Journal of Network Intelligence (©2024 ISSN 2414-8105 (Online)
Taiwan Ubiquitous Information Volume 9, Number 2, May 2024

Kalman Filter-based Cycle-Consistent Adversarial
Learning for Time Series Anomaly Detection

Shu-Tang Liu
Faculty of Humanities and Arts

Macau University of Science and Technology, Macau 999078, China

Academic Affairs Office
Minjiang University, Fuzhou 350108, China
seahippo@126.com
Ji-Jie Fan*
Kyrgyz National University Named after Jusup Balasagyn, Bishkek 720033, Kyrgyzstan
jijiefan@gmail.com
Rui-Dong Wang

School of Computer Science and Technology
Harbin University of Science and Technology, Harbin 150080, China
iswangrd@gmail.com

Han Han

School of Measurement and Control Technology and Communication Engineering
Harbin University of Science and Technology, Harbin 150080, China
ishanhan266@gmail.com

De-Yang Zhang

Henan Provincial Institute of Scientific and Technical Information, Zhengzhou 450003, China
zhdy@qq.com

*Corresponding author: Ji-Jie Fan
Received September 4, 2023, revised December 21, 2023, accepted March 8, 2024.

ABSTRACT. Anomaly detection in time series is challenging for machine learning due to
the uncertainty and complex pattern in time series. In this paper, we propose a Kalman
filter-based cycle-consistent adversarial learning framework (KFCGAN) for time series
anomaly detection, assuming that the abnormal pattern prevents the model from recon-
structing the original and filtered signals. Specifically, KFCGAN comprises a Kalman
filter module and a cycle-consistent adversarial learning module that utilizes an auto-
encoder as its generator. Firstly, the Kalman filter module generates the filtered signals
from the original signals as the target domain. Then, the forward direction of the cycle-
consistent adversarial learning module learns the transformation of the original time
series domain to the filtered time series domain. At the same time, the backward di-
rection optimizes it by transforming the target domain to the original domain. Finally,
anomaly detection can be modeled as the signal reconstruction problem between the orig-
inal and target domains. The experimental results on five real-world datasets show that
the proposed method outperforms the start-of-the-art, demonstrating that KFCGAN can
effectively capture abnormal time series patterns.

Keywords: time series, unsupervised anomaly detection, adversarial learning, kalman
filter.
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1. Introduction. Time series data is a type of data that changes over time and is widely
present in the real world [1, 2, 3]. Time series analysis is crucial in various fields, including
industrial production [4, 5, 6, 7, 8], medicine [9, 10, 11, 12, 13], human activity recognition
[14] and financial time series analysis [15, 16]. Specifically, time series anomaly detection is
an important problem worthy of study [17, 18, 19]. For example, in the medical field, the
status of patients can be judged by analyzing whether an electrocardiogram is abnormal.
In the financial field, malicious manipulation of stock prices can be detected by analyzing
abnormal fluctuations in stock prices.

Time series anomaly detection aims to identify signals that exhibit significant deviations
from other signals [20, 21]. In recent years, there are a lot of methods based on deep
learning have been proposed concerning the time series anomaly detection task [22, 23,
24]. The clustering-based methods [25, 26] learn a compact boundary of normal data to
distinguish between normal and abnormal signals. Due to the time series data being a kind
of complex data that has a strong temporal relationship, the traditional methods such as
OC-SVM [26] and Deep-SVDD [27] achieve good performance in the traditional anomaly
detection cannot use to detect the anomaly time series directly. Additionally, residual-
error-based methods [23, 28] learn a lower-dimensional feature embedding and utilize it
to predict future time series or reconstruct the original time series. By computing the
error between the predicted/reconstructed time series and the actual time series, these
methods are able to detect abnormal time series. Methods based on distribution learning,
such as BeatGAN [23] and MADGAN [29], leverage the capabilities of LSTM to capture
the temporal information inherent in time series data. These methods employ Generative
Adversarial Networks (GAN) [30, 31] to learn the distribution of normal time series data.
Subsequently, any signals that deviate from the learned distributions are identified as
abnormal.

However, current time series anomaly detection methods primarily concentrate on learn-
ing signal representations in low-dimensional feature spaces, neglecting the direct extrac-
tion of differentiation information between normal and abnormal time series. Figure 1
shows the main ideas of KFCGAN. Different from other methods, this paper proposed a
Kalman filter-based cycle-Consistent adversarial learning framework, which learns the dif-
ference between normal signals and abnormal signals for anomaly detection. Specifically,
KFCGAN first utilizes the Kalman Filter to convert the original time series into denoised
representations. And then, cycle-consistent adversarial learning which has two directions
in the loop is designed to learn the transformation between the original signals domain
and the domain of the filtered signal. The forward direction of the loop aims to convert
the original time series into filtered time series, while the backward direction refines the
forward transformation by mapping the time series from the filtered signal domain back
to the original signal domain. Subsequently, the discrepancy between the signal in the
original signal domain and the filtered signal domain is employed as the anomaly score
for detecting time series anomalies. The main contributions are summarized as follows:

e We propose a framework of transformation-based time series anomaly detection
named KFCGAN, which aims to learn the transformation between the original sig-
nal domain and the filtered signal domain and detect the anomaly by measuring the
reconstruction error between the original domain and the target domain.

e We propose a Kalman filter-based method with cycle-Consistent adversarial learning
to learn the transformation between the original signal domain and the filtered signal
domain. Specifically, it has two directions in the loop to learn the transformations
between the original signal domain and the filtered signal domain and optimize
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FIGURE 1. The key idea of KFCGAN.

each other in the training process, and define the transformation difference between
domains as the anomaly score for time series anomaly detection.

e We conduct extensive experiments and experimental results show that the proposed
KFCGAN outperforms the state-of-art baselines, which proves the effectiveness of
the proposed method.

2. Related Works.

2.1. Generative adversarial networks. Generative Adversarial Networks (GAN) [32]
is a kind of generation model which widely used in many fields. It utilizes game theory
ideas to optimize the quality of data generated by the generator. GAN consists of a gener-
ator designed to obtain the distribution of training data, and a discriminator to estimate
the probability of a sample from the original data or generator. In recent years, numerous
GAN-based methods have been proposed [33, 34] to generate high-quality data. Bidi-
rectional Generative Adversarial Network(BiGAN) [35] is an unsupervised method that
designs an encoder to extract the data feature which can be used for downstream tasks.
Coupled generative adversarial network(CoGAN) [36] utilize the ideas of hierarchical fea-
ture representation to learn the joint distribution of data, and achieve good performance.
Cycle-Consistent Adversarial Networks (CycleGAN) [37] is designed for domain adap-
tation. It has two generators, one is responsible for transforming data from the source
domain to the target domain, while the other generator performs the reverse transforma-
tion, converting data from the target domain back to the source domain. Besides, some
GAN-based methods have been proposed for anomaly detection tasks, such as AnoGAN
[38] and Ganomaly [39] which utilize the strong generative ability of GAN to generate
similar data with original data, and anomalies are detected by computing the similarity
between the generated data and the original data.

2.2. Time series anomaly detection. Recently, lots of time series anomaly detection
methods have been proposed in many domains such as intelligent diagnosis of mechanical
faults [40, 41, 42], human activity recognition [14] and financial time series analysis [15, 16],
which can be divided into two categories: the clustering-based methods, and residual-
error-based methods.

The main idea of the clustering-based methods [43, 44, 45] is to learn compact bound-
aries of normal data to separate the normal data and abnormal data in the latent space.
Such as one-class methods (OC-SVM [26], Deep-SVDD [46]), they first use the neural
networks to map the original signals to latent space and optimize the model by the one-
class objective function. But those methods cannot be directly used in temporal data.
The residual-error-based methods [47] aims to predict the next time’s value or recon-
struct the original time series, and compute the error between the generated data and
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FIGURE 2. The proposed framework of KFCGAN.

the ground truth as anomaly score to detect anomaly. Long short-term Memory(LSTM)-
based methods [48, 49] utilize the LSTM to capture the temporal relationship of time
series, and predict the next time sequence for anomaly detection. Besides, some methods
based on auto-encoder [50, 51] assume that the anomaly data cannot reconstruct from
the low-dimensional space, they first map the data into low-dimensional space and then
reconstruct them from the latent space. The reconstruction error is then computed as
an anomaly score to detect abnormal data. Another residual-error based methods utilize
the advantage of generative adversarial networks to generate the data from the learned
distribution and detect the anomaly by computing the error between original data and
generated data [52, 53]. AnoGAN [54] and Ganomaly [39] are the GAN-based methods for
anomaly detection, which learn the latent representation of test data and use the genera-
tor to obtain the generated data from latent representation, then, detect the anomaly by
computing the residual-error between original data and generated data. ALAD [55] is a
bidirectional GAN-based method that avoids the expensive computation process by using
the learned low dimensional feature to train Generative Adversarial Networks. However,
these methods suffer from gradient disappearance and gradient explosion problems. Beat-
GAN [23] utilizes the adversarial regularity in the discriminator to constrain the feature
learned by the encoder to avoid those problems. Besides, some multi-modal based meth-
ods such as MMGAN [56] learn the distribution from both the time domain and frequency
domain perspectives and detect the anomaly by measuring the reconstruction error from
both two domains. Although the above methods perform well for time series anomaly
detection, those methods just consider the data representation in the low-dimensional fea-
ture space, which makes they can not achieve better performance. Different from those
methods, KFCGAN directly captures discriminative information between normal and ab-
normal time series. It learns the transformation between the original time series domain
and the filtered time series domain, and anomalies cannot be correctly transformed be-
tween the two domains, thus enabling anomaly detection.

3. Overview of proposed method. The proposed framework KFCGAN is shown in
Figure 2. KFCGAN consists of a Kalman filter to generate the target domain of time series
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and a cycle-consistent adversarial learning module which have two identically constructed
generators and discriminators to detect the anomaly signals. Firstly, we take the Kalman
filter to generate the filtered signals as the target domain. Then, the cycle-consistent
adversarial learning utilizes the original signals space as the source domain and filtered
signals space as the target domain to learn the transformation between original signals
and filtered signals. Specifically, the forward direction of cycle-consistent adversarial
learning is used to learn the transformation from the source domain to the target domain.
Conversely, the backward direction optimized the forward direction by transforming the
signals from the target domain back to the source domain. Furthermore, the generators
utilize the auto-encoder to map the signals to low dimensional feature space to learn the
signals embedding. After the training process, we detect the anomaly by measuring the
reconstruction error between the original signal domain and the filtered signal domain.

3.1. Filtered Signal Domain Generation. For time series, Kalman Filter can filter
the noises and estimate the filtered signals, which has an estimate process and state
update process. Specifically, give an original time series X = {x¢|i = 0,1,..., K}, and
input the value of X on t — 1 time step, the optimal estimate value of the next time step
can be computed as follows:

Ly = Al‘t_l + B'u,t_l (1)
with a measurement model equation:

Pt — APt_lAT + Q (2)

where the x; and P, is the estimate value of X and the variance on k time step, @ is the
variance of the noise in the original time series. A is the state transition matrix, B is the
input matrix, and wu;_4 is the input signal

Then, the Kalman filter updates the optimal estimator variance:

K, = PH"(HP,H' + R) (3)

where the K, is the Kalman gain of the time state ¢, R is the variance of the observation
noise, and H is the observation matrix. Then, the optimal estimated value x; can be
computed as follows:

Ly = fﬁt + Kt(zt — Hj?t) (4)

where &; and z; is the estimate value and observation value of this moment. And the
optimally estimated variance over covariance at time step t can be computed:

P, =(I1-KH)P, (5)

where 13t is the estimated variance of this moment.

In this paper, we input the time series X = {@¢|i = 0,1, ..., K} into the Kalman Filter
and obtain the filtered time series as the target domain of cycle-Consistent adversarial
learning.

3.2. Cycle-Consistent adversarial learning. Figure 2 show the overall architecture
of the KFCGAN. In this paper, we name the original domain as X = {z;]i = 1,2, ..., N}
and the filtered signal domain as Y. In order to learn the transformation between X
and Y, we define two generators, G, (®) and Gy, (e), as well as two discriminators, Dy,
and Dy,. The generators are designed to capture the mapping from X to Y and from
Y to X respectively. The discriminators provide feedback to optimize the performance
of both generators. We denote the generate original domain signal and filtered domain
signal as X andY. T hen, X' and Y’ would be transformed back to the original domain
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and filtered signal domain respectively. Specifically, all the layers in the generator and
discriminator utilize omni-scale CNN (OSCNN)[57] to learn the information of time series.

When training the Gy, (e), we take the original signal X as input to learn the trans-
formation from the original signal domain to the filtered signal domain by the generator
Gfw(e). Then, the Gy,(e) transforms the Y back to the original domain. The same
process for training Gy, (e).

Y = Gpu(X) (6)

X/ = be (Y) (7)
When training discriminator Dy, both Y and Y’ are are provided as inputs. Dy,
classifies Y as true and Y as false. And the same operation for discriminator Dy,,.
In the training process, the forward and backward directions of the loop mutually
optimize each other, enabling the generators to learn the transformation between the
original time series and the filtered time series.

3.3. Generator. To make full use of signal information and solve the parameter sensi-
tivity problem caused by modal feature dimension transformation, the generator adopts
an adaptive convolution architecture covering all scales (omni-scale CNN, OSCNN)[57].
During the learning process, this architecture dynamically selects the optimal convolution
kernel size to prevent the loss of temporal feature representation and noise due to exces-
sively large or small convolution kernels. As shown in Figure 3, the size of the convolution
kernel is 1 to the number of primes, the size of the convolution kernel is 1 to the number
of primes, and the size of is positively related to the dimension of each modal feature. In
the last layer of convolution, there are only convolution kernels of sizes 1 and 2. With
this convolution architecture, the receptive field of convolution can cover the temporal
samples of all scales to ensure the efficient learning of temporal features.

3.4. Objective Function and Anomaly Score. In cycle-consistent adversarial learn-
ing, both the discriminators in the forward direction and the backward direction of the
loop are employed to optimize the respective generators in the cycle-consistent adversarial
learning framework. The Equation 8 is the objective function of the discriminator in the
forward direction and The Equation 9 is the objective function of the discriminator in the
backward direction.

Lp;, = ~Ex-p[logDsu(X)]—
By, ,llog(1 = Dyu(Y) (8)
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TABLE 1. Statistics of the used UCR dataset.

Dataset Dim Numbers Class Type

CBF 128 930
MSST 1024 2525

3 Sensor
5

FST 301 2878 2 Sensor
4
7

Image

TPAs 128 5000
EleD 96 16637

Simulated

Device

Lp,, = —Eyp,[logDy, (Y)]—
By [log(1 - Dyu(X)] ¥

X ~p s

where px and py is the distributions of original signals and filtered signals. And the p,/
and pys are the prior distributions of original signals and filtered signals learned by both
generators G, (®) and Gp,(e).

For the generators of both the forward direction and backward direction of the loop
in cycle-Consistent adversarial learning, we use the reconstruction error and pairwise
feature matching loss of Gy, (e) and Gy, (e) to minimizing the difference between the
original signals and the learned signals from the hidden layer of the discriminators.

Lé,;, = 1X =Y [+ ||Dsu(X) = Dyu(Y)| (10)

Lé, = 1Y = X|| + 1| DoY) = Dy (X)) (11)

After the training process, the generators can effectively transform normal signals from

the source domain to the target domain. However, abnormal signals cannot be accurately

reconstructed from the latent space, rendering them unable to be converted between the
source and target domains. The anomaly score is defined as follows:

Score = o([|X = X'|[) + (1 = a)([[Y = Y']) (12)
where « is the trade-off parameter, it can be computed by Equation 13:
size(X) (13)

- size(X) + size(Y)

where the size(e) is the size of signals.

4. Experiment. In this section, we described the details of the experimental setup.
First, we introduce the datasets and state-of-the-art used in this paper. Then, we com-
pared the results of the anomaly detection task between KFCGAN and other methods.
Lastly, we assess the proposed methods through ablation studies and parameter analysis,
affirming their effectiveness.

4.1. Datasets. In this paper, we use UCR time series dataset [58] to verify the pro-
posed model, which has become the benchmark data in the field of time signal pro-
cessing. In this paper, we select five different categories of datasets in UCR includ-
ing CBF, MixedShapesSmallTrain(MSST), FreezerSmallTrain(FST), TwoPattens(TPAs),
ElectricDevices(EleD). The statistical information for these five datasets is presented in
Table 1.
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In the experiment, for each dataset, we select one of the classes of it as a normal
class and the others as the abnormal class, and random choice 60% normal data as the
training set, and the remaining 40% data were divided into the validation set and test set
respectively.

4.2. Experimental Parameters And Comparison Methods. The hardware param-
eters of the experimental platform in this paper are as follows: Intel(R)-Xeon(R)-Gold-
5220R, 2.20GHz and 256G memory for CPU, NVIDIA 3090, and 24G video memory for
GPU. The experimental environment is Pytorch!. All methods are performed under 10
different random seeds. For the training process, the Adam algorithm is used to op-
timize KFCGAN, and the learning rate is set as 0.001. KFCGAN run 1000 epoch for
training and the batch size is set as 64. For all experiments, the baseline methods use
the implementation of the original public code and select the optimal parameters by grid
search.
The details of the comparison methods of this paper are as follows:

e AnoGAN [54]: is the pioneering work that utilizes Generative Adversarial Net-
works for anomaly detection. During the training process, it learns the underlying
distribution of normal data in the latent space. When testing, it defines a loss func-
tion for test data to perform the multiple back propagations and generate the latent
representation of test data. Then, the latent representation is used to generate the
test data, and the residual error between the generated data and the original data
is computed to detect anomalies.

e ALAD [55]: is an anomaly detection model based on bidirectional Generative Ad-
versarial Networks. It uses an encoding network to map the input data to a latent
space and leverages the encoded data for training Generative Adversarial Networks
which avoids the expensive computation process. For anomaly detection, it evaluates
the difference between generated data and original data to detect abnormal data.

e Ganomaly [39]: is an anomaly detection method specifically designed for image
data using generative adversarial networks. The generator in Ganomaly employs an
encoder-decoder-encoder framework to generate latent representations for both the
original and reconstructed data. The generator is optimized by assessing the errors
between the latent representations of the original and reconstructed data, as well as
the reconstruction error itself. Finally, detect the anomaly by using the error of the
original data and reconstruction data.

e BeatGAN [23]: is a generative adversarial model applied to time series. Different
from other methods, it utilizes the adversarial regularity in the discriminator to
constrain the feature learned by the encoder, which solves the gradient disappearance
and explosion problems to some extent.

e MMGAN [56]: is a multi-modal generative adversarial network model that si-
multaneously learns the distributions of normal data in both the time domain and
frequency domain. It utilizes the reconstruction error as an anomaly score and de-
tects the anomaly data by measuring the anomaly score of the time series from both
the time domain and frequency domain perspectives.

4.3. Experimental Results.

4.3.1. Anomaly Detection Analysis. Table 2 show the results of KFCGAN and stat-of-
the-arts. We can find that KFCGAN outperforms other methods. This is because KFC-
GAN learns an effective signal conversion pattern where normal signals can be efficiently

https://pytorch.org/
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TABLE 2. Anomaly Detection Performance of All methods. The results
in the upper table are AUC and the results in the lower table are AP.
Specifically, all values are percentages (%) over 5 seeds. The best results
are marked in bold.

Dataset CBF MSST FST TPAs EleD
AnoGAN  62.49% 72.21% 68.80% 59.80%  65.91%
ALAD 76.10% 78.91% 76.41% 65.87% 75.10%
Ganomaly  79.17%  76.73%  75.34% 65.18%  84.89%
BeatGAN  81.65% 88.85% 85.70% 62.53%  71.64%
MMGAN  91.86% 91.83% 89.50% 72.61%  89.34%
KFCGAN 99.58% 95.21% 99.16% 96.12% 95.70%
AnoGAN  59.64% 81.89% 73.05% 59.99%  65.91%
ALAD TL.77%  76.16%  77.70%  58.20%  77.16%
Ganomaly  69.91%  62.16% 75.34% 54.54%  82.29%
BeatGAN  73.51% 72.48% 85.70% 47.83%  57.99%
MMGAN  89.38% 81.70% 89.50% 61.50%  88.23%
KFCGAN 99.79% 86.90% 98.95% 99.27% 92.51%

1- 1- 1- 1- 1-
075I I I 075| I ) I I l I I . I I I I . I I I I I I I
0.5- ’ : 0.5-% : 05 - ; : . : 05- % ' ' v 05- = ' ’ v v ] "
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1
Class Class Class Class Class

CBF FST MSST TPAs EleD

FI1GURE 4. The results of anomaly detection by using each class as normal
class, the red is AUC and the blue is AP. The horizontal axis is the class,
and the vertical axis is the AUC and AP values.

TABLE 3. Anomaly Detection Performance. The results in the upper table
are AUC and the results in the lower table are AP. Specifically, all values
are percentages (%) over 5 seeds. The best results are marked in bold.

Dataset CBF MSST FST TPAs EleD
GAN 50.32%  70.91% 63.21% 55.16% 63.54%
forward-GAN  96.70% 92.21% 96.99%  93.32%  88.87%
backward-GAN  95.43% 91.87% 96.04% 93.19%  86.41%
wo-pfm 91.24% 95.21% 95.25% 93.93%  94.28%
KFCGAN  99.58% 97.33% 99.16% 96.12% 95.70%
GAN 53.25% 72.21% 64.74% 59.80% 65.91%
forward-GAN  97.40% 92.88% 96.01% 94.15%  86.41%
backward-GAN  97.16% 92.87% 95.27%  94.09%  86.28%
wo-pfm 93.04% 86.90% 95.58%  95.26% 91.63%
KFCGAN  99.79% 93.55% 98.95% 99.27% 92.51%

transformed between the two domains, while abnormal signals cannot undergo arbitrary
conversions. Specifically, for the small dataset CBF, the AUC and AP over 7.72% and
10.41% with the best baseline method MMGAN, which proves that KFCGAN can accu-
rately capture abnormal information in the case of a small amount of training information.
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For the high-dimensional dataset MSST, KFCGAN increases the AUC and AP by 3.38%
and 5.20%, and for the low-dimensional dataset FST TPAs and EleD, KFCGAN also
outperforms other methods, that because that KFCGAN directly uses the difference in-
formation between the normal and abnormal signal for anomaly detection, which makes
the model independent of the dimension of data.

Figure 4 show the results of KFCGAN by considering each class of signal as normal in
the given datasets. It can be observed that KFCGAN exhibits stability and effectively
segments normal and abnormal time series when different classes are regarded as normal.

4.3.2. Ablation Study. In this section, we verify the effectiveness of each part of the pro-
posed model KFCGAN on UCR datasets. Specifically, cycle-GAN just uses the original
signal to train KFCGAN to verify the effectiveness of the Kalman Filter. Besides, we
also train the original signal by using the GAN model. To verify the role of the cycle-
Consistent adversarial learning, forward-GAN and backward-GAN are just used forward
direction and backward direction of the loop of KFCGAN. Besides, in order to study the
effectiveness of the discriminator, wo-pfm is the model that removes the pairwise feature
matching loss from the objective function of KFCGAN. The ablation study result is shown
in Table 3.

From the results shown in Table 3, we can find that KFCGAN performs better than
other models. Among them, the results of GAN perform significantly worse than KFC-
GAN, the reason is they just learn the feature of original signals, which makes them
cannot learn the difference between normal and abnormal signals. The forward-GAN and
backward-GAN also perform lower than KFCGAN, the main reason is that without the
guides of the other direction of the loop, the model can not fully capture the different
information between normal and abnormal signals. Different from them, the model wo-
pfm is take full advantage of different information between normal and abnormal signals,
but without the pairwise feature matching, it cannot learn the difference between normal

and abnormal time series. Overall, the analysis proves the effectiveness of the proposed
method KFCGAN.

4.3.3. Visualization. In this section, we visualize the anomaly score distribution of KFC-
GAN and other methods. The results are shown in Figure 5. Compared with other
methods, KFCGAN can find the boundary of abnormal score distribution more clearly.
For the other methods, both normal and abnormal data exhibit similar scores, making
them predict more abnormal samples to be normal, which is the reason for their poor
performance. For the proposed method KFCGAN, there are also abnormal samples that
are detected as normal, but their number is much less than that of other methods. This
proves that KFCGAN can effectively separate normal and abnormal data.
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5. Conclusions. This paper proposes a time series anomaly detection framework named
KFCGAN, which detects the anomaly time series by learning the difference between nor-
mal and abnormal signals directly. Specifically, KFCGAN employs a Kalman Filter to
generate the filtered time series. Then, cycle-consistent adversarial learning is used to
learn the transformation between the original time series and the filtered time series. Fi-
nally, the anomaly time series is detected by determining whether it can be converted
between the original time series domain and the filtered time series domain. The ex-
perimental results prove that the proposed KFCGAN is effective in time series anomaly
detection tasks.

However, in this paper, the method of filtered time series domain generation is very
important. Therefore, in the future, we can explore and design a filtering method which
more suitable for anomaly detection to generate the filtered signal domain, and improve
the performance of anomaly detection.
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