
Journal of Network Intelligence ©2024 ISSN 2414-8105

Taiwan Ubiquitous Information Volume 9, Number 2, May 2024

Logistics Job Intelligent Scheduling Model Based on
Discrete Grey Wolf Optimization Algorithm

Tian-Juan Gao, Yuan Zhou*

Department of Logistics Management
Hebei Jiaotong Vocational and Technical College, Shijiazhuang 050035, China

gaotianjuan@126.com, zhouyuanhbjt@163.com

Thomas Masurat

Technische Hochschule Wildau, Brandenburg 14467, Germany
daisyzhou.fly@gmail.com

∗Corresponding author: Yuan Zhou
Received October 25, 2023, revised December 27, 2023, accepted February 4, 2024.

Abstract. Logistics job scheduling is playing an increasingly important role in various
aspects of social development and regional infrastructure. In recent years, scholars have
conducted extensive research on logistics job scheduling. In real-world logistics job sched-
uling problems, there are numerous optimization objectives, such as transportation costs,
time constraints, and traffic pressures. This paper begins by establishing a fundamental
mathematical model and formulating a multi-objective optimization function for intel-
ligent logistics job scheduling, taking into account the constraints involved. To address
the combinatorial optimization challenges of logistics scheduling, the paper introduces the
Grey Wolf Optimization (GWO) algorithm. However, because the solution space in lo-
gistics job scheduling optimization is considered a hypercube, and the GWO algorithm is
designed for continuous optimization problems, the paper discretizes the GWO algorithm.
It transforms the real-number positions of grey wolf individuals in continuous space into
integer vectors and designs a repair and optimization algorithm based on a greedy strategy.
The paper ultimately designed and implemented an improved Discrete Grey Wolf Opti-
mization algorithm(DGWO). In order to verify the applicability of the improved DGWO
algorithm in solving logistics job scheduling problems, this paper utilizes 10 data instances
from reference 11 and compares the DGWO algorithm with GA El, MPCEA, and TTLS
algorithms proposed in references 4, 11, and 25, respectively. The results show that the
improved DGWO algorithm in this paper exhibits good performance in terms of solving
optimization problems, convergence, and robustness. It can be effectively used to address
real-world logistics job scheduling problems.
Keywords: logistics job scheduling; combinatorial optimization; Discrete Gray wolf
Optimization algorithm; encoding transformation; greedy strategy

1. Introduction. Modern logistics has become one of the core components reflecting
the economic vitality, overall competitiveness, and urban image of a region. Logistics job
scheduling can significantly improve the efficiency of logistics processes such as transporta-
tion and warehousing. Through intelligent scheduling systems, resources can be allocated
efficiently, reducing wait times and minimizing empty vehicle loads, thereby lowering costs
[1,2]. It plays an increasingly crucial role in urban development and daily life.

In recent years, numerous scholars have conducted extensive research on logistics job
scheduling. Delaram and Valilai [3] proposed a mathematical model for task scheduling
in cloud manufacturing systems to minimize logistics costs for intercity transportation of
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semi-finished products. Elgendy et al. [4] addressed logistics scheduling problems with an
improved genetic algorithm optimizing for maximum completion time and transportation
costs. Taniguchi and Shimamoto [5] explored dynamic vehicle routing and scheduling
problems with variable travel times. Noroozi et al. [6] aimed to enhance overall profit
by considering order revenue and logistics scheduling costs, solving scheduling models
using an adaptive genetic algorithm. However, in practical vehicle routing problems,
there are numerous optimization objectives, such as transportation costs, time constraints,
and traffic pressures, which involve various influencing factors and related information.
Therefore, the study of vehicle routing and scheduling problems with multiple objectives
and constraints is of significant importance.

This paper, starting from the perspective of modern logistics job scheduling, provides
a foundational information model for logistics scheduling problems and a mathematical
model for comprehensive evaluation. It also introduces an improved Discrete Grey Wolf
Optimization algorithm. The effectiveness of this algorithm in logistics scheduling is
ultimately validated through practical examples.

2. Definition and mathematical model of Logistics Job scheduling problem.
The logistics job scheduling problem can be described as follows: Given the locations
of customers and dispatch starting points, and under the constraints of the vehicle’s
maximum loading capacity and the latest transportation time, the goal is to minimize
transportation costs. This problem involves transporting n tasks using m vehicles to their
respective destinations [7,8].

The cargo matrix provides detailed information about the goods at the logistics center,
including the item name, item number, weight, packaging volume, inventory identification,
and so on. Its mathematical representation is shown in Equation (1):

[G] =


G11 · · · G1j · · · G1w
... · · · ... · · · ...

Gi1 · · · Gij · · · Giw
... · · · ... · · · ...

Gn1 · · · Gni · · · Gnw

 (1)

where Gji represents the i-th description information of cargo j, where j = 1, 2, . . . , n,
and n is the cargo space number; i = 1, 2, . . . , w. For example, i = 1 represents cargo
name; i = 2 represents cargo code; i = 3 represents cargo weight, and so on.

The vehicle information matrix describes the basic information of the scheduling vehi-
cles, including vehicle name, code number, carrying capacity, transportation cost, and so
on. Equation (2) provides a mathematical description of vehicle information.

[V ] =


V11 · · · V1h · · · V1v
... · · · ... · · · ...

Vk1 · · · Vkh · · · Vkv
... · · · ... · · · ...

Vm1 · · · Vmh · · · Vmv

 (2)

where Vkh represents the h-th character information of vehicle k, where k = 1, 2, . . . ,m,
and m is the total number of vehicles that can be scheduled from the center. h =
1, 2, . . . , v, where h = 1 represents vehicle name, h = 2 is vehicle number, and h = 3
represents the vehicle’s carrying capacity, and so on.

The transportation route and condition information matrix describe the distance be-
tween two traffic points and road condition factors [9, 10, 11]. Equation (3) provides its
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mathematical description.

[D] =

 D0−0 D0−1/R0−1 · · · D0−(s−1)/R0−(s−1) D0−s/R0−s
...

... · · · ...
...

Ds−0/Rs−0 Ds−1/Rs−1 · · · Ds−(s−1)/Rs−(s−1) Ds−s

 (3)

In some cases, the traffic routes are one-way and not reversible, so Dg→p ̸= Dp→g, which
means that the mutual delivery distances between two logistics points are different.

Logistics job scheduling aims to meet customer demands while maximizing cost sav-
ings under the constraint of maintaining smooth traffic [12,13]. The main constraints
in optimizing vehicle routes include customer wait times, vehicle quantity limits, and
transportation costs, among others. The mathematical model is represented by schedu-
lable vehicles (S), transportation routes (D), and transportation costs (C), as shown in
Equations (4), (5), and (6).

S =
m∑
k=1

S(Vk) (4) (4)

D =
m∑
k=1

Dmax(Vk) (5) (5)

C =
m∑
k=1

[
C1(Vk) +

nk∑
j=1

C2(Vk)DjRj + C3(Vk)Tk

]
(6) (6)

where C1(Vk), C2(Vk) and C3(Vk) represent the startup cost, transportation cost per
unit, and transportation service cost of vehicle Vk, respectively. Dj is the transportation
distance for cargo j, corresponding to the transportation route information matrix Dg−p,
Rj is the road condition coefficient, and Tk is the operating time for vehicle Vk.

T f
a (j) ≤ T d

a (j) (7) (7)

W (Vk) ≤ V 3
k (8) (8)

Where T f
a (j) is the estimated arrival time for cargo j, T d

a (j) is the actual arrival time
required for cargo j, Vk is the estimated carrying capacity of the vehicle, and W (Vk)f is
the actual load capacity of the vehicle.

3. Basic grey wolf optimization algorithm. The Grey Wolf Optimization (GWO)
algorithm is a nature-inspired swarm intelligence optimization algorithm, drawing inspi-
ration from the social structure and hunting behavior of grey wolves in the wild. This
algorithm was first introduced by Seyedali in 2014. GWO has gained recognition due to
its simplicity, ease of parameter tuning, and straightforward implementation. It has been
successfully applied in various domains, including 0-1 knapsack problems, numerical opti-
mization, multi-layer perceptron training, and engineering design, among other practical
problems [14,15,16,17].

GWO models this hierarchy with four main levels: α, β, δ, and ω. α is at the top and
symbolizes the leader of the wolf pack. Beta is the second-in-command, serving under
Alpha and assisting in decision-making. When Alpha loses its dominance, Beta becomes
the best candidate for the new Alpha. Delta is at the bottom of the hierarchy, following
the commands of both Alpha and Beta. Omega is at the lowest level, representing the
majority of the wolf pack, responsible for executing the decisions made by the higher-
ranked wolves and maintaining internal relationships within the pack.



Logistics Job Scheduling on Discrete GWO 853

During the optimization process of GWO, the best solution is considered as Alpha (α),
the second-best and third-best solutions are Beta (β) and Delta (δ), and the remaining
solutions are Omega (ω). The iterative process of GWO relies on Alpha, Beta, and Delta
to guide Omega. The global optimization search is achieved through a task distribution
process involving encircling, hunting, and attacking phases assigned to the wolves at each
hierarchical level [18, 19, 20].

3.1. Tracking and approaching. During the encirclement of the prey, the calculation
of the gray wolf’s position is determined by the prey’s location, coefficient vector A, and
the distance between the gray wolf and the prey, as shown in Equations (9), (10), and
(11).

X⃗(t+ 1) = X⃗p(t+ 1)− A⃗ · D⃗ (9)

D⃗ = |2r⃗2 · X⃗p(t)− X⃗(t)| (10)

A⃗ = 2a⃗ · r⃗1 − a⃗ (11)

where X and Xp represent the positions of a grey wolf and its prey, t is the iteration
number, D represents the distance between the prey and the grey wolf, vector A represents
the simulated attack behavior of the grey wolf towards the prey, and a is the convergence
factor.

3.2. Pursuing and encircling. GWO designates the best wolf as alpha, the second
best as beta, the third best as delta, and the rest of the wolves are categorized as omega.
This classification is based on the fact that it’s easier to understand the potential optimal
solution locations through Alpha, Beta, and Delta [21,22]. Therefore, the positions of
the best three solutions obtained before the current iteration number t are recorded and
retained, and all the positions of the individual wolves are updated using Equation (12)-
Equation (15) as follows:

X⃗(t+ 1) =
X⃗1 + X⃗2 + X⃗3

3
(12)

X⃗1 = X⃗α(t)− A⃗1 ·
∣∣∣C⃗1 · X⃗α(t)− X⃗(t)

∣∣∣ (13)

X⃗2 = X⃗β(t)− A⃗2 ·
∣∣∣C⃗2 · X⃗β(t)− X⃗(t)

∣∣∣ (14)

X⃗3 = X⃗δ(t)− A⃗3 ·
∣∣∣C⃗3 · X⃗δ(t)− X⃗(t)

∣∣∣ (15)

The update of the grey wolf’s positions can be represented as shown in Figure 1.

3.3. Attacking. The hunting phase of the wolf pack involves capturing prey, which cor-
responds to obtaining the optimal solution. The main control factor during this process
is the linear decrease of the parameter ’a’ in the equation [23]. By controlling the values
of ’a’ and ’A’, the wolf pack can balance global and local search during the search for
the optimal solution, effectively guiding the pack towards the best solution. The update
equation for ’a’ in the GWO algorithm is as follows:

a = 2− 2t/iterMax (16)

where t and iterMax are the number of iterations and the maximum number of iterations.
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Figure 1. Grey wolf location update

4. Discrete Grey Wolf Optimization Algorithm. In logistics job scheduling opti-
mization problems, the solution space is considered as a hypercube [24,25,26], while the
GWO algorithm is specifically designed for continuous optimization problems. In the
original GWO, the positions of the grey wolves are represented as real-valued vectors,
and they are continuously updated based on the location and distance to the prey [27].
However, this mechanism is no longer suitable for the discrete domain. Therefore, we map
the distance moved by individuals in the continuous space to the probability of changing
their positions in the discrete space, thereby discretizing the GWO algorithm.

4.1. Encoding Transformation Method. In addressing numerical optimization prob-
lems, the GWO algorithm seeks the best solution by searching for the positions of grey
wolf individuals in continuous space. However, in the discrete space, the way the posi-
tions of grey wolf individuals are updated differs [28]. To tackle this issue, it is necessary
to map the coordinates of positions in continuous space to the discrete domain using a
transfer function. The encoding transformation method typically utilizes a transforma-
tion function to map the position coordinates of each individual in the search space, in
each dimension, to real values within the (0,1) range [29].

Let vector X⃗i = [xi1, xi2, . . . , xin] represent the position coordinates of the i-th grey wolf

individual in an n-dimensional search space, and let Y⃗i = [yi1, yi2, . . . , yin] represent the

binary vector obtained after encoding transformation of X⃗i. Drawing from the approach
proposed by Yue et al. [30], this paper introduces an encoding transformation method to
convert the real-number position vector of grey wolf individuals in continuous space into
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an integer vector using Equation (17).

yij =

⌊
bj ∗

xij − lb

ub− lb
+ 0.5

⌋
, j = 1, 2, . . . , n (17)

where xij represents the coordinate of individual i in the j-th dimension, yij represents the
value of the potential solution Yi in the j-th dimension, bj represents the total quantity
of the j-th type of item.

4.2. Initial population and individual evaluation. Each grey wolf individual in the
pack randomly generates an initial position coordinate vector Xi, which lies within the
given search space between lb and ub. Through a transformation function, Xi is converted
into the corresponding binary coordinate vector Yi. Then, based on the objective function
of the combinatorial optimization problem at hand, Yi is used to compute the fitness value,
fitness(Yi), of the i-th grey wolf individual in the pack, thus evaluating all the grey wolves
in the entire pack.

4.3. Select and update. By employing a greedy selection strategy, the algorithm rese-
lects the top three individuals based on fitness ranking after each iteration and designates
them as alpha, beta, and delta. For the logistics job scheduling problem, this paper de-
termines their positions as follows: Yalpha is the Yi that maximizes f(Yi); Ybeta is the Ybeta,
except for alpha, that maximizes f(Yi); and Ydelta is the Ydelta, except for alpha and beta,
that maximizes f(Yi). Subsequently, the positions of Xalpha, Xbeta, and Xdelta are used to
guide the entire pack for updates in the next generation.

4.4. Greedy Strategy-Based Repair and Optimization Algorithm. When the
DGWO algorithm is used to solve logistics scheduling problems, it may produce infeasible
solutions. Effectively handling these infeasible solutions is crucial. Common methods for
dealing with infeasible solutions include penalty function methods, repair methods, and
repair and optimization methods [17]. The repair and optimization method employed in
this paper is as shown in Algorithm 1.

4.5. Implementation of the DGWO Algorithm. In the initialization phase of the
DGWO algorithm, each individual’s components in each dimension are randomly selected
within the interval [lb, ub]. When solving the logistics job scheduling problem, the algo-
rithm designed in this paper transforms the values of X into the corresponding potential
solutions Y based on Equation (25). Then, individuals are repaired and optimized using
the algorithm described in Section 3.4, and their fitness values are calculated. Finally, the
top three individuals with the highest fitness values are selected to guide the evolution of
the remaining individuals.

Let L[1 . . . n] ← sort((pi/ωi|1 ≤ i ≤ n)) represent the array where n logistics jobs
are sorted in pi/ωi descending order, and the pseudocode for the DGWO algorithm is
described in Algorithm 2.
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Algorithm 1 Repair and Optimization Algorithm

Input: potential solution Y = [yi1, yi2, . . . , yin]
Output: feasible solution Y = [yi1, yi2, . . . , yin] and f(Y )

1: R←
∑n

j=1wjyj; j ← n
2: while R > C do
3: if yH[j] > 0 then
4: yH[j] ← yH[j] − 1; R← R− wH[j]

5: else
6: j ← j − 1
7: end if
8: end while
9: j ← 1
10: while j ≤ n do
11: if yH[j+1] < b and R + wH[j+1] ≤ C then
12: yH[j] ← yH[j] + 1; R← R + wH[j]

13: else
14: j ← j + 1
15: end if
16: end while
17: f(Y )←

∑n
j=1 pjyj

18: return (Y, f(Y ))

Algorithm 2 DGWO

Input: size, mit, and Pc

Output: Ya and f(Ya)

1: H[1 . . . n]← QuickSort
({

pi
ωi
|pi ∈ P, ωi ∈ W, 1 ≤ i ≤ n

})
2: Generate initial population Xi(i = 1 . . . n) randomly and Yi;
3: for i← 1 to N do (Yi, f(Yi))← GROA(Yi, H[1 . . . n]);
4: end for
5: Find the α, β, δ positions based on fitness;
6: t← 0;
7: while t ≤ MaxIter do
8: a← 2− 2× t

MaxIter
;

9: for i← 1 to N do
10: Update position vector Xi by Equation (8);
11: Update position vector Yi by Equation (16);
12: (Yi, f(Yi))← GROA(Yi, H[1 . . . n]);
13: Crossover operate by probability Pi;
14: end for
15: Update the α, β, δ positions based on fitness;
16: t← t+ 1;
17: end while
18: return (Ya, f(Ya))

5. Experimental Results. In this section, tests were conducted using the data from
reference 11. The programming language used was Python. To evaluate the effectiveness
of the algorithm proposed in this paper, the experimental results of the DGWO algorithm
were compared with those of TTLS [25], MPCEA [11], and GA El [4]. The parameter
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settings for each algorithm can be found in Table 1, the definitions of the parameters for
each algorithm are as given.

Table 1. Parameters of algorithms.

Popsize Maxiter Pc Pv lb ub

DGWO 30 1000 0.8 - 0 3
TTLS 50 2000 0.8 - 0 bj

MPCEA 50 2000 0.9 - 0 5
GA El 30 1000 0.8 0.001 0 1

To test the results of the four algorithms in logistics scheduling problems, this paper has
compiled and compared the results of four algorithms after running 50 times on 10 different
test instances. The results include the best solution (BEST), average solution (MEAN),
standard deviation (STD), average number of iterations (MIT), average computation time
(ACT), and the probability of obtaining the best solution (SR). The experimental results
are presented in Table 2 and Table 3.

Table 2. Parameter Definition.

Parameters Numerical value
popsize the population size of the algorithm
maxIter maximum number of iterations of the algorithm

Pc cross probability of the algorithm
Pm mutation probability of the algorithm

lb
the lower bound of each one-dimensional

component in an individual variabl

ub
the upper bound of each one-dimensional

component in an individual variabl

Table 3. Experimental Results of DGWO, TTLS, MPCEA, and GA El.

pb1 pb2 pb3 hp1 hp2 hp3 sen1 sen2 weing1 weing2

DGWO

BEST 1118 2053 875 3118 2553 419 618 839 1845 882
MEAN 1005 2037 859 2889 2331 401 597 815 1609 856
MIT 145 225 327 240 164 254 153 308 150 276
SR 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00

TTLS

BEST 1095 1962 881 3002 2512 408 604 822 1830 884
MEAN 997 1849 836 2734 2227 390 576 807 1554 851
MIT 203 261 307 320 188 260 205 296 138 304
SR 0.84 0.90 1.00 1.00 0.86 1.00 0.82 0.76 0.84 1.00

MPCEA

BEST 1083 2000 860 2957 2385 399 612 830 1685 869
MEAN 1008 1776 834 2709 2064 376 583 804 1471 836
MIT 197 245 358 312 182 269 145 302 146 283
SR 1.00 0.90 1.00 0.86 1.00 0.84 0.92 0.86 1.00 0.96

GA El

BEST 1049 1900 843 2775 2362 405 598 798 1773 843
MEAN 892 1553 790 2551 1895 392 564 770 1470 810
MIT 210 281 410 325 223 297 196 406 135 384
SR 0.62 1.00 0.70 0.86 0.66 0.90 0.68 0.74 0.82 0.78

It can be observed that DGWO achieved a success rate of 100% for all instances except
ins4. TTLS and MPCEA reached a 100% success rate for four instances, while GA El only
achieved a 100% success rate for the ins2 instance. In terms of solving the optimization
problem, for the pb3 and weing2 instances, the results obtained by DGWO and TTLS
were similar. However, in the other eight instances, DGWO’s optimal solutions were
significantly better than the other three algorithms.
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For the average solutions in each case, DGWO, TTLS, and MPCEA had relatively close
values in the pb1 instance. In the weing2 instance, DGWO and TTLS algorithms had
similar average solutions. In the remaining eight instances, DGWO’s average solutions
were superior to the other three algorithms.

To provide a more intuitive comparison of the convergence performance of the four
algorithms, for six instances (pb1, hp1, sen1, sen2, weing1, and weing2), we present the
average convergence curves for 50 experiments in Figure 2 to Figure 7.

In the pb1 and sen1 instances, DGWO outperforms the other three algorithms in terms
of both finding the optimal solution and convergence. TTLS and MPCEA show similar
performance and outperform the GA algorithm. In the hb1 instance, the four algorithms’
effectiveness in finding the optimal solution is in the following order: DGWO, MPCEA,
TTLS, GA El. However, in terms of convergence, TTLS outperforms MPCEA. In the
Sen2 instance, DGWO and TTLS exhibit similar performance, while MPCEA and GA
algorithms perform similarly. For the Weing1 instance, after 200 iterations, all four al-
gorithms converge and show similar convergence characteristics, but DGWO’s optimal
solution is somewhat superior to the other three algorithms. In the Weing2 instance,
DGWO and TTLS algorithms perform similarly in both optimal solution search and con-
vergence, while the GA algorithm outperforms MPCEA in finding the optimal solution.

Considering the results from all 10 instances and the convergence curves for the six
instances (pb1, hp1, sen1, sen2, weing1, and weing2), it can be observed that DGWO
exhibits superior overall performance compared to the other three algorithms, while TTLS
and MPCEA demonstrate similar performance.

To further validate the robustness of the improved DGWO algorithm, the results of
50 experiments for each instance are compared with the average best solution for that
instance, and the deviation results are calculated using Equation (18).

dev =
|fi − favg|

fi
× 100% (18)

Where fi represents the average best solution for the i-th instance, i = 1, 2, . . . , 10.
The deviation radar chart for the four algorithms across the ten instances is depicted in
Figure 8.

From Figure 8, it is evident that the results for the ten instances corresponding to the
four algorithms fluctuate within a certain range. DGWO exhibits the smallest fluctua-
tion in its corresponding curve, while TTLS and MPCEA algorithms show comparable
experimental deviation results. The deviation values for DGWO, TTLS, MPCEA, and
GA El algorithms fall within the ranges of 10%-18%, 15%-30%, 20%-35%, and 30%-45%,
respectively. Therefore, in terms of robustness in problem-solving, the improved DGWO
algorithm in this paper outperforms TTLS, MPCEA, and GA El algorithms.
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Figure 2. pb1 instance

Figure 3. hb1 instance
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Figure 4. sen1 instance

Figure 5. sen2 instance
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Figure 6. weing1 instance

Figure 7. weing2 instance
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Figure 8. The deviation results for the ten instances

6. Conclusions. This paper addresses the intelligent scheduling problem in logistics op-
erations and establishes a mathematical model for it. To tackle the issues of practical
constraints and multi-objective optimization in logistics scheduling, this paper introduces
the Grey Wolf Optimization (GWO) algorithm. Since the original GWO algorithm cannot
directly address multi-objective logistics scheduling problems, this paper discretizes the
GWO algorithm and proposes an improved Discrete Grey Wolf Optimization algorithm
(DGWO). To test the results of the DGWO algorithm in logistics scheduling problems,
the study uses 10 data instances from reference 11, and compares the DGWO algorithm
with TTLS, MPCEA, and GA El algorithms. The results indicate that the improved
DGWO algorithm in this paper performs well in terms of solving the optimization prob-
lem, convergence, robustness, and other aspects. It can be effectively employed to address
real-world logistics job scheduling problems.
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