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ABSTRACT. Graph Neural Networks (GNNs) have gained considerable prominence as a
formidable tool for processing graph data, such as social networks, protein structures,
and chemical molecules. Node classification is a common task in GNNs that aims to
predict the label or category of each node in a graph. In this paper, we propose a nowvel
GNN ensemble model for node classification, which integrates three classical GNN models:
GCN, GraphSAGE, and GAT. By integrating multiple models, we can fully leverage their
advantages, tmprove the model’s robustness and generalization ability, and reduce the risk
of overfitting while achieving better performance. We conducted experiments on Cora,
Citeseer, and Pubmed datasets, and the results demonstrate that our proposed ensemble
model outperforms single models and other classical models in node classification tasks.
This ensemble model shows great potential for application in various fields, such as social
networks, bioinformatics, and recommendation systems.
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1. Introduction. Graphs are a fundamental data structure that can model complex
relationships and interactions in various fields, such as social networks, bioinformatics,
and recommendation systems [1, 2, 3]. However, traditional neural networks, such as
convolutional neural networks (CNNs) [4, 5, 6, 7] and recurrent neural networks (RNNs) [8,
9], are designed for processing grid-like data such as images and sequences, and have
limitations when they are used to handle graph data. This is because graphs are non-
Euclidean structures that lack a fixed size and have irregular connectivity patterns.
Graph neural networks (GNNs) have demonstrated their remarkable efficacy in handling
graph data by excelling in diverse tasks, including node classification, link prediction,
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and graph generation. Unlike traditional neural networks, GNNs can operate on graph-
structured data and capture the dependencies between nodes in a graph [10]. Node
classification is a common task in GNNs, which aims to predict the label or category of
each node in a graph. It is widely used in many fields, such as predicting protein functions,
identifying communities in social networks, and recommending products to users.

However, traditional GNN models, such as graph convolutional network (GCN) [11],
graph sample and aggregate (GraphSAGE) [12], and graph attention network (GAT) [13],
have limitations in their performance and generalization ability. For example, GCN uses
a local filter to update node representations, which may lead to over-smoothing and
information loss. This means that nodes that are far apart in the graph may end up
with similar representations, which may weaken the model’s ability to distinguish them.
On the other hand, GraphSAGE and GAT use neighborhood aggregation strategies to
update node representations, which may fail to capture global information and handle
heterogeneous graphs. This means that the model may not be able to capture the complex
relationships between different types of nodes and edges in a graph.

Motivated by these limitations researchers have proposed various extensions and im-
provements to GNNs. One approach is to use higher-order connectivity patterns, such
as graph attention mechanisms or graph convolutional layers, to capture more nuanced
information about node neighborhoods [14]. Another approach is to use meta-path-based
approaches, which consider specific paths or sequences of nodes and edges to capture the
connections in meaning between various types of nodes [15]. Despite these improvements,
the complexity and heterogeneity of real-world graph data remain unresolved challenges
that call for GNN models capable of addressing them.

To address these limitations, we propose a novel GNN ensemble model for node classi-
fication tasks, which integrates three classic GNN models: GCN, GraphSAGE, and GAT.
Our proposed model combines the individual capabilities of each model and overcomes
their limitations, thus improving performance and robustness. Specifically, We employ
both weighted averaging and voting methods, which are two distinct approaches, to com-
bine the predictions of individual models [16]. The weighted averaging method assigns
higher weights to models with better performance, while the voting method selects the
most frequent prediction among all models. We compare the performance of these two
methods on different datasets and demonstrate that our proposed GNN ensemble model
outperforms individual models and other classic models. Our approach provides a promis-
ing direction for improving the performance and generalization ability of GNNs, and can
be utilized in diverse real-world graph applications.

The rest of this paper is structured as follows. In Section 2, we discuss the related
work of our research. In Section 3, we analyze the principles and limitations of traditional
GNN models. In Section 4, we introduce our proposed ensemble model and two model
ensembling methods. In Section 5, we present experimental results and analysis. Finally,
we conclude and summarize the paper in Section 6.

2. Related Works. In this section, we mainly introduce the node classification task and
the mainstream variants of graph neural networks.

2.1. Node classification task. Node-level tasks are common applications in graph data,
with node classification being the most prevalent. Previous methods mainly include itera-
tive classification algorithms and label propagation methods, but they suffer from limita-
tions in feature and structure information extraction and have difficulties in generalizing
to real-world datasets [17, 18]. In recent years, new approaches combining random walk
strategies with deep learning and graph modeling have emerged [19]. However, these
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methods are still constrained by the extraction of graph topology information and the
selection of mapping functions. Therefore, further research is needed to develop more
effective methods to enhance the performance of node classification tasks. To address
the limitations of previous methods in node classification tasks, researchers have explored
various variants of GNNs.

2.2. Variants of graph neural networks. One popular variant is graph embedding,
which maps nodes or edges in a graph to low-dimensional continuous vector space, en-
abling machine learning algorithms to process data organized in the form of graphs. Deep-
Walk [20], Node2vec [21], and Line [22] are some examples of graph embedding models.
Another variant is the graph convolution network (GCN), a category of neural network
that operates on data organized in the form of graphs, allowing for the modeling of re-
lationships and dependencies between data points. GCN-LPA [23], AdaGCN [24], and
N-GCN [25] are some examples of GCN models. Graph auto-encoders (GAE) are another
type of GNN that can learn low-dimensional representations of graph-structured data,
allowing for efficient graph compression and reconstruction while preserving important
structural information. Examples of GAE models include MGAE [26] and AutoGCN [27].
Graph generative networks (GGN) are deep learning models that learn to generate graphs
with desired properties, such as connectivity and node features, by leveraging graph neural
networks and variational autoencoders. Graph-GAN [28] and NetGAN [29] are examples
of GGN models. Graph recurrent networks (GRN) are deep learning models that can
capture temporal dependencies in data organized in the form of graphs by using recur-
rent neural networks, rendering them appropriate for tasks such as traffic prediction and
social network analysis. GGT-NN [30] and GraphRNN [31] are examples of GRN models.
Lastly, the graph attention network (GAT) is a neural network architecture that uses
attention mechanisms to learn node representations in a graph. Examples of GAT models
include GATE [13] , RGAT [32], and GAM [33].

In conclusion, the various variants of graph neural networks offer effective instruments
for extracting knowledge from data organized in the form of graphs, enabling effective
representation learning, node classification, link prediction, and graph generation. These
models leverage the structural information of graphs and incorporate advanced techniques
such as attention mechanisms, graph convolutions, and message passing to capture com-
plex relationships and dependencies among nodes. With their versatility and scalability,
graph neural networks are poised to make significant contributions to a wide range of
domains, from social network analysis to drug discovery and beyond.

3. Overview Of Graph Neural Network Models. A graph is a mathematical struc-
ture that consists of nodes and edges, which depict complex relationships and dependen-
cies between entities. In a GNN, each node in the graph is assigned a feature vector that
describes its properties or characteristics, while each edge is assigned a weight or feature
vector that describes the relationship or interaction between the connected nodes. The
ultimate objective of a GNN is to learn a function that can map the input graph to a
desired output, such as classification or regression.

3.1. Notations and preliminary. Various commonly used graph neural network mod-
els are available, and we provide a general definition of such models in our work. Firstly,
G is used to represent the input graph, where G = (V, E) and V is the set of nodes while
E is the set of edges. The adjacency matrix A is a non-negative matrix that encodes the
pairwise relationships between nodes in the graph. The degree matrix D is a diagonal
matrix that records the node degrees in the graph. The number of nodes in the graph is
represented by N. The feature matrix X is an N x F' matrix that describes the properties
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or characteristics of each node in the graph, where F' is the number of features per node.
I is an identity matrix that is used to perform self-attention operations in some graph
neural network models.

3.2. Graph convolutional neural network. GCN is a neural network architecture
specifically tailored for processing data organized in the form of graphs. The key feature
of GCN is that it generalizes the notion of convolution to graphs. Specifically, GCN
functions by propagating information among adjacent nodes within the graph, using a
graph convolution operation that combines the attributes of nodes and the structure of
the graph. The propagation formula for each layer of GCN is expressed as:

H"Y = o(D 2 AD 2 HOW®), (1)
where H () is the node feature matrix of the I*" layer, A is the adjacency matrix of the
graph, A = A + I is the adjacency matrix with added self-loops, D is the degree matrix

of A, W® is the weight matrix of the ['" layer, and ¢ is the activation function.
In general, we often use the formula for a two-layer GCN model, which is as follows:

Z = f(X,A) = softmaz(AReLU (AXW O\ ®), (2)

where A = D=2 AD~% is the normalized adjacency matrix, and the softmax activation
function is defined as softmaz (z;) = 7 exp(x;) with ¢ = >, exp(;). As shown in Figure 1,
the network architecture of the classic two-layer GCN is demonstrated. The current node’s
feature representation is updated by combining the features of individual nodes along with
those of their neighboring nodes through two convolutional layers, ultimately outputting
a feature matrix.

GCN layer 1 GCN layer 2
" R
~ i
B/ B/
Graph structure data Outputs
o L amp LY | Ay | wmp L
= |
™~ ™~
B/ i ™
L S . S

F1GURE 1. GCN two-layer architecture diagram [11]

The main advantage of GCN is its capacity for learning node representations that cap-
ture both the local and global structure of the graph. By propagating information between
neighboring nodes, GCN can effectively capture the high-order connectivity patterns in
the graph, leading to a powerful node representation that can be used for a variety of
downstream tasks, such as node classification and link prediction.

However, GCN also has limitations. One limitation is that it is sensitive to the quality
of the graph representation, which can affect its performance. Another limitation is that
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GCN may suffer from over-smoothing, where node representations become too similar
after multiple layers of convolution, leading to a loss of discriminative power [34]. More-
over, GCN may has difficulty in handling directed or weighted graphs, which requires
modifications to the convolution operation.

3.3. Graph sample and aggregate. GraphSAGE is a graph representation learning
algorithm. The algorithm learns node embeddings in a graph by aggregating information
from the nearby neighborhood of the node. GraphSAGE operates by selectively extracting
and combining features from neighboring nodes in a fixed-size receptive field around each
node. The algorithm uses a multi-layer perceptron to encode these features into a low-
dimensional vector representation, which can be used for downstream tasks such as node
classification and link prediction. The main implementation of the algorithm can be found
in Algorithm 1.

Algorithm 1 GraphSAGE embedding generation algorithm

Input: Graph G; input features x,; depth K; weight matrices W*; non-linearity o;
differentiable aggregator functions AGGREG AT E i ; neighborhood function N.

Output: Vector representations Z,.

1: B <z, Yo e V;

2: for k=1,2,...., K do

3: for v € V do

4: Wi ¢ AGGREGATEg ({hi',Yu € N(v)}) ;
5 hy = o(WH - CONCAThG ™", h,));

6: end

. ke B/,

8: end

9: Z, h{){ ;

For each node v € V, its initial vector representation is set to the input feature
Z,. The algorithm iterates K times and performs the following steps: for each node
v € V, aggregate the node vector representations h*~! of its neighborhood N(v), where
AGGREGATFE is a differentiable aggregation function. Then update the vector repre-
sentation of node v as o(W*.CONC AT[hF1, hf\,(v)]), where CONCAT is a concatenation
function. Finally, normalize the vector representation of each node v € V' to have unit
length. After the iterations, the vector representation of node v is set to the final repre-
sentation hX and the vector representations of all nodes Z,, are outputted. The schematic
diagram is shown in Figure 2.

The aggregator function we mainly use is the Mean aggregator, defined as follows:

hy < o(W - MEAN ({n7'} U {rl™"Vu e N (v)}), (3)

Here, h* represents the embedding vector of node v at layer k. MEAN denotes the
mean aggregation function, which takes the average of a set of vectors. W represents a
learnable weight matrix. This formula indicates that the embedding vector of node v at
layer k is obtained by applying mean aggregation, linear transformation, and activation
function to the embedding vectors of itself and its neighboring nodes at layer k — 1.

GraphSAGE is capable of handling large-scale graphs containing millions of nodes and
edges, making it suitable for real-world applications. Additionally, GraphSAGE is highly
flexible and can easily adapt to different types of graphs and tasks by adjusting the aggre-
gation function and number of layers. However, GraphSAGE does have some limitations.



Ensembling Graph Neural Networks for Node Classification 809

K=3

(D) | e [ DS - | D
7/ \ v

Sample neighboring nodes Aggregate feature information Predict the graph context and label
from neighboring nodes using aggregated information

FIGURE 2. Schematic diagram of the GraphSAGE algorithm [12]

One of the main drawbacks is its reliance on a fixed-size neighborhood concept, which can
potentially limit the model’s capacity to capture distant relationships and global informa-
tion within the graph. Another limitation is the difficulty of incorporating node features
into the model, as GraphSAGE assumes all nodes have the same dimensionality [35],
which may not always be the case in real-world applications.

3.4. Graph attention network. GAT is a GNN model that improves upon previous
models by introducing an innovative attention mechanism enabling the model to selec-
tively attend to different nodes in the graph during the aggregation process. In GAT,
each node in the graph is represented by a feature vector that is updated by aggregating
information from its neighbors. Unlike previous GNN models that uniformly aggregate
information from all neighbors, GAT uses an attention mechanism to weight the contri-
bution of each neighbor based on its relevance to the current node. This allows the model
to give more weight to important neighbors and less weight to less relevant neighbors
during the aggregation process. The attention coefficients calculation in GAT is given by
the following formula.

€ij = a(Wﬁiu Wﬁj)a (4>

Here, Wﬁz and Wl_ij are the transformed feature vectors for nodes 7 and j, respectively,
obtained by multiplying the original feature vectors with a weight matrix W. a is a
learnable attention mechanism.

aij = softmazx; (e;;) = exp(esy) (5)

B ZkeNi exp(ex)’

i) i

W)

The meaning of this formula is that the attention weight c;; of node ¢ is the ratio
of the attention coefficient e;; between node ¢ and node j and the sum of the attention
coefficients e;, between node 7 and all of its neighboring nodes k. This is done to normalize
the attention coefficients so that the sum of all attention weights of node ¢ is equal to
1. LeakyReLU is an activation function used to introduce non-linearity. The symbol ||

exp (LeakyReLU <3T [Wﬁz

Ckij =

B Zkem exp (LeakyReLU (Z{T [Wﬁl
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denotes vector concatenation, which means connecting two vectors end-to-end to form a
longer vector.

According to the diagram in Figure 3. The attention mechanism in GAT is implemented
using a multi-head approach, where multiple attention mechanisms are used in parallel
to capture different aspects of the graph. Each attention head learns a different set of
attention weights, which are combined to produce a final attention weight matrix used
for aggregating neighbor information. The specific equations are as follows:

K
hi= |l o()_ alsWrhy), (7)

k=1 jen;

N
T
E

et
=3
v

concat/avg @

=T

FIGURE 3. GAT multi-head attention mechanism [13]

Where ﬁ; represents the new feature vector of node ¢, which is concatenated from the
outputs of multiple attention heads. K represents the number of attention heads. N;
represents the set of neighbor nodes of node 1. ozfj represents the attention coefficient
between node i and node j calculated by the k& — th attention head. W represents the
linear transformation matrix used by the k —th attention head to project the node feature
vectors into the space of attention heads. Ej represents the feature vector of node j.

One of the main advantages of the GAT model is its capability to capture long-range
dependencies in the graph by selectively attending to important nodes. GAT also offers
a high degree of flexibility, as the number of attention heads and layers can be easily
adjusted to adapt to different types of graphs and tasks. However, GAT is not without
its limitations, as it requires a fixed graph structure as input, which may not always be
available or may change over time. Additionally, the model’s performance can be limited
by the size and complexity of the input graph, as it needs to compute attention scores
over all nodes and edges [36], which can become computationally expensive.

4. The Proposed Ensemble Model. In this module, we will be discussing a new
ensemble model of graph neural networks that we have proposed. Our ensemble model is
based on the parallel idea, where we consider the classic models of graph neural networks
(GCN, GraphSAGE, GAT) mentioned above as independent base learning classifiers [37].
We then independently train these classifiers using the same training dataset, and finally,
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we use two ensemble methods to obtain the final prediction results. In the following
sections, I will offer an elaborate account of our methodologies. The specific schematic
diagram is shown in Figure 4.

GCN GraphSAGE GAT
i i /"/
P \\ ,‘/ — \\\‘ ‘/,.
Ensemble Model
Obtain the feature matrix Importing base learner models for ensemble Node classification

FIGURE 4. Schematic diagram of an ensemble model

4.1. Weighted average. The algorithmic approach we use involves taking a weighted
average of the predicted results from each model to generate the final prediction. In the
node classification task of graph neural networks, the weighted average method can be
used to fuse the predicted results from multiple models to improve classification accuracy.

Specifically, for a given test sample, each model outputs a prediction value, which is
then weighted and averaged according to pre-set weights to obtain the final prediction
result. The weights can be adjusted based on model performance, data distribution, and
other factors to maximize the predictive accuracy of the ensemble model. The formula
for this process is as follows:

3
1
Logits = 3 ; W; x Logits;, (8)

Logits refers to the output results obtained when a benchmark model predicts the
test set. It is in the form of model output that has not undergone softmax processing
and is a two-dimensional tensor, where ¢ corresponds to the corresponding graph neural
network model. We define Waen, Weraphsace, and Waar as the weight coefficients of
the GCN, GraphSAGE, and GAT models used for model fusion, respectively, to control
the contribution of each model in the final result.

The advantage of the weighted average method is that it can leverage the unique ca-
pabilities of diverse models to improve prediction accuracy. Additionally, it can also
strengthen the model’s robustness because different models may have different sensitivities
to different aspects of the dataset. This improves the accuracy of the node classification
task in graph neural networks.

4.2. Voting. Our voting strategy is as follows: for each test sample, each model predicts
its class, and the prediction results are arranged into a matrix in the same order as the
samples. Each column in the matrix represents a model’s prediction results, and each
row represents a test sample’s prediction results. Then, for each row, the class with the
highest frequency is counted as the final prediction result for that test sample.

Assuming we want to ensemble the above 3 graph neural network models, and each
model’s prediction result is y; ;, where ¢ € 1,2,3 represents the ¢ — th model and j €
1,2, ..., M represents the j —th node. We use our voting strategy as the ensemble method,
which means for each test node j, we choose the class with the highest frequency among
all models as the ensemble model’s prediction result ;. Therefore, the prediction result
of the ensemble method can be represented as:
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3
gy = argmaz 3 6(ys; = k). (9)
i=1

Here, 6(x) is an indicator function that equals 1 if z is true and 0 otherwise. The
meaning of this formula is that for each test node j, we calculate the sum of the number
of nodes predicted as class k in all models, and then select the maximum value among
these sums as the ensemble model’s prediction result for node j. The argmax represents
the class k corresponding to the maximum value after summation.

Our voting strategy integrates multiple model prediction results and selects the class
with the highest frequency as the final prediction result. This can reduce the errors
resulting from the inherent bias or variance of a single model, thus enhancing the precision
and stability of the model. By using multiple different models for integration, the diversity
of the model can be increased, mitigating the likelihood of overfitting and making the
model more generalizable.

Choosing GCN, GraphSAGE, and GAT as the base learners in the graph ensemble
model offers several advantages. These graph neural network models have complementary
capabilities in representation and capturing graph data. GCN considers the neighborhood
information of nodes, enabling it to capture the local relationships within the graph
structure. It preserves node features while leveraging the graph’s topology to propagate
and integrate information from neighboring nodes. GraphSAGE progressively combines
information from neighboring nodes at different distances through multi-layer sampling
and aggregation, resulting in richer feature representations. GAT adaptsively learns the
importance of each node’s interactions with its neighbors and considers the relationships
between different nodes simultaneously, better capturing complex relationships within the
graph.

By combining these base learners using Equation (8) or Equation (9) for model ensem-
ble, the resulting ensemble model can leverage their diverse strengths. Each model has
its unique way of capturing graph features and structure. By integrating these models,
the ensemble model can extract a wider and more comprehensive range of information
from the input graph, enhancing its understanding of the graph’s complexity. Addition-
ally, combining multiple models helps reduce biases and limitations of individual models,
resulting in more reliable and robust predictions.

4.3. Optimization. The defined loss function encompasses the cross-entropy error across
all labels.

F
L==) > YyinZy, (10)
eV f=1
Where V), is the set of indices of the labeled vertices, F' is the dimensionality of the
output features, equivalent to the number of classes, and Y € RMI*F ig a label indicator
matrix.

5. Experiment.

5.1. Datasets. We employed the widely-used citation network datasets, Cora, Citeseer,
and Pubmed, as our primary data sources [38, 39] for conducting node classification tasks
using graph neural networks. To facilitate data loading and preprocessing, we leveraged
the Planetoid class provided by PyTorch Geometric (PyG) library. The datasets were
meticulously organized and stored locally for seamless access. For the purpose of model
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training and evaluation, we followed the default configuration of the Planetoid class.
Specifically, each class category was allocated 20 samples for the training set, 500 samples
for the validation set, and 1000 samples for the test set. Notably, the assignment of nodes
to each set was carried out via random sampling, ensuring a representative distribution.
The Table 1 shows the specific information for each dataset:

TABLE 1. Datasets overview in our experiments

Datasets Nodes FEdges Features Classes

Cora 2,708 10,556 1,433 7
Citeseer 3,327 9,104 3,703 6
Pubmed 19,717 88,648 500 3

5.2. Baselines. In addition to the three classic graph neural network models mentioned
above, we also employed three more advanced baseline models, namely SGC, DGI and
HGCN.

DGI [40](Deep Graph Infomax) is a graph neural network algorithm that learns node
representations by maximizing the mutual information between local patch representa-
tions and global graph representations. It has achieved excellent performance on several
benchmark graph classification tasks.

SGC [41] (Simplifying Graph Convolutional Networks) is a model that simplifies the
complexity of graph convolutional networks. It stands out for its simplicity, offering a
streamlined implementation while maintaining impressive performance.

HGCN [42] (Hyperbolic Graph Convolutional Neural Networks) is a model that lever-
ages hyperbolic geometry for graph convolutional operations. It excels in capturing hier-
archical structures and long-range dependencies in complex networks, leading to enhanced
representation learning capabilities.

5.3. Experiment preparation. We employed two layers of GCN, GraphSAGE, and
GAT models as independent base learners for our classification task. To avoid overfitting,
we applied Dropout technique during training. We set the number of attention heads K
in Equation (7) to 8. The hidden-channels for GCN and GraphSAGE were set to 16,
while that for GAT was set to 8. We optimized the models using the Adam optimizer
with a learning rate of 0.01 and L2 regularization strength of 5e-4. To facilitate better
analysis and comparison of experimental data, we have named the ensemble model based
on Equation (8) as EGNN-W and Equation (9) as EGNN-V. We conducted separate
experiments for both ensemble models. Based on the actual performance of the model
classification node tasks, for the Cora dataset, we set Wgar to 1.5, Waraphsace and Weaen
to 1. For the Citeseer dataset, we set Waar to 1.4, Wearepnsace to 1.3, and Ween to 1.
For the Pubmed dataset, we set Waon to 1.3, Warapnsace and Wear to 1.

5.4. Experimental evaluation and results. In our evaluation, we utilize two key per-
formance metrics, Accuracy and Macro-F1 score, to assess the effectiveness of our models.
These metrics provide us with a quantitative measure of how well our models are able to
classify and predict various outcomes.

Accuracy is a simple and commonly used metric that measures the percentage of cor-
rectly classified instances over the total number of instances. It can be calculated using
the formula:

TP+TN

11
TP+ FP+TN+FN’ (11)

Accuracy =
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Where TP denotes the count of true positives, TN denotes the count of true negatives,
FP denotes the count of false positives, and FN denotes the count of false negatives.

In addition to Accuracy, we also use Macro-F1 score as a performance metric. The
Macro-F1 score relies on two additional metrics, namely precision and recall. Precision
quantifies the ratio of true positive predictions to all positive predictions, while recall
quantifies the ratio of true positive predictions to all actual positive instances. The formula
for precision and recall are:

. TP
Precision P = TP FP’ (12)
TP
Recall R = m—m, (13)

Macro-F1 can then be calculated using the following formula:

N
1 2x P i
Macro— F1 = — X x R

_— 14
DR (14

Where N represents the total number of categories, P; represents the precision of the
1 — th category, and R; represents the recall of the ¢ — th category.

To ensure the reliability of our experiments, we conducted a comparison of all models
within the same environment. Each model underwent 200 epochs and was tested over 10
runs to evaluate its ability to classify nodes across various datasets. The specific data
statistics are presented in the following Table 2. To demonstrate the superiority of our
proposed ensemble models, we compare the performance of multiple models using bar
charts, as shown in Figure 5.

Cora Citeseer Pubmed
83.0% 72.0% 80.0%
79.0%

78.0%
77.0%
76.0%
75.0%
74.0%
73.0% I
72.0%
A & & \\\;x* J \;\x‘\

82.0% 70.0%

81.0%
68.0%
80.0%
66.0%
79.0%
64.0%
78.0% o
77.0% I 62.0% I
76.0% 60.0%
B SRR ) o
o & £ & & & &

9 = >
£ F TS S
& & & & &

B Accuracy ™ Macro-F1

FIGURE 5. Performance comparison of different datasets

5.5. Ensemble method analysis. Based on the experimental results, we observed that
EGNN-V generally outperforms EGNN-W across various datasets. We analyzed several
potential reasons for this trend.

Firstly, voting ensemble models are typically composed of multiple independent models,
each with its own learning characteristics and preferences. This diversity facilitates the
ensemble model in capturing different aspects and patterns of the data more effectively.
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TABLE 2. Comparison of Accuracy and Fl-score of different models on
different datasets

Accuracy
Models Cora Cliteseer Pubmed
DGI 80.2+0.7 68.5+0.6 76.5+0.4
SGC 79.9+0.5 70.0+0.4 78.4+0.5
HGCN 79.5+0.7 68.3+0.4 78.1+0.3
GCN 80.240.8 68.5+0.5 78.6+0.3
GAT 81.3£0.6 69.3+0.6 77.9+0.3
GraphSAGE 80.44+0.4 69.21+0.7 77.940.4
EGNN-W 82.0+0.4 69.8+0.3 78.8+0.3
EGNN-V 81.540.3 70.5+0.3 79.0+0.2

Macro-F1
Models Cora Cliteseer Pubmed
DGI 78.51+0.3 62.41+0.4 72.240.4
SGC 78.1£0.3 63.8+£0.5 74.4+0.3
HGCN 78.4+0.3 63.3+£0.3 75.3+0.2
GCN 79.440.4 65.2+0.3 75.440.2
GAT 80.4+0.3 66.2+0.3 77.6+0.3
GraphSAGE 79.6+0.3 64.5+0.3 76.240.3
EGNN-W 80.8+0.2 66.6+0.2 78.3+0.3
EGNN-V 81.1+0.2 67.2+0.3 78.8+0.2

In contrast, weighted averaging models may not fully account for the differences between
individual models during weight allocation, thus potentially failing to harness the diversity
among the models efficiently.

Secondly, in a voting ensemble, when different models generate disparate predictions,
the final result is determined through voting, which can offset the erroneous predictions
made by individual models. This error compensation effect helps reduce the overall
model’s bias and variance, thereby enhancing its stability and performance.

Lastly, voting ensemble models generally exhibit better robustness to noise and out-
liers. As the voting result is based on the consensus of multiple models, errors made
by individual models are often counterbalanced by the correct predictions of others. In
contrast, weighted averaging models are more sensitive to the errors of individual models
since incorrect weight allocation can lead to a decline in the overall model’s performance.

5.6. Base learners analysis. We observed that in our experiments, the performance of
the ensemble model gradually improved as we added base learners step by step. Taking the
Cora dataset as an example, where 1 represents GCN, 2 represents GCN+GraphSAGE,
and 3 represents GCN+GraphSAGE+GAT, we employed both weighted averaging and
voting as independent ensemble methods, and the performance of the ensemble models
is shown in Figure 6. However, we noticed that when we added more base learners,
the performance didn’t show significant improvements and it consumed more time. We
analyze the following reasons for this:

As we progressively added GCN, GraphSAGE and GAT, the performance of the en-
semble model improved gradually. This is because these models are effective in capturing
the relationships between nodes and the structural information of the graph when deal-
ing with graph-structured data. The introduction of each model increases the expressive
power, leading to improved performance. When we added more base learners, it’s possible
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that the model’s expressive power had already reached a saturation point, and further ad-
ditions didn’t contribute significantly to performance improvement. In such cases, adding
more learners may not result in substantial changes in performance. If the added base
learners are more complex, it can lead to overfitting on the training data. Overfitting
causes the model’s performance to decline on unseen data, which could explain why the
performance didn’t improve significantly. Adding more base learners increases the com-
plexity and computational requirements of the model, resulting in longer training and
inference times. This also explains why it consumed more time when more learners were
added.

In practical applications, it’s important to strike a balance between model performance
and time consumption, and select the ensemble method and model configuration that best
suits the task requirements. It may require further experimentation, analysis, and fine-
tuning, including model selection, hyperparameter tuning, to find the optimal trade-off
between performance and time efficiency.

Weighted average Voting

83.0% 82.5%
82.0%
81.5%
81.0%
80.5%
80.0% 80.0%

82.0%

81.0%

79.5%

79.0% 79.0%

78.5%

78.0%

77.0% 77.5%
1 2 3 1 2 3

78.0%

=== Accuracy Macro-F1

F1GURE 6. Improvement of ensemble model with added base learners

6. Conclusion. Our study demonstrates the effectiveness of ensemble models in improv-
ing the performance of classical graph neural network models. Specifically, our ensemble
model combines the results of three models, namely GAT, GraphSAGE, and GCN, and
achieves better performance than any single model on the Cora, Citeseer, and Pubmed
datasets. We also observe that the ensemble model is more robust to noise and outliers,
which is crucial in real-world applications where data quality is often a concern. The suc-
cess of our ensemble model can be attributed to several factors. Firstly, the combination
of multiple models can reduce the impact of individual model weaknesses and leverage
their strengths. Secondly, the ensemble model can efficiently capture the diversity of the
data and produce more accurate predictions by combining the predictions generated by
multiple models. Thirdly, the ensemble model can reduce overfitting by balancing the
predictions generated by multiple models and removing the bias of any single model.
Overall, our study suggests that ensemble models can be a powerful tool for improving
the performance of graph neural network models. Future research can explore the optimal
way to combine different models and investigate the generalizability of ensemble models
across different graph datasets and tasks.
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