
Journal of Network Intelligence ©2024 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 9, Number 2, May 2024

Optimization Algorithm for Computing Power
Resource Scheduling Based on Container Cluster

Deployment

Wei Fang∗

China Mobile Communications Group Zhejiang Co., Ltd, network management center
Hangzhou, Zhejiang, China, 310000

fangwei@zj.chinamobile.com

Jie Wu

China Mobile Communications Group Zhejiang Co., Ltd, network management center
Hangzhou, Zhejiang, China, 310000

wujie21@zj.chinamobile.com

Xiaoguang Luo

China Mobile Communications Group Zhejiang Co., Ltd, network management center
Hangzhou, Zhejiang, China, 310000

luoxiaog@zj.chinamobile.com

∗Corresponding author: Wei Fang

Received July 17, 2023, revised October 11, 2023, accepted January 2, 2024.

Abstract. Currently, the demand for computing power in data processing is increasing
rapidly, and traditional data centers or terminal devices are no longer able to meet the
computing power needs of businesses. This study proposes an Optimization Algorithm of
Computing Resource Scheduling based on Container Cluster Deployment (CRS-CCD).
Firstly, optimize the deployment of container clusters based on cloud data centers, and
implement cost control for the construction of cloud data centers and communication
networks. In addition, the parallel computing power optimization framework based on
improved kernel functions optimizes the steady-state safe operation of classical comput-
ing power systems. CUDA function and GPU framework are used to improve the Algo-
rithmic efficiency, and container resource cluster is used to optimize the deployment of
computing resources. To validate the proposed algorithm, in a real computing resource
network environment, compare the proposed computing resource scheduling optimization
algorithm based on container cluster deployment with other benchmark algorithms. By
comparing the area value under the curve and average accuracy results on the computing
power network data set, it is not difficult to see that the computational resource schedul-
ing optimization algorithm based on container cluster deployment proposed in this paper
has a high average accuracy value, which is more efficient and accurate than other bench-
mark algorithms for optimizing computing resources, and also reduces the overall loss of
the computing resource network.
Keywords: container cluster deployment; Computational resources; Distributed sched-
uling; optimization algorithm

1. Introduction. As a standard software unit, containers package code and corresponding dependency
files, enabling applications to quickly, reliably, and conveniently transfer from one computing environment
to another, and run directly in the new computing environment [1, 2]. Early container instances utilized
the Chroot tool in the Unix operating system to achieve resource isolation and restriction, relying on

835

836 W. Fang, J. Wu and X. Luo

Chroot to switch the root directory used by the process to a custom file directory, set access permissions
for this file directory, and complete the isolation of file resources [3]. Containers, like other virtualization
technologies, are also a collective term. Currently, container technologies include Docker, Rocket, LXC,
and Warden [4, 5, 6]. Scholars have relied on K8S for the entire hybrid system, by containerizing both
online and offline applications and hosting them in K8S, and utilizing methods such as application clas-
sification, scheduling, and isolation to ensure that online and offline applications share the same resource
pool without affecting the quality of online service [7, 8], thereby improving resource utilization [9]. The
development of computing power resources requires not only large-scale data centers to ensure the supply
of computing power, but also efficient calculation of priority computing power resources for computing
power management, achieving unified management, unified arrangement, intelligent scheduling, and im-
proving computing power efficiency. Therefore, a unified computing power base is indispensable [10, 11].

Initially, Docker, a container technology under the open-source cloud service provider Dot Cloud, was
developed using Go language and relied on host kernel namespace and cgroups technology to isolate file
resources and limit resource usage. Docker container technology unified container packaging standards
and became a widely used and mature container technology [12]. The container instances generated by
Docker container technology are called Docker containers [13]. Docker containers are widely used to host
virtual network elements in NFV architectures. In order to improve the security of containerized virtual
network elements, a 5G mobile communication network with high security level is implemented [14, 15, 16].
Compared to virtual machines, Docker containers have advantages such as lighter weight, smaller size,
faster startup speed, higher resource utilization efficiency, and more flexible scheduling. And both the
Docker image and container adopt a hierarchical storage structure. Without containing the complete
Linux system kernel, the Docker image only contains the file system structure which is required by the
Docker container [17]. The Docker image has the advantage of being composed of one or more mirror
layers, and the Docker image is a read-only template; for Docker, an image layer is added on top of
the original image to create or update old version images, including using dockfiles to build images and
submitting new images through containers. The Docker container utilizes containers to run applications,
which have stronger readability and can be used as a simple Linux operating system and run application
programs [18].

In the optimization model of computing resources, the cluster management module of multiple clusters
will separate the management cluster and business cluster in the multi cluster deployment architecture.
For business clusters, multiple business clusters can also be labeled as a cluster group [19]. Through
the resource distribution module of multiple clusters, build multiple cluster container resources in the
management cluster and distribute them to various business clusters, and run the container resources
in the business cluster. When the container starts, Docker assigns independent Name spaces to each
container based on its configuration parameters [20]. By using PIDName space, the pid of the processes
in the container can start at 1, making the container think it is running on a new independent server [21].
The processes in different containers are not visible to each other and cannot communicate with each
other, resulting in excellent isolation. From this perspective, it can be considered that each container is an
isolated process group running on the host. Provide independent network IPs for containers through Net-
work Namespaces, and achieve communication between containers, hosts, and external networks through
technologies such as iptables [22]. By isolating the domain name and host name provided by UTSName
space, each container has a separate domain name. The combination of MountName space technology
and rootfs mounts specific directories on the host as the root directory of each container. Placing con-
tainer image files in these host specific directories in advance can provide a file system for the isolated
execution environment of container processes [23, 24].

This study is based on a programmable network computing power scheduling architecture and adopt
virtualized container technology, targeting distributed clusters to control the cluster through containers
and issue network control instructions to the data control surface; Send data forwarding strategy, data
Routing table and other network forwarding protocols to the forwarding equipment on the data forwarding
side through the controller; By accessing the computing cluster through data forwarding, the scheduling of
computing power nodes and container loading can be achieved. Data forwarding based on programmable
network architecture can change the scheduling of existing container resources within the data center,
achieving distributed scheduling and optimization of computing power resources across data centers.

The research idea of this paper is to schedule computing power based on container cloud technology
and optimize the container cluster deployed in the cloud data center to control the construction cost of
cloud data center and communication network. This study optimizes the steady-state safe operation of
the classical computing power system by improving the parallel computing power framework of the kernel
function, proposes a computing resource scheduling optimization algorithm based on container cluster

Optimization Algorithm for Computing Power Resource Scheduling Based on CCD 837

deployment, and uses the CUDA function and GPU framework to improve the algorithm efficiency and
realize the container cluster part. Efficient computing resource scheduling optimization. In order to test
whether the CRS-CCD optimization algorithm proposed in this paper can be superior to other benchmark
algorithms, this study uses the 2010, 2015, and 2020 computing power network datasets of Chinese
listed companies, in order to verify the superior performance of the algorithm proposed in this study.
The algorithm proposed in this study can provide an efficient example resource scheduling optimization
solution for cloud container clusters, solving the problem of how to efficiently and reasonably allocate and
deploy computing resources in cloud container clusters. This study has multiple innovations, proposing
an innovative cloud data center deployment optimization model that not only uses improved kernel
functions to optimize parallel computing frameworks, but also proposes a resource preemption scheduling
method based on container resource cluster deployment to achieve reasonable and efficient optimization of
computing resource allocation, and the algorithm performance is superior to many benchmark algorithms.

2. Overview of Literature and Related Technologies. As the cloud computing develops rapidly,
edge computing and intelligent devices, computing power resources are being deployed everywhere. Due
to the islanding effect of computing power, traditional network architectures cannot effectively utilize
these distributed computing power resources [25, 26, 27]. In order to overcome these problems and
improve the efficiency of network work, computational power networks have emerged. With the rapid
development of the new generation of information technology, the demand for data resource storage, com-
puting, and application has significantly increased. It is necessary to accelerate the evolution towards
new data centers, build an intelligent computing ecosystem centered on new data centers, and play a
role in empowering and driving the digital economy [28, 29]. The scale of intelligent computing power in
China is growing rapidly, and the demand for artificial intelligence computing power is steadily increasing
driven by technological policies. Traditional benchmarking methods such as degree center (DC), interme-
diate center (IC) and proximity center (CNC) are less efficient, unable to efficiently complete computing
requirements, and have problems such as high network construction costs, resulting in resource network
losses. Therefore, this paper proposes a computational resource scheduling optimization algorithm based
on container cluster deployment (CRS-CCD). After verification, the optimization algorithm proposed in
this paper can effectively enhance computing power and reduce the cost of cloud data center and commu-
nication network construction. Although container technology was initially mainly implemented based
on operating system virtualization technology, with the continuous attention to container security issues,
virtualization container technology has emerged [30]. So container technology currently mainly refers to
virtualization technology with high resource utilization, fast start stop, and the use of Docker layered
image format [31]. So container technology can be mainly divided into operating system level virtualiza-
tion based container technology and hypervisor virtualization based container technology according to
the specific implementation technology [32, 33].

A container is a collection of processes with view isolation, resource restrictability, and independent
file systems. Its implementation mainly relies on Linux’s underlying Cgroups, rootfs, and namespace
technologies. Moreover, the container is a “single process” model with packaging “mirroring” technology,
making it lightweight, agile, and portable, ensuring high consistency between the “local” and “cloud”
environments. The container lifecycle is equivalent to the application lifecycle, which is the essence of
the container’s “single process” model [34]. The “single process” model does not fully represent that a
container has only one process, but rather, within the container’s namespace, the process with PID=1
seen by other processes is the application itself represented by the container; However, in principle, the
container will be designed as a single process. Only when performing exec and other operations on the
container, it will become a Child process of the process whose PID=1 in the container, which is assigned
with the process number in the container, and also has the “real” process number on the host, which is the
role of invisible boundaries. The single process model characteristic of containers is an important reason
for determining agility and lightness, and another important reason is the implementation principle of
container image packaging [35, 36].

The essence of Docker container mirroring is to encapsulate the system files that the application and its
running environment rely on, which mainly relies on the Mount Namespace system function to implement.
It can change the “mount point” of the container file system and provide a file system for the isolated
execution environment of the container process [37, 38]. In addition, it is also a static view that only
encapsulates the files, configurations, and directories contained in the operating system, and does not
include the Linux operating system kernel, but rather shares a common host kernel; This also endows
it with lightweight features at another level, as well as replicable and portable features [39, 40]. At the
same time, rootfs packages files, configurations, and directories related to the entire operating system

838 W. Fang, J. Wu and X. Luo

of an application, which encapsulates the dependencies required for application operation, ensuring high
consistency between local development and cloud execution environments. In addition, Docker mirroring
has an important feature, which is its image layering mechanism [41, 42].

Container technology is ultimately just a low-level virtualization technology. When large-scale imple-
mentation practices are carried out, container clusters will emerge and further rise to the cloud level [43].
At this time, an orchestration tool is needed to provide operation and maintenance capabilities such
as resource orchestration, scheduling, distributed management and routing gateway, horizontal scaling,
monitoring and backup. Therefore, this paper selects the Kubernetes project to support the development
of the “Autoscaling” system [44]. Kubernetes is an open source system which is used to deploy, extend,
and manage containerized applications for automatically. Originally developed by Google, it aims to pro-
vide a better solution for managing distributed components and services across different infrastructures.
Due to the continuous development of container technology, container layout technology is also constantly
following suit. It is during these years of development that Kubernetes has become the standard and
specification for container layout [45]. Different interfaces are provided, which can be compatible with
various container engines such as Docker and Containered.

Kubernetes clusters are generally divided into two types of nodes, namely management nodes and
work nodes. The management node is responsible for managing the entire Kubernetes cluster, while the
work node is mainly responsible for running the container. Generally, three management nodes can form
a highly available architecture. Various resources in the cluster are abstracted [46]. OpenStack is an open
source platform that provides powerful virtual servers and services required for cloud computing. It mainly
deploys infrastructure services, providing hardware tools and components for the processing, storage, and
network resources of the entire data center. Besides, OpenStack can be understood as a software platform
that uses pooled virtual resources to build and manage clouds, including the public cloud and the private
cloud. OpenStack mainly exists in the form of containers on Kubernetes, and container based OpenStack
deployment can be presented through a tree structure, where nodes represent a set of containers, and
each leaf node represents a container. The implementation of OpenStack containerization mainly involves
composing each component of OpenStack into a container set, which is composed of one or more subsets
of containers. The latter is composed of one or more independent containers, and each container set
provides an independent logical service. For container subsets, taking Nova services as an example, they
are composed of independent containers such as Nova API and Nova Compute. The container set is
managed as a unified unit.

3. Model construction. On the basis of computing power scheduling based on container cloud technol-
ogy, the supplement and modification, the unexplained model parameters are consistent with the above
model. The model of the algorithm resource ai is {Dsum

i , fwci,Ki}. Among them, Dsum
i is the total

business data flow, which represents the amount of data that business ai needs to transmit per unit time.
It can also represents the storage and communication load of business ai, which is as shown in Equation
(1).

Dsum
i =

∑
dj∈D(daj ∗ ri,j)

∆t
(1)

Among them, ri,j is the element in the correlation matrix and is a 0–1 variable. If ri,j = 1, then the
business ai is related to the data set dj ; if ri,j = 0, the business ai is not related to the data set dj . daj
is the data volume of data sets, and ∆t is the time interval for service data transfer. fwci represents
the calculated load, whose specific form is the equipment computing resources occupied in the business
processing process. While the matrix Ki indicates that the association between the service and the site
is {ki,1, ki,2, . . . , ki,n}. Among them, ki,n represents the relevance between the business ai and the site
n, which can be shown as Equation (2).

ki,n =
∑
dj∈D

(lj,n ∗ ri,j ∗ daj) (2)

Due to the fact that the optimization and deployment of cloud data centers consider businesses that
are processed in the cloud data center, the security parameters of the business model are not considered.
Due to the long-term scale of cloud data center optimization deployment, the model does not consider
short-term business arrival characteristics and load fluctuations. The real-time nature of the business can
be transformed into the requirements of the business load on the hardware resources of the cloud data
center. The real-time nature of the business can be met by adjusting the capacity of the cloud data center
in the optimization process. Therefore, the business model does not consider the delay threshold. The
ordinary computing power node model represents the characteristics of the computing power Internet

Optimization Algorithm for Computing Power Resource Scheduling Based on CCD 839

of things service within the site [47], which is shown as NM = {N,K ′, αn, βn}. When analyzing the
optimization problem, you can replace the business model by the site model. N = {n1, n2, . . . , nm} is a
set of common sites, and all of the computing power sites are included. K ′ represents a strong correlation
between the business and the site. k′i,j ∈ 0, 1 is the value of k′i,j . For example, when k′i,j = 1, the relevance
between ai and site nj is maximum, so site nj can be regarded as the strong association site of business
ai. In order to transform the business model into a site model, it is stipulated that all the associated
data sets of the business are stored in the strongly associated site of the business, and the business is
processed in the cloud data center with a communication connection with the strongly associated site.
αn is the site calculation load, and βn is the total site data traffic, and the calculated load of the site nj

can be calculated by Equation (3).

{αn
j , β

n
j } =

∑
ai∈A

(k′i,j ∗ fwci, Dsum
i) (3)

To facilitate the analysis of cloud data center deployment optimization issues, this regulation simplifies
the storage and invocation of data sets, transforms business characteristics into computing power node
characteristics, and can replace business models with site models. In fact, for non local businesses, it is
required that all associated data sets of the business are stored in the Strongly correlated material site of
the business, which will lead to deviation from the actual situation. Based on the common site model, the
computing force node model also includes features related to the deployment of cloud data centers, where
PM = {P,K ′, αp, βp, spp, Lp

C , L
p
S}, while P represents the set of compute force nodes, including all the

compute force nodes P = {p1, p2, . . . , pm}. K ′ is the association matrix between services and sites, and
the meaning and value method are the same as ordinary sites. αp and βp represent the calculated load
and total data flow of the computing node, respectively, in a similar way to the ordinary site. spp is the
price of the computing power node, and the economy of computing node deployment of cloud data center
is reflected in the price of low computing power. Lp

C and Lp
S are the upper limits of the deployment of

computing devices and storage devices for computing power nodes, reflecting the limitations of the site
space, operation and maintenance management, supply and other conditions of computing power nodes
on the deployment of equipment. Computing equipment mainly refers to the large processor of data
center, and storage equipment mainly refers to the large memory of data center.

The optimal deployment of cloud computing data center is oriented to a long time scale, which belongs
to the planning and construction of the power of computing Internet of Things. Therefore, the economy of
cloud data center construction and long-term operation is taken as the optimization goal. The objective
function is to minimize the total cost Co, so the operating cost of the computing power node can be
calculated as shown in Equation (4):

Co =
∑

pi∈P,nj∈N

sppiω(αnjη + βnjρε)t ∗ (χ(
pi
nj) + γpj

pi
+ spi) (4)

The construction cost includes the construction cost of cloud data centers and communication networks.
The construction cost of cloud data center is divided into the Fixed cost of building cloud data center and
the capacity cost of deploying computing, storage and other equipment. The deployment optimization of
the cloud data center does not change the business characteristics, the calculation and storage load of the
business, the total equipment capacity of the cloud data center, and the total capacity cost. Therefore,
only Fixed cost needs to be considered in the optimization goal. The total cost is shown in Equation (5),
and Dis represents the length of built fiber lines between sites, and λ represents the construction cost of
fiber lines per unit length, both of which belong to the given condition.

Cc =
∑
pi∈P

spiφ + Disnj
pi
λ ∗ (χnj

pi
+ γpj

pi
+ δpj

pi
) (5)

4. Power Scheduling Optimization Algorithm Based on Container Cloud Technology.

4.1. Parallel Computing Force Optimization Framework Based on the Improved Kernel
Function. Safety analysis plays an significant role in ensuring the stable and safe operation of comput-
ing power systems, usually meeting the principles of safety verification. As the scale of computing power
networks continues to increase, the computational cost of considering various possible device disconnec-
tions is becoming increasingly high. Traditional security verification uses serial computing, which has low
computational efficiency and cannot meet the needs of online applications. Therefore, there is an urgent
need to study accelerated algorithms for computing power security analysis.

Let matrix Bdc be a large sparse matrix. In order to save memory usage and speed up the calculation
speed, adopt the sparse storage form, and Ax, Ai and Ap are used to express the value, column number

840 W. Fang, J. Wu and X. Luo

and line offset respectively. Since the disconnection affects only the four elements of Bdc and does not
affect the sparsity of the matrix, we only need to generate Ax in batches. Use the function of CUDA
to copy Ax into m + s copies in video memory, and create m threads to modify the first m Ax, and the
latter s Ax does not have to be modified. To avoid the delay caused by multiple access to the global
memory, and also facilitate the data division when the fault set is too large, it is not necessary to divide
the fine grain too fine, a thread can handle a break, that is, a thread is responsible for modifying the four
elements of the conduction matrix.

CUDA function is used to call GPU’s Compute kernel. Parameters represent grid dimension and
thread block dimension, and represent the number of threads executed in each interrupt process. At this
point, it is shown by Equation (6). According to the principle of rounding up, the number of startup
blocks is determined. The thread configuration of all kernel functions in the article is as described above.

“num blocks′′ =
m + “num threads′′ − 1

“num threads′′
(6)

Take the modification of main diagonal element of Bdc corresponding to node i as an example, and
its improved kernel function is shown in Algorithm 1. Firstly, index each thread number to the branch
number, and then determine the node numbers i and j at both ends of the branch. Due to the fact that
each node has been rearranged in the CPU in the order of balancing nodes. Therefore, when the node
number is smaller than the balance node number, it is necessary to index to the specific location of Ax

that needs to be modified based on node number, Ai, and Ap, and then make modifications to it.

Algorithm 1 Improved kernel function used by the model

Input: parameter Ax, Ai, Ap

Output: Aindex
x

1: define thread ID
2: define i, j ← index to break branch number
3: define i, j ← node number corresponding to the broken branch
4: if b < m, i < balance node ID then
5: let index ← b/n, offset ← Ap, Ai

6: M [i]← 1.0, M [j]← −1.0
7: if b < (m + s) ∗ n then
8: (Aindex

x)b = (Aindex
x)− 1/(xbkb)

9: x1[(n + 1) ∗ index + offset] = x[b]
10: end if
11: end if

Since the sparsity of the force matrix Bdc will not change significantly in multiple scenarios, the batch
LU decomposition technology can be used to solve the sparse System of linear equations. The matrix
rearrangement can not only reduce the injection of non-zero elements, but also increase the numerical
stability, and only needs to be carried out once. There are many High-performance computing libraries
for solving sparse System of linear equations, such as the NICSLU and PARDISO computing libraries
for CPU, which are solved by the Left looking algorithm and the super node algorithm respectively;
There are also cuSolver and cuSparse function libraries for GPUs. The cuSolverRF function library in
the cuSolver function library is used to accelerate the solution of System of linear equations by fast
decomposition when new coefficients are given in the same sparse mode. In this research, the cuSolverSP
function library is used to carry out a matrix rearrangement and complete LU decomposition on the
CPU, and the results are transmitted to the GPU. The cuSolverRF function library can be used to carry
out batch LU decomposition, and quickly solve System of linear equations in parallel.

This study uses a GPU accelerated batch generation distribution factor calculation method to create
large-scale concurrent threads and batch generate distribution factors for each branch under various
operating conditions, achieving higher parallelism. The previous text has derived formulas for the impact
of power line disconnection on active power, and the impact of power line disconnection on active power.
When reading the ground state data in the CPU, the transmission line transformation ratio of the original
parameter’s power results is changed from 0 to 1, avoiding more judgments. Each m threads process a
scene, and the molecules need to be indexed to the corresponding circuit number to obtain the computing
power circuit for corresponding calculations. When designing corresponding algorithms, memory merging
is one of the most critical factors. Due to the use of corresponding generated Xl−l, Xk−l, and Xk−i during

Optimization Algorithm for Computing Power Resource Scheduling Based on CCD 841

the solving process, continuous reading of memory ensures the effectiveness of merging access, making
the algorithm efficient.

4.2. Resource Preemption Scheduling Method Based on Container Resource Cluster De-
ployment. To improve the overall service quality of all work in the cluster, there is a trade-off between
ensuring the real-time timeout rate and reducing the completion time of batch work. If the batch con-
tainer is preempted too many times, it is likely to be eliminated by the operating system because of too
few resources, which will lead to the batch work must be re-executed again, extending the execution time
of the batch work, and also equivalent to wasting the resources allocated by the previous batch work.
On the other hand, if a real-time job waits for a long time due to insufficient resources, it increases the
scheduling delay. Since the completion time of batch work occupying more resources is more relaxed,
as long as the container is not removed after preemption, the resource preemption of batch work con-
tainers in operation is safe and efficient. So this study defines the meaning of cost for the container a
certain amount of resources, and the remaining resources are still enough to run the possibility of batch
processing task measure, if a container is likely to be removed by the operating system after insufficient
resources, the higher the subsequent cost, otherwise the cost of the lower.

From the perspective of resource scheduling, the container model can be regarded as a two-dimensional
vector containerj composed of CPU and memory. In order to quantify the container selection, parameters
are introduced in the container model to quantitatively decide which containers to select for preemption,
by extending the container model as shown in Equation (7). By introducing the PreemptionPriority
parameter to the container, it can be quantified to select multiple batch working containers for preemption.
Initially, the PreemptionPriority parameter can be represented as shown in Equation (8).

containerj = (RjcpuRjmemPreemptionPriorityj)
T (7)

PreemptionPriority =
α ∗Rtotal

Rcurrent
(8)

Among them, pp represents PreemptionPriority, and Rcurrent is the number of resources currently
occupied by the container, and α is a weight hyperparameter for a positive value. When the cluster
resources are insufficient and must be preemption, n PreemptionPriority minimum containers will be
selected into the set Cp of the preempted candidate containers, and they are subsets of the container
collection C for all batch work for running tasks, and n is the number of elements of the set Cp, and
n = crad(Cp). The parameter PreemptionPriority should not be unchanged. If the container with the
minimum PreemptionPriority is preempted by the execution, then its execution speed will be seriously
affected, thus dragging the whole batch work down. In addition, the container is seized the more, the
greater the possibility of being eliminated, the batch work will have to perform, and after the container
PreemptionPriority parameter is still the smallest, this will lead to the batch work eventually eliminated
again, so it is necessary to dynamically update the container PreemptionPriority parameters. When
dynamically updating the PreemptionPriority parameter of a container, first consider the number of
times it has been preempted. Therefore, if a container is preempted too often, it is likely to be eliminated
by the operating system. In addition, when the batch work approaches or exceeds its deadline, it is
best not to choose its task container for preemption to ensure the service quality of the batch work.
When preemption is required, for the running batch work, the container is shown in Equation (9) for the
PreemptionPriority parameter to decide whether to select it into the preempcontainer set.

pp = nbp +
α ∗Rtotal

Rcurrent
+ Fte +

β ∗ ddl − tarrival
|ddl − tcurrent|

(9)

Where nbp is the quantity of times the container has been preempted, and Rtotal is the total amount
of resources in the cluster, and Fte is a binary sign which is used to mark whether the batch processing
work which belongs to containers has been beyond its expiration date, and 0 without timeout, and 1 if
otherwise. tcurrent and tarrival represent the soft deadline of the batch work, the current time, and the
arrival time of the batch work respectively, and β is the weight of the item which is considered by time
factors, and it is a hyperparameter with positive values.

After the candidate containers perform resource recovery, it is necessary to determine how many
resources should be seized from each container. When the real-time working resource resource requirement
R = ⟨RmemRcpu⟩ is given, the seized container set is shown in Equation (10). Let the current resource
of the jth container be Rj = ⟨RjmemRjcpu⟩, and this study has designed algorithms to determine the
amount of resources recovered from Rpj = ⟨RpjmemRpjcpu⟩, including equivalence method, proportional
method, and step by step method.

Cp = {container0container1container2 . . . containern−1} (10)

842 W. Fang, J. Wu and X. Luo

In the equivalence mechanism, each container in the set of preempted containers will be preempted
and the same amount of resources will be reclaimed from each container, as shown in Algorithm 2. Each
container in the set will be preempted by 1/n of Rmem. Due to the fact that the number of virtual cores in
a container cannot be a decimal, Rjcpu ∈ N+ only applies this method to calculate the amount of memory
reclaimed from each preempted container. As for the real-time working vCPU demand, the number of

CPU cores reclaimed from each container is calculated by rounding up the average, i.e. ceil
(

Rcpu

n

)
.

Algorithm 2 Optimization algorithm for computing power resource scheduling based on
container cluster deployment

Input: parameter C, n, Rtotal, Rcurrent, tarrival, tcurrent
Output: Rj

1: for ci ∈ C do
2: calculate the parameters ppi
3: select n containers with the smallest pp from C to form the preempted container set Cp

4: for cj ∈ Cp do
5: calculate the amount of recycled memory Rpjmem = Rmem/n
6: calculate the number of recovered CPU Rpjcpu = ceil ∗Rjcpu/n ∗ pf
7: the amount of recovered resources is Rpj = ⟨Rpjmem, Rpjcpu⟩
8: Perform pending based resource preemption on container cj
9: let Rj ← Rj −Rpj

10: end for
11: end for
12: Return

After determining the number of recycled resources for each container, container pending preemp-
tion will be executed. As all processes during resource preemption are calculated through quantitative
indicators, this preemption is more fine-grained and precise, which can meet real-time work resource
requirements while reducing the possibility of preempted containers being eliminated, thereby reducing
the impact on batch processing work and shortening the completion time of batch processing work. In
addition, although it is not mandatory, the multiple containers selected for recycling may be distributed
on different nodes. The recycling steps on each node can be performed in parallel, which can speed
up context saving to a certain extent, reduce the scheduling delay of real-time work, and allow more
sufficient execution time to return successfully before the deadline. At the same time, due to the greater
possibility of batch processing work being preempted continuing to execute on the original schedule after
the completion of preemption, the damage to cluster resource utilization is less, and the work throughput
capacity of the cluster is also better improved. This study sets the proposed method as the Optimization
Algorithm of Computing Resource Scheduling based on Container Cluster Deployment (CRS-CCD) [48].

5. Empirical Examples.

5.1. Experimental Design. In this study, the computing power data of Chinese listed companies in
2010, 2015 and 2020 were used to form the basic structure of the computing power resource network model
for experiments (the specific network structure is shown in Table 1). In this study, the effectiveness of
the proposed CRS-CCD algorithm was analyzed through experiments at different scales. Data ranges of
determined parameters and fuzzy parameters for small and large instances reference [15]. This study is
based on MATLAB software and Python framework on two Linux operating servers (Intel Xeon processor
(34 GHZ) 64GB memory), each with 6 core CPU and two NVIDIA Titan X GPU and 100 GB RAM.
Since the results of the public opinion control model in the experiment may be different in each run, the
evaluation results are set as the average value after 200 iterative runs. Our research team implemented
the proposed algorithm and the comparison algorithm on Tensorflow1.5.1. The experimental process
adopts a grouping approach, dividing the data into 10 equal groups and using cross validation, that is,
dividing the dataset into 10 equal parts. Each time, one set of data is selected as the test set, and the
other groups are used as the training set. Finally, the average value is taken, and three different scenarios
are formed: 2-fold, 4-fold, and 10-fold. And save all data in CSV format in the MySQL database for data
processing.

This study proposes a computational resource scheduling optimization algorithm (CRS-CCD) based on
container cluster deployment. Degree Centrality (DC), Intermediate Centrality (IC), Proximity Centrality

Optimization Algorithm for Computing Power Resource Scheduling Based on CCD 843

Table 1. Characteristics of the Computing Power Resource Network Data
Set

Network
Serial

Number
Data Set Type

Number
of

Nodes

Number
of

Node
Boundaries

Average
Degree

Node
Average

Path

Cluster
Coefficient

1
2010 Computational

Power Resource
Network Data Set

Directed 2245 8290 3.24 2.49 0.138

2
2015 Computational

Power Resource
Network Data Set

Directed 2415 10393 3.59 2.70 0.173

3
2020 Computational

Power Resource
Network Data Set

Directed 2849 12849 3.63 2.91 0.190

(CNC), Ant Colony Optimization (ACO), Swarm Optimization (SWO) Compare benchmark algorithms
such as K-Shell Centrality (KSC) and Weighted K-Shell Degree Neighborhood (WKS-DN) [49]. In
combination with reference [36, 50], two precision functions are used: Mean absolute error (MAE) and
Root-mean-square deviation (RMSE). The specific calculation methods are shown in Equation (11) and
Equation (12) respectively.

MAE =
1

N

N∑
i=1

|fi − yi| (11)

RMSE =

√√√√ 1

N

N∑
i=1

(observedt − predictedi)2 (12)

However, the optimization of computing resources is usually regarded as a binary classification task,
and in the evaluation Confusion matrix of binary classification tasks with two categories [11]. True
Positive (TP), indicating the correct number of predicted links; True Negative (TN), representing the
number of correct unforecasted links; False Positive (FP), indicating the number of incorrectly predicted
links; False Negative (FN), indicating the number of unpredictable links that are incorrect. Based on
this, the following indicators can be obtained: true case rate/recall rate/sensitivity, etc. The calculation
of True Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate (TNR), and Precision can
be referred to in reference [32]. The evaluation is based on the following two indicators, namely, Area
Under the Receiver Operating Characteristics curve (AUROC) [22] and Average Precision (AP) [23].
The ROC curve is the curve between the true case rate (sensitivity) on the Y axis and the false positive
case rate (1-specificity) on the X axis, and the ROC curve is the area under the area [0, 1], which can
be calculated using the trapezoidal rule, which adds all trapezoids under the curve. The AUROC value
of the link prediction method should be greater than 0.5, and the higher the AUROC value, the better
the performance of the link prediction method. The mean accuracy is a single-point summary value
calculated based on different recall thresholds, which is the average accuracy value of the interval [0, 1]
recall value. This is as shown in Equation (13). Where p represents the exact rate at different recall r
thresholds, and R is the set of different thresholds.

AP =

R∑
k=1

p(k) ∗∆r(k) (13)

5.2. Experimental Results. Table 2 reports the area values under the curve of the CRS-CCD con-
tainer cluster deployment based computing power resource scheduling optimization algorithm and other
benchmark methods proposed in this article in the computing power network dataset. This study found
that the proposed CRS-CCD algorithm for computing resource scheduling optimization based on con-
tainer cluster deployment has better experimental results in real computing network datasets. Table 3
reports the average accuracy results of the CRS-CCD container cluster deployment based computing
power resource scheduling optimization algorithm and other benchmark algorithms proposed in this ar-
ticle in the computing power network dataset. The results show that the proposed CRS-CCD algorithm

844 W. Fang, J. Wu and X. Luo

for computing resource scheduling optimization based on container cluster deployment has a high average
accuracy value in all computing network datasets.

Table 2. Area Values under Curves of Various Computational Resource
Network Datasets in Different Methods

Cross
Validation

Level

Data Set Name

Supply Chain Network
Optimization Framework

DC IC CNC ACO

2-fold

2010 Computational Power
Resource Network Dataset

0.4282 0.3532 0.3893 0.5355

2015 Computational Power
Resource Network Dataset

0.4461 0.2411 0.4048 0.4985

2020 Computational Power
Resource Network Dataset

0.3019 0.3199 0.3002 0.4810

4-fold

2010 Computational Power
Resource Network Dataset

0.4318 0.3849 0.4012 0.5838

2015 Computational Power
Resource Network Dataset

0.4579 0.3191 0.4127 0.5492

2020 Computational Power
Resource Network Dataset

0.3628 0.4292 0.5228 0.5051

10-fold

2010 Computational Power
Resource Network Dataset

0.4583 0.4055 0.4828 0.6638

2015 Computational Power
Resource Network Dataset

0.4910 0.3525 0.5485 0.5729

2020 Computational Power
Resource Network Dataset

0.4739 0.4660 0.5829 0.5391

Cross
Validation

Level

Data Set Name

Supply Chain Network
Optimization Framework

SWO KSC WKS-DN CRS-CCD

2-fold

2010 Computational Power
Resource Network Dataset

0.6010 0.5939 0.6584 0.8472

2015 Computational Power
Resource Network Dataset

0.6239 0.5328 0.6749 0.8329

2020 Computational Power
Resource Network Dataset

0.5029 0.5930 0.7381 0.8493

4-fold

2010 Computational Power
Resource Network Dataset

0.6122 0.6638 0.6692 0.8938

2015 Computational Power
Resource Network Dataset

0.6283 0.6573 0.6839 0.8492

2020 Computational Power
Resource Network Dataset

0.6650 0.6019 0.7680 0.8204

10-fold

2010 Computational Power
Resource Network Dataset

0.5383 0.6782 0.6949 0.8930

2015 Computational Power
Resource Network Dataset

0.5839 0.6839 0.7382 0.8575

2020 Computational Power
Resource Network Dataset

0.5291 0.6371 0.7029 0.8957

Note: The values displayed in bold indicate that the corresponding algorithm
performs well.

In combination with reference [20], two precision functions are used: Mean absolute error (MAE)
and Root-mean-square deviation (RMSE). Table 4 reports the MAE and RMSE values of the proposed
CRS-CCD container cluster deployment based computing resource scheduling optimization algorithm and
other benchmark algorithms in different computing resource network topologies. The higher the MAE and

Optimization Algorithm for Computing Power Resource Scheduling Based on CCD 845

Table 3. Average Accuracy Values of Various Computing Power Resource
Network Datasets in Different Methods

Cross
Validation

Level

Data Set Name

Supply Chain Network
Optimization Framework

DC IC CNC ACO

2-fold

2010 Computational Power
Resource Network Dataset

0.2859 0.2729 0.3382 0.3291

2015 Computational Power
Resource Network Dataset

0.2039 0.2049 0.4818 0.4293

2020 Computational Power
Resource Network Dataset

0.2371 0.2385 0.3919 0.3527

4-fold

2010 Computational Power
Resource Network Dataset

0.3271 0.3291 0.3418 0.3472

2015 Computational Power
Resource Network Dataset

0.3391 0.2410 0.3204 0.4839

2020 Computational Power
Resource Network Dataset

0.3204 0.2394 0.4491 0.4311

10-fold

2010 Computational Power
Resource Network Dataset

0.2395 0.3417 0.4372 0.4638

2015 Computational Power
Resource Network Dataset

0.3581 0.3921 0.3340 0.4953

2020 Computational Power
Resource Network Dataset

0.3849 0.3100 0.4839 0.4552

Cross
Validation

Level

Data Set Name

Supply Chain Network
Optimization Framework

SWO KSC WKS-DN CRS-CCD

2-fold

2010 Computational Power
Resource Network Dataset

0.5395 0.5873 0.6497 0.6240

2015 Computational Power
Resource Network Dataset

0.5856 0.5443 0.7354 0.8063

2020 Computational Power
Resource Network Dataset

0.5748 0.6054 0.7703 0.8352

4-fold

2010 Computational Power
Resource Network Dataset

0.5663 0.6281 0.6617 0.6512

2015 Computational Power
Resource Network Dataset

0.6438 0.5985 0.6794 0.7445

2020 Computational Power
Resource Network Dataset

0.6192 0.5474 0.7592 0.8186

10-fold

2010 Computational Power
Resource Network Dataset

0.6479 0.5847 0.6873 0.7299

2015 Computational Power
Resource Network Dataset

0.6753 0.6012 0.6944 0.7742

2020 Computational Power
Resource Network Dataset

0.6191 0.6126 0.8205 0.8742

Note: The values displayed in bold indicate that the corresponding algorithm
performs well.

RMSE values, the lower the accuracy of the prediction optimization algorithm. According to Figure 1, it
can be seen that the proposed CRS-CCD based computing resource scheduling optimization algorithm
for container cluster deployment is generally superior to other methods. This is because the proposed
S-CCD based computing resource scheduling optimization algorithm for container cluster deployment
has the ability to quickly respond and adjust and optimize the computing resource network in real-time,
while also minimizing the overall loss of the computing resource network.

846 W. Fang, J. Wu and X. Luo

Table 4. Comparison Results of Accuracy Functions for Optimization Al-
gorithms of Computing Power Resource Networks

Index DC IC CNC ACO

Actual
Value

MAE 0.6383 0.6738 0.6239 0.5371
RMSE 0.7362 0.6988 0.6582 0.5481

Optimal
Value

MAE 0.5353 0.6074 0.6248 0.5743
RMSE 0.6353 0.6428 0.6739 0.5938

Index SWO KSC WKS-DN CRS-CCD

Actual
Value

MAE 0.5382 0.5644 0.4272 0.2371
RMSE 0.5463 0.5738 0.4371 0.2492

Optimal
Value

MAE 0.4739 0.5192 0.4472 0.1281
RMSE 0.5291 0.5332 0.4738 0.2455

Note: The bold part indicates that this algorithm method
is relatively optimal under this parameter condition.

Figure 1. Comparison of Supply Chain Network Optimization Algorithms
Based on Time Complexity

6. Conclusion. In order to adapt to the rapid development of big data and intelligent devices faster,
it is the goal of current scholars to study an algorithm that can meet current needs and have efficient
and accurate computing power. This study proposes an Optimization Algorithm of Computing Resource
Scheduling based on Container Cluster Deployment (CRS-CCD). Firstly, optimize the deployment of
container clusters based on cloud data centers, and implement cost control for the construction of cloud
data centers and communication networks. In addition, the parallel computing power optimization frame-
work based on improved kernel functions optimizes the steady-state safe operation of classical computing
power systems. CUDA function and GPU framework are used to improve the Algorithmic efficiency, and
container resource cluster is used to optimize the deployment of computing resources. To validate the
proposed algorithm, in a real computing resource network environment, compare the proposed computing
resource scheduling optimization algorithm based on container cluster deployment with other benchmark
algorithms. It can be seen that the proposed algorithm for scheduling and optimizing computing resources
based on container cluster deployment is more efficient and accurate than other benchmark algorithms for
optimizing computing resources. The intelligent industry needs a large amount of computing resources
when dealing with large-scale data and complex tasks. The optimization algorithm proposed in this paper
can effectively improve computing efficiency, reduce costs and energy consumption, and also improve the
user experience for the majority of users. It has played an active role in promoting intelligent technology
innovation.

Acknowledgment. This study is sponsored by Hunan First Normal University.

Optimization Algorithm for Computing Power Resource Scheduling Based on CCD 847

REFERENCES

[1] P. Lv, Q.-R. Liu, H.-C. Chen, T. Chen, “Domain-Oriented Software Defined Computing Architec-
ture,” China Communications, vol. 16, no. 6, pp. 162–167, 2019.

[2] S. Viktória, H. Lukáš, H. Jakub, “Nextflow in Bioinformatics: Executors Performance Comparison
Using Genomics Data,” Future Generation Computer Systems, vol. 142, pp. 328–339, 2023.

[3] D.-S. Dinamarca, J. Francisco, P. Hector, O.-J. Sabattin, R.-F. Rojas, D.-H. Reyes, Rogget Marcelo
Reyes, Coronado-Hernández Jairo, Romero-Conrado Alfonso R, “Technical Evaluation of Thermal
Containers for the Distribution of Thermolabile Medicines in the Chilean Pharmaceutical Supply
Chain,” Procedia Computer Science, vol. 220, pp. 922–927, 2023.

[4] G. Luciano, P. Fernando, G. Davide, N. Camilla, G. Flavia, D. Simona, B. Emilio, T. Giampaolo, C.
Tonia, M. Maurizio, D.-P. Elisa, O.-M.Elisabetta, D.-B. Maria, N. Nicola, S. Giovanni, M. Angelo, “A
Computational Framework for Comprehensive Genomic Profiling in Solid Cancers: The Analytical
Performance of a High-Throughput Assay for Small and Copy Number Variants,” Cancers, vol. 14,
no. 24, 2022.

[5] M.-R. Li, S.-Q. Zhou, L.-K. Cheng, F.-N. Mo, L. Chen, S.-Z. Yu, J. Wei, “3D Printed Supercapacitor:
Techniques, Materials, Designs, and Applications,” Advanced Functional Materials, vol. 33, no. 1,
2022.

[6] T.- A. Khan, K. Karim, I. Muhammad, Y. Zhang, J.-Y. Long, M. Asif, M. Nasir, Z.-J. Xie, C.
Li, H. Zhang, “Recent advance in two-dimensional MXenes: New horizons in flexible batteries and
supercapacitors technologies,” Energy Storage Materials, vol. 53, pp. 783–826, 2022.

[7] X. Hu, H.-X. Wang, W.-Z. Meng, K.-H. Yeh, “Attribute-based Data Sharing Scheme with Flexible
Search Functionality for Cloud Assisted Autonomous Transportation System,” IEEE Transactions
on Industrial Informatics, 2023. Available: https://doi.org/10.1109/TII.2023.3242815.

[8] L.-L. Wang, Y. Lin, T. Yao, X. Hu, K.-T. Liang, “FABRIC: Fast and Secure Unbounded Cross-
System Encrypted Data Sharing in Cloud Computing, ” IEEE Transactions on Dependable and
Secure Computing, 2023. Available: https://doi.org/10.1109/TDSC.2023.3240820.

[9] S. Kasun, G. Kosala, P. Nisitha, K. Nihal, M. Mehdi, “Modern Supercapacitors Technologies and
Their Applicability in Mature Electrical Engineering Applications,” Energies, vol. 15, no. 20, 2022.

[10] M. Przemyslaw, P. Micha l, P. Damian, “Numerical and Experimental Investigations of the Influence
of Operation on the Technical Condition of Pressure Vessels,” Materials, vol. 15, no. 20, 2022.

[11] M. Alberto, P. Antonio, K. Amit, D.-L.-C. Luis, R. Diego, M.-J. Ignacio, “Integration of Machine
Learning-Based Attack Detectors into Defensive Exercises of a 5G Cyber Range,” Applied Sciences,
vol. 12, no. 20, 2022.

[12] X.-C. Xu, Y.-X. Jiang, H. Wen, W.-J. Hou, S.-L. Chen, “A secure edge power system based on a
Docker container,” Frontiers in Energy Research, no. 1, 2022.

[13] M. Anand K, P. Emmanuel S, G. Mahesh C, “CONTAIN4n6: a systematic evaluation of container
artifacts,” Journal of Cloud Computing, vol. 11, no. 1, pp. 1–14, 2022.

[14] A. Tahir, A. Sikandar, K.-H. Ullah, S. Ali, A. Khalid, S.-M. Asif, “Container Performance and Vul-
nerability Management for Container Security Using Docker Engine,” Security and Communication
Networks, 2022, 2022.

[15] D. Fabio, S. Corrado, S.-F. Fausto,“Wale: A solution to share libraries in Docker contain-
ers,” FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF
ESCIENCE, vol. 100, pp. 513–522, 2019.

[16] T.-Y. Wu, X.-l. Guo, Y.-C. Chen, S. Kumari, C.-M. Chen, “Amassing the Security: An Enhanced
Authentication Protocol for Drone Communications over 5G Networks, ” Drones, vol. 6, no. 1, 10,
2022.

[17] D. Mo, H.-Y. Yu, Z.-P. Sun, M.-Z. Wu, L.Zhang, Y.-Y. Sui, G.-H. Yu, T. Han, R.-H. Zhao,“Design
of IoT Gateway for Crop Growth Environmental Monitoring Based on Edge-Computing Technology,
”Computational Intelligence and Neuroscience, 2022, 2022.

[18] A.-M. Daniils, I. Aleksandrs, G. Elans, R. Dmitrijs,“Evaluation of a Long-Distance,” IEEE 802.11ah
Wireless Technology in Linux Using Docker Containers. ELEKTRONIKA IR ELEKTROTECH-
NIKA, vol. 28, no. 3, pp. 71–77, 2022.

[19] K. Woojae, J. Inbum,“Simulator for Interactive and Effective Organization of Things in Edge Cluster
Computing, ” SENSORS, vol. 21, no. 8, 2021.

[20] J.-H. Gu, J.-H. Feng, H.-Y. Xu, T. Zhou,“Research on Terminal-Side Computing Force Network
Based on Massive Terminals, ”Electronics, vol. 11, no. 13, 2022.

848 W. Fang, J. Wu and X. Luo

[21] T. Ashleigh, G. Rupert,“A Comparative Review of Lead-Acid, Lithium-Ion and Ultra-Capacitor
Technologies and Their Degradation Mechanisms, ” Energies, vol. 15, no. 13, 2022.

[22] O.-V. Ladyzhenskaya, T.-S. Aniskina, V.-A. Kryuchkova,“Elements of container technology for grow-
ing blackberry varieties Ouachita,” IOP Conference Series: Earth and Environmental Science, vol.
1045, no. 1, 2022.

[23] K. Danial, B. Hamidreza, V.-M. Joeri, B. Maitane,“A Comprehensive Review of Lithium-Ion Capac-
itor Technology: Theory, Development, Modeling, Thermal Management Systems, and Applications,
”Molecules, vol. 27, no. 10, 2022.

[24] W. Richard, W. Stephen K., B. Chris J, “Containerless Techniques for in-situ X-Ray Measurements
on Materials in Extreme Conditions, ” Journal of the Physical Society of Japan, vol. 91, no. 9, 2022.

[25] D.-X. Hou, K.-L. Zhao, W.-F. Li, S.-D.Du, “A Realistic, Flexible and Extendible Network Emulation
Platform for Space Networks, ” Electronics, vol. 11, no. 8, 2022.

[26] G. Sourav, Y Sarita, D. Ambika, T. Tiju,“Techno-economic understanding of Indian energy-storage
market: A perspective on green materials-based supercapacitor technologies, ” Renewable and Sus-
tainable Energy Reviews, vol. 161, 2022.

[27] T.-Y. Wu, F.-F. Kong, Q. Meng, S. Kumari, C.-M. Chen, “Rotating Behind Security: An en-
hanced authentication protocol for IoT-enabled devices in distributed cloud computing architecture,”
EURASIP Journal on Wireless Communications and Networking, vol. 2023, 36, 2023.

[28] M.-C.-J.-T.-W. Kithulwatta, P.-N.-K.Jayasena, T.-G.-S.-B. Kumara, M.-K.-T.-R. Rath-
nayaka,“Integration With Docker Container Technologies for Distributed and Microservices
Applications: A State-of-the-Art Review, ” International Journal of Systems and Service-Oriented
Engineering (IJSSOE), vol. 12, no. 1, 2022.

[29] Y.-S. Wang, L.-J. Feng, J.-F. Wang, H.-D. Zhao, P. Liu,“Technology Trend Forecasting and Technol-
ogy Opportunity Discovery Based on Text Mining: The Case of Refrigerated Container Technology,
” Processes, vol. 10, no. 3, 2022.

[30] M.-A. Bandurin, I.-P. Bandurina, A.-A. Mykhailin,“Application of geotextile containers for removal
of silt layers of the Krasnodar reservoir, ” IOP Conference Series: Earth and Environmental Science,
vol. 996, no. 1, 2022.

[31] Q.-I. He, F. Zhang, G.-Q. Bian, W.-Q. Zhang, Z. Li, D.-L. Duan, “Real-time network virtualization
based on SDN and Docker container, ” Cluster Computing, vol. 26, no. 3, pp. 2069–2083, 2022.

[32] C.-R. Chiang, “Contention-aware container placement strategy for docker swarm with machine learn-
ing based clustering algorithms,” CLUSTER COMPUTING-THE JOURNAL OF NETWORKS
SOFTWARE TOOLS AND APPLICATIONS, vol. 26, no. 1, pp. 13–23, 2023.

[33] Y.-L. Wang, Q.-X. Wang, X.-S. Chen, D.-J. Chen, X.-J. Fang, M.-Y. Yin, N. Zhang, “Contain-
erGuard: A Real-Time Attack Detection System in Container-Based Big Data Platform,” IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, vol. 18, no. 5, pp. 3327–3336, 2022.

[34] N. Penchalaiah, A.-S. Al-Humaimeedy, M. Maashi, J.-C. Babu, 4, O.-I. Khalaf, T.-H.-H. Aldhyani,
“Clustered Single-Board Devices with Docker Container Big Stream Processing Architecture, ” Com-
puters, Materials & Continua, vol. 73, no. 3, 2022.

[35] M. Gabrielle, “Settler colonialism’s container technologies: photographing crates in the Canadian
Arctic (1926–1953),” Settler Colonial Studies, vol. 11, no. 4, 2021.

[36] T. Hao, X.-L. Xu, T.-Y. Lin, Y.-Q. Cheng, R. Cheng, R. Lei, B. Muhammad, “DIMA: Distributed
cooperative microservice caching for internet of things in edge computing by deep reinforcement
learning,” World Wide Web, 2021 (prepublish).

[37] Z.-C. Hua, Y. Yu, J.-Y. Gu, Y.-B. Xia, H.-B. Chen, B.-Y. Zang, “TZ-Container: protecting container
from untrusted OS with ARM TrustZone,” Science China Information Sciences, vol. 64, no. 9, pp.
28–43, 2021.

[38] A. Davide, D. Claudio, E. Pasolli, F. Asnicar, S. Manara, D.-H. Parks, C. Rinke, M. Chuvochina,
S. Nurk, D. Meleshko, A. Korobeynikov, D.-D. Kang, F. Li, E. Kirton, J.-N. Nissen, J. Johansen,
R.-L. Allesøe, L.-X. Chen, K. Anantharaman, A. Shaiber, A. Shaiber, A.-M. Eren, R.-M. Bowers,
N.-C. Kyrpides, R. Stepanauskas, E. Afgan, D. Baker, B. Batut, P.-D. Tommaso, M. Chatzou, E.-
W.Floden, F. Strozzi, R. Janssen, R. Wurmus, P.-A. Ewels, A. Peltzer, S. Fillinger, D.-H. Parks, M.
Imelfort, C.-T. Skennerton, Orakov A,A. Fullam, L.-P. Coelho, P.-P Chan, T.-M.Lowe, J. Goris, K.-
T. Konstantinidis, J.-A. Klappenbach, J.-T. Evans, V.-J. Denef, M.-R. Olm, C.-T. Brown, B. Brooks,
D. Li, C.-M. Liu, R. Luo, D. Albanese, C. Donati, B. Denis, S.-B. Schmidt Thomas, F. Anthony,
O. Askarbek, “Large-scale quality assessment of prokaryotic genomes with metashot/prok-quality,”
F1000Research, vol. 10, 2021.

Optimization Algorithm for Computing Power Resource Scheduling Based on CCD 849

[39] S. Nawat, A. Chaodit, “Optimal Cloud Orchestration Model of Containerized Task Scheduling Strat-
egy Using Integer Linear Programming: Case Studies of IoTcloudServe@TEIN Project,” Energies,
vol. 14, no. 15, 2021.

[40] W.-T. Cao, Y. Guo, H. Zhang, M.-H. Sun, M. Yuan, “Application of Container Technology in
Numerical Ocean Model: a Kind of High-performance ROMS Containerized Architecture,” Journal
of Physics: Conference Series, vol. 1961, no. 1, 2021.

[41] K.-J. Christian, W. Lars, E. David, “BIGwas: Single-command quality control and association
testing for multi-cohort and biobank-scale GWAS/PheWAS data,” GigaScience, vol. 10, no. 6, 2021.

[42] H. Philipp, H. Tobias, M. Jürgen, “OPAL—The Toolbox for the Integration and Analysis of IoT in
a Semantically Annotated Way,” Sensors, vol. 21, no. 12, 2021.

[43] H.-F. Liu, S.-G. Chen, Y.-C Bao, et al.“A High Performance, Scalable DNS Service for Very Large
Scale Container Cloud Platforms,” 19th ACM/IFIP/USENIX Middleware Conference (Industrial
Track), 2018.

[44] G. Kamate, S.G.-R. Prasad,“Docker & Containers, the Future of Microservices,” Journal of Global
Economy, Business and Finance, vol. 3, no. 4, 2021.

[45] A. Bhardwaj, C.-R. Krishna,“Virtualization in Cloud Computing: Moving from Hypervisor to Con-
tainerization—A Survey,” Arabian Journal for Science and Engineering, 2021 (prepublish).

[46] G. Tom, D.-T. Filip, V. Bruno, “Extending Kubernetes Clusters to Low-Resource Edge Devices
Using Virtual Kubelets,” IEEE TRANSACTIONS ON CLOUD COMPUTING, vol. 10, no. 4, pp.
2623–2636, 2022.

[47] T.-Y. Wu, L.-y. Wang, X.-l. Guo, Y.-C. Chen, S.-C. Chu, “SAKAP: SGX-Based Authentication Key
Agreement Protocol in IoT-Enabled Cloud Computing,” Sustainability, vol. 14, no. 17, 11054, 2022.

[48] C.-M. Chen, S. Lv, J. Ning, J.-M.-T. Wu, “A Genetic Algorithm for the “Waitable Time-Varying
Multi-Depot Green Vehicle Routing Problem”,” Symmetry, vol. 15, no. 1, 124, 2023.

[49] A.-L.-H.-P. Shaik, M.-K. Manoharan, A.-K. Pani, R.-R. Avala, C.-M. Chen, “Gaussian Muta-
tion–Spider Monkey Optimization (GM-SMO) Model for Remote Sensing Scene Classification,” Re-
mote Sensing, vol. 14, no. 24, 6279, 2022.

[50] X. Hu, Q. Zheng, H. Xin, K.-H. Yeh, “Revocable and Unbounded Attribute-based Encryption Scheme
with Adaptive Security for Integrating Digital Twins in Internet of Things, ” IEEE Journal on
Selected Areas in Communications, 2023. Availale: https://doi.org/10.1109/JSAC.2023.3310076.

