.30E+04 4.45E+04 7.90E+03
F5 8.13E-10 3.76E-09 1.25E+01 8.42E+00 5.10E+04 8.01E+03 8.22E+03 2.70E+03 1.24E+04 2.54E+03 2.15E+03 3.70E+02
F6 3.30E+02 1.04E+02 2.82E+02 4.60E+01 8.48E+03 1.50E+03 2.04E+03 3.40E+02 5.19E+03 1.23E+03 1.05E+03 1.54E+02
F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.95E+03 7.54E+03 4.37E+02 2.29E+02 1.41E+04 1.47E+04 5.02E+02 5.01E+02
F8 2.15E+01 2.89E-02 2.13E+01 2.56E-02 2.13E+01 2.31E-02 2.13E+01 2.52E-02 2.14E+01 2.38E-02 2.14E+01 2.46E-02
F9 9.49E+01 6.17E+00 1.05E+02 7.13E+00 1.26E+02 7.36E+00 8.09E+01 7.89E+00 1.25E+02 6.23E+00 1.15E+02 7.82E+00
F10 3.05E+00 1.95E+00 5.29E+01 1.60E+01 8.12E+03 1.02E+03 2.39E+03 4.36E+02 6.92E+03 8.24E+02 1.60E+03 2.39E+02
F11 0.00E+00 0.00E+00 1.14E+01 1.39E+01 0.00E+00 0.00E+00 9.49E+01 3.21E+01 0.00E+00 0.00E+00 1.58E+00 6.32E+00
F12 4.43E+02 3.80E+01 7.36E+02 7.17E+01 1.17E+03 1.62E+02 5.77E+02 6.70E+01 1.32E+03 2.44E+02 7.23E+02 7.22E+01
F13 5.31E+02 1.50E+02 6.34E+02 5.01E+01 1.20E+03 1.35E+02 6.43E+02 5.52E+01 1.11E+03 1.38E+02 7.30E+02 6.11E+01
F14 8.15E+03 9.55E+02 1.90E+04 2.30E+03 2.90E+04 6.83E+02 1.79E+04 2.93E+03 2.44E+04 1.11E+03 3.12E+04 9.73E+02
F15 1.35E+04 1.44E+03 2.51E+04 1.09E+03 2.92E+04 9.84E+02 3.06E+04 5.50E+02 2.79E+04 1.15E+03 3.09E+04 5.94E+02
F16 5.55E+00 6.80E-01 4.41E+00 3.31E-01 4.17E+00 3.32E-01 4.40E+00 3.47E-01 4.24E+00 3.05E-01 4.40E+00 1.98E-01
F17 3.74E+02 1.15E+02 9.87E+02 9.60E+01 4.09E+03 3.33E+02 1.35E+03 1.87E+02 2.67E+03 2.28E+02 1.45E+03 9.02E+01
F18 1.61E+02 2.46E+01 1.32E+03 9.01E+01 4.14E+03 2.69E+02 1.73E+03 1.86E+02 2.95E+03 2.56E+02 1.45E+03 5.20E+01
F19 2.57E+01 4.87E+00 9.15E+01 8.79E+00 1.63E+05 8.27E+04 5.32E+03 3.15E+03 1.80E+05 8.90E+04 1.67E+03 9.35E+02
F20 5.00E+01 3.56E-14 5.00E+01 1.27E-13 5.00E+01 1.66E-09 5.00E+01 2.37E-13 5.00E+01 4.70E-09 5.00E+01 2.01E-11
F21 3.77E+02 4.28E+01 5.43E+02 1.63E+02 5.14E+03 3.74E+02 4.81E+03 9.74E+02 6.89E+03 4.35E+02 2.36E+03 9.65E+02
F22 9.48E+03 1.51E+03 2.23E+04 2.28E+03 2.98E+04 7.26E+02 1.64E+04 3.72E+03 2.69E+04 9.13E+02 3.14E+04 8.68E+02
F23 1.54E+04 1.78E+03 2.91E+04 1.90E+03 3.21E+04 9.67E+02 2.98E+04 1.75E+03 3.22E+04 9.93E+02 3.29E+04 7.42E+02
F24 3.14E+02 9.49E+01 3.33E+02 1.17E+02 6.11E+02 5.29E+00 4.20E+02 2.91E+01 5.79E+02 2.01E+01 4.01E+02 8.02E+01
F25 5.51E+02 2.59E+01 5.57E+02 1.74E+01 6.06E+02 4.97E+00 5.49E+02 1.70E+01 5.97E+02 1.70E+01 5.53E+02 1.68E+01
F26 4.46E+02 6.55E+01 5.12E+02 9.79E+01 6.97E+02 6.99E+00 4.42E+02 4.66E+01 5.98E+02 3.02E+01 4.56E+02 9.48E+01
F27 1.71E+03 9.35E+02 1.92E+03 1.11E+03 5.67E+03 5.35E+01 1.98E+03 4.00E+02 3.70E+03 2.50E+02 2.65E+03 5.60E+02
F28 6.61E+03 2.70E+03 4.39E+03 1.78E+03 1.50E+04 8.97E+02 9.75E+03 1.20E+03 1.61E+04 3.07E+03 1.00E+04 2.19E+03

Table 9 shows that the IECO method performs the best overall on the 30- and 100-
dimensional test functions among the six optimization techniques and that this advantage
becomes more pronounced as the dimensionality of the optimization issue rises. IATTP
placed second in total performance on the 30-dimensional test function, with ICSA and
ECO performing marginally worse than IATTP. The overall performance of ECO ranks
second in the 100-dimensional test function, while ICSA, IATTP, and EAOA perform
somewhat worse than ECO. The ESCA algorithm has the poorest overall performance of
the six algorithms. In summary, compared with other algorithms, the IECO algorithm
proposed in this paper has certain advantages in terms of convergence accuracy.

(2) Comparison of the IECO algorithm with other algorithms in terms of convergence
speed

The convergence curves of each algorithm on the 28 test functions of the CEC2013 test
set are shown in Figure 4 in order to more easily examine the variations in the algorithms’
rates of convergence when the dimension is 30. The abscissa is the number of function
evaluations, and the ordinate is the logarithm of the fitness value.

It can be seen from Figure 4 that for the single-mode functions F1–F5, the IECO al-
gorithm can obtain the global optimal value on the F1, F3, and F5 test functions and at
the same time show the fastest convergence speed. Compared to the other five algorithms
on F2, the IECO method has the highest convergence speed and accuracy. The IECO
algorithm’s convergence accuracy and speed on F4 are second only to ICSA and IATTP.
The IECO method can find the global optimal value on the F7, F9, F11, F12, F13, and
F20 test functions for the multi-mode functions F6–F20, and its convergence speed on
F12 is second only to ECO and ICSA. On F6, F8, F10, F14, F17, and F18, the IECO
method outperforms the other five algorithms in terms of convergence accuracy and speed.
The convergence accuracy and convergence speed of the IECO algorithm only on F16 are
second only to EAOA and ICSA; On the F15 and F19 test functions, the IECO algorithm
exhibits better convergence accuracy and speed than other algorithms. While the IECO
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Table 8. Wilcoxon rank sum test results for IECO and other algorithms
on the CEC2013 test set

Function
D = 30 p-value(vs.IECO) D = 100 p-value(vs.IECO)

ECO ESCA ICSA EAOA IATTP ECO ESCA ICSA EAOA IATTP

F1 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F2 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F3 1.000(=) 1.000(=) 1.000(=) 0.006(−) 1.000(=) 1.000(=) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F4 0.000(−) 0.000(−) 0.003(−) 0.000(−) 0.000(+) 0.000(−) 0.000(−) 0.002(+) 0.000(−) 0.000(+)
F5 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F6 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.017(+) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F7 1.000(=) 0.161(=) 1.000(=) 0.000(−) 1.000(=) 1.000(=) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F8 0.569(=) 0.003(−) 0.000(−) 0.000(−) 0.000(−) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)
F9 0.042(−) 0.161(=) 1.000(=) 0.001(−) 1.000(=) 0.000(−) 0.000(−) 0.000(+) 0.000(−) 0.000(−)
F10 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F11 1.000(=) 1.000(=) 0.003(−) 1.000(=) 1.000(=) 0.000(−) 1.000(=) 0.000(−) 1.000(=) 0.082(=)
F12 0.000(−) 0.334(=) 1.000(=) 0.000(−) 1.000(=) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F13 0.022(−) 0.082(=) 1.000(=) 0.000(−) 1.000(=) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F14 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F15 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F16 0.000(−) 0.000(−) 0.000(−) 0.000(+) 0.000(−) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)
F17 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F18 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F19 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F20 0.000(−) 0.011(−) 0.000(−) 0.000(−) 0.082(=) 1.000(=) 0.334(=) 1.000(=) 0.334(=) 1.000(=)
F21 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F22 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F23 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)
F24 0.001(−) 0.000(−) 0.000(−) 0.000(−) 0.001(−) 0.290(−) 0.000(−) 0.000(−) 0.000(−) 0.001(−)
F25 0.003(−) 0.340(=) 0.000(−) 0.234(=) 0.000(+) 0.631(=) 0.000(−) 0.420(=) 0.000(−) 0.796(=)
F26 0.009(−) 0.000(−) 0.000(−) 0.000(−) 0.583(=) 0.000(−) 0.000(−) 0.438(=) 0.000(−) 0.348(=)
F27 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.001(−) 0.158(=) 0.000(−) 0.673(=) 0.000(−) 0.000(−)
F28 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−) 0.000(−)

+/ = /− 0/4/24 0/7/21 0/5/23 1/2/25 2/8/18 3/5/20 2/2/24 4/4/20 2/2/24 3/4/21

Table 9. Friedman test for each algorithm

IECO ECO ESCA ICSA EAOA IATTP

D=30
Avg. rank 1.82 3.50 5.27 2.98 4.70 2.73

sort 1 4 6 3 5 2

D=100
Avg. rank 1.77 2.63 4.95 3.18 4.79 3.70

sort 1 2 6 3 5 4

algorithm’s convergence speed is a little slower in the early stages of evolution than other
algorithms’, by the late stages of evolution, when other algorithms’ search performance
has decreased, the IECO algorithm is still able to find a better solution than other algo-
rithms. For the composite functions F21–F28, the IECO method outperforms the other
five algorithms in terms of convergence accuracy and speed on the test functions F22,
F26, and F28; The IECO algorithm exhibits higher convergence accuracy and speedier
convergence on F23 and F25. The convergence speed of the IECO algorithm on F21, F24,
and F27 is similar to that of ECO, ICSA, and IATTP, where the convergence accuracy of
the IECO algorithm is higher. To summarize, the IECO method provides certain benefits
in terms of convergence speed when compared to the other five algorithms.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. Each algorithm’s convergence curves on the CEC2013 test suite.
The 28 test functions F1F28 in the CEC2013 test set are denoted by (a)–
(ab)
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(s) (t) (u)

(v) (w) (x)

Figure 4. Each algorithm’s convergence curves on the CEC2013 test suite.
The 28 test functions F1F28 in the CEC2013 test set are denoted by (a)–
(ab)

6. Conclusion. In this paper, an improved IECO algorithm is proposed to enhance the
convergence speed, convergence accuracy, and algorithm stability of the ECO algorithm.
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(y) (z) (aa)

(bb)

Figure 4. Each algorithm’s convergence curves on the CEC2013 test suite.
The 28 test functions F1F28 in the CEC2013 test set are denoted by (a)–
(ab)

The main contributions include the following: The algorithm proposes a population initial-
ization method with an additional autonomous movement strategy to increase population
diversity with reference to the autonomous movement habits of natural elephant popula-
tions. At the same time, Euclidean distance-based clade division is proposed to avoid the
blindness of the original random division method and further balance convergence speed
and population diversity. Also inspired by ABC, a premature suppression mechanism is
proposed to increase the possibility of the algorithm jumping out of the local optimum.
In addition, a novel search strategy for individual family clan members and matriarchs
based on autonomous positional movements is proposed to balance convergence speed
and population diversity. Then, a new strategy for updating male elephant individuals
is proposed, which furthers the algorithm’s convergence speed and population diversity.
Finally, adult elephants select alternative replacement techniques based on their fitness
values, which enhance convergence speed while retaining population variety as well as the
algorithm’s robustness to cope with varied optimization challenges. In the early stages of
evolution, the inferior individuals learn from the superior individuals while retaining some
of their information, which maintains population diversity and improves the convergence
speed of the algorithm. In later stages of evolution, the simplex approach is employed to
improve the worst point in order to raise the algorithm’s convergence speed, while new
exceptional individuals may be produced to further supply the population’s variety. The
simulation results of multiple experiments on this algorithm in the CEC2013 test set show
that the IECO algorithm has a stronger competitiveness in single-mode and multi-mode
problems compared to several other comparative algorithms, but the complexity of this



788 Y.-J. Wang and W.-Y. Liu

algorithm is slightly high and lacks application to practical engineering problems. In fu-
ture work, the complexity of the IECO algorithm can be further reduced while applying
it to practical engineering problems.
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